数值逼近(复旦大学)答案
- 格式:doc
- 大小:2.14 MB
- 文档页数:66
抽象代数基础丘维声答案【篇一:index】t>------关于模n剩余类环的子环和理想的一般规律[文章摘要]通过对模n剩余类的一点思考,总结出模n剩余类环的子环和理想的规律:所有理想为主理想,可以由n的所有因子作为生成元生成,且这些主理想的个数为n的欧拉数。
使我们得以迅速求解其子环和理想。
[关键字]模n剩余类环循环群子环主理想[正文]模n剩余类是近世代数里研究比较透彻的一种代数结构。
一,定义:在一个集合a里,固定n(n可以是任何形式),规定a元间的一个关系r,arb,当而且只当n|a-b的时候这里,符号n|a-b表示n能整除a-b。
这显然是一个等价关系。
这个等价关系普通叫做模n的同余关系,并且用a?b(n)来表示(读成a同余b模n)。
这个等价关系决定了a的一个分类。
这样得来的类叫做模n的剩余类。
二,我们规定a的一个代数运算,叫做加法,并用普通表示加法的符号来表示。
我们用[a]来表示a所在的剩余类。
规定:[a]+[b]=[a+b];[0]+[a]=[a];[-a]+[a]=[0];根据群的定义我们知道,对于这个加法来说,a作成一个群。
叫做模n剩余类加群。
这样得到的剩余类加群是循环群,并且[1]是其生成元,[0]是其单位元。
三,我们再规定a的另一个代数运算,叫做乘法,并且规定:[a][b]=[ab];根据环的定义我们知道,对于加法和乘法来说,a作成一个环。
叫做模n剩余类环。
四,关于理想的定义:环a的一个非空子集a叫做一个理想子环,简称为理想,假如:(i) a,b?a?a-b?a;(ii)a?a,b?a?ba,ab?a;所以如果一个模n剩余类环a的子环a要作为一个理想,需要满足: (i) [a],[b]?a?[a-b]?a;(ii)[a]?a,[b]?a?[ba],[ab]?a;由以上四点可得到对一个模n剩余类环,求其所有子环和理想的一个方法。
思路:第一,模n剩余类环对加法构成加群,根据群的定义,找出所有子群;第三,对所有子群,根据环的定义,对乘法封闭,从所有子群里找出所有环;第四,对所有子环,根据理想的定义,找出所有理想。
课程编号:A071001复旦大学2020-2021学年第一学期数值分析期末试题A一.解下列各题(每小题6分)1.求极限n n nn )111(lim 2++∞→.2..已知f 是可导函数,且x x f dx d 11(arctan =,求4(πf '.微分法,可以补用考虑微分次数,不断向下推。
导数法,比需两边对同一变量求导。
3.求出23||ln )(2+-=x x x x f 的间断点,并指出是第几类间断点.4.已知2)13(lim 2=++-+∞→bx ax x x ,试确定其中常数b a ,.二.解下列各题(每小题7分)1.设⎩⎨⎧+=+-=23)1ln(tt y t t x ,求22dx y d .2.试确定常数b a ,的值,使点)3,1(是曲线34bx ax y +=的拐点,并求出曲线的凹凸区间.3.求由方程0sin 21=+-y y x 所确定的隐函数)(x y y =的二阶导数.4.已知2112sin )(1lim30=--+→x x e x x f ,求)(lim 0x f x →.复合函数与函数求导公式可以一起用。
三.(9分)设数列}{n x 满足010<<-x ,),2,1,0(221 =+=+n x x x n nn ,证明}{n x 收敛,并求n n x ∞→lim .四.(9分)设)(x f 有二阶连续导数,0)0(=f ,⎪⎩⎪⎨⎧='≠=0),0(0,)()(x f x x x f x g ,求)(x g '并讨论)(x g '的连续性.五.(9分)一个体积给定的观察站底部是一个直圆柱,顶部是一个半球形,如果顶部单位面积的造价是侧面单位面积造价的二倍,问圆柱的底半径r 与高h 分别为多少时可使总造价最低?六.(8分)证明,当1>x 时,11ln +-≥x x x .七.(9分)(1)已知当0→x 时,2cos x e x -与k cx 是等价无穷小,求c 与k 的值;(2)求极限222sin )(cos 112lim 2xe x x x x x -+-+→.八.(4分)设)(xf 在],[b a 上连续,在),(b a 内可导,0)(≠'x f ,证明存在),(,b a ∈ηξ,使ηηξ---=''e ab e e f f a b )()(.最后一道题一定要会拼与凑。
实验一1. 分别用循环型Arnoldi 算法和循环型GMRES 算法求解线性方程组Ax b =。
1000110011101111A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 1111b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦取2m =,初始值(0)[0,0,0,0]x T =,迭代终止条件为810ε-=。
要求输出数值近似解和迭代步数。
M-文件Arnoldi 算法function X=Arnoldi(X0,m,A,b,ep)nk=0;while (max(abs(A*X0-b))>=ep)r0=b-A*X0;n=length(b);v=zeros(n,m+1);h=zeros(m,m);p=sqrt(sum(r0.^2));v(:,1)=r0./p;for k=2:m;tmp=0;for i=1:k-1h(i,k-1)=(A*v(:,k-1))'*v(:,i);tmp=tmp+h(i,k-1)*v(:,i);endvk=A*v(:,k-1)-tmp;h(k,k-1)=sqrt(sum(vk.^2));v(:,k)=vk/h(k,k-1);endtmp=0;for i=1:mh(i,m)=(A*v(:,m))'*v(:,i);tmp=tmp+h(i,m)*v(:,i);endvm1=A*v(:,m)-tmp;hm1=sqrt(sum(vm1.^2));v(:,m+1)=vm1/hm1;e1=zeros(m,1);e1(1)=1;y=inv(h)*p*e1;z=v(:,1:m)*y;X0=X0+z;nk=nk+1;endnkX=X0;Command windows:A=[1 0 0 0;1 1 0 0;1 1 1 0;1 1 1 1]b=[1 1 1 1]'m=2x0=[0 0 0 0]'ep=1.0e-8结果:Arnoldi(X0,m,A,b,ep)nk =23ans =1.00000.0000-0.0000-0.0000GMRES算法function X=GMRES(X0,m,A,b,ep)nk=0;while(max(abs(A*X0-b))>=ep)r0=b-A*X0;n=length(b);v=zeros(n,m+1);h=zeros(m,m);p=sqrt(sum(r0.^2));v(:,1)=r0./p;for k=2:m;tmp=0;for i=1:k-1h(i,k-1)=(A*v(:,k-1))'*v(:,i); tmp=tmp+h(i,k-1)*v(:,i);endvk=A*v(:,k-1)-tmp;h(k,k-1)=sqrt(sum(vk.^2));v(:,k)=vk/h(k,k-1);endtmp=0;for i=1:mh(i,m)=(A*v(:,m))'*v(:,i);tmp=tmp+h(i,m)*v(:,i);endvm1=A*v(:,m)-tmp;hm1=sqrt(sum(vm1.^2));v(:,m+1)=vm1/hm1;H=[h;[zeros(1,m-1),hm1]];e1=zeros(m+1,1);e1(1)=1;y=pinv(H)*p*e1;z=v(:,1:m)*y;X0=X0+z;nk=nk+1;endnkX=X0;Command windowsA=[1 0 0 0;1 1 0 0;1 1 1 0;1 1 1 1]b=[1 1 1 1]'m=2x0=[0 0 0 0]'ep=1.0e-8结果:GMRES(X0,m,A,b,ep)nk =12ans =1.0000 0.0000 -0.0000 -0.00001. 用追赶法、线性插值法和双参数法求解n 阶三对角方程组Ax f =。
数值分析参考答案第一章数值分析与科学计算引论3、下列各数都是经过四舍五入得到的近似数,即,误差限不超过最后一位的半个单位,试指出它们是几位有效数字:* 11.1021x=,*20.031x=,*3385.6x=,*456.430x=,*57 1.0x=⨯解:法1:按p5的公式(2.1)展开法2:从左到右第一位非零开始数* 11.1021x=有5位有效数字,* 20.031x=有2位有效数字,* 3385.6x=有4位有效数字,* 456.430x=有5位有效数字,* 57 1.0x=⨯有1位有效数字(科学记数法)。
6 设028Y=,按递推公式11,2,n nY Y n-== ,计算到100Y。
若取27.982≈(5位有效数字),试问计算100Y将有多大误差?解:精确值Y=*27.983Y=从而,**30001102Y Yε-=-≤⨯第一次迭代:***111011282827.983100100Y Yεε⎛⎛⎫=-=--⨯≤⎪⎝⎝⎭第二次迭代:()()***22211*****1100000127.9831001112100100100100Y Y Y YY Y Y Yεεεε⎛⎛⎫=-=---⨯⎪⎝⎝⎭=---≤+=按规律递推得:***100n n nnY Yεε=-≤所以有:***310010010001001101002Y Yεε-=-≤=⨯因此,计算100Y 的误差限不超过31102-⨯7、求方程25610x x -+=的两个根,使它至少具有427.982)解:由求根公式得2828x ===±27.982≈具有5位有效数字,则有1282827.98255.982x =≈+=21280.0178655.982x ==≈=11、序列{}n y 满足递推关系:1101,1,2,n n y y n -=-= ,若0 1.41y =≈(3位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?解:0y =*0 1.41y =,则有**20001102y y ε-=-≤⨯ 按迭代公式有:()*****111000001011011010y y y y y y εε=-=---=-≤ ()****2*222111101011011010y y y y y y εε=-=---=-≤由递推式,可得()***10*10*101010990001011011010y y y y y y εε=-=---==-≤因此,此计算过程不稳定。
数学分析复旦答案【篇一:复旦《数学分析》答案第四章1、2节】题 4.1 微分和导数⒈半径为1cm的铁球表面要镀一层厚度为0.01cm的铜,试用求微分的方法算出每只球需要用铜多少克?(铜的密度为8.9g/cm3。
)解球体积v?43?r3,每只球镀铜所需要铜的质量为2m???v?4??r?r?1.12g。
?0⒉用定义证明,函数y点之外都是可微的。
证当x?0时,?y?微。
当x?0时,?y???3x2在它的整个定义域中,除了x这一?x2是?x的低阶无穷小,所以y?x2在x?0不可?x?x?o(?x),所以y?x2在x?0是可微的。
习题 4.2 导数的意义和性质1.设f?(x0)存在,求下列各式的值:⑴⑵⑶lim?x?0f(x0??x)?f(x0) ?x;limx?x0f(x)?f(x0)x?x0;。
f(x0?(??x))?f(x0) (??x)??f(x0)。
limh?0f(x0?h)?f(x0?h) h解 (1)lim⑵⑶f(x0??x)?f(x0) ?xf(x)?f(x0)x?x0?x?0??lim?x?0x?x0lim?limf(x0?(x?x0))?f(x0) x?x0x?x0?0?f(x0)。
limf(x0?h)?f(x0?h) hf(x0?h)?f(x0)hh?0f(x0?h)?f(x0)hh?0?limh?0?lim?2f(x0)。
2.⑴用定义求抛物线y?2x2?3x?1的导函数;⑵求该抛物线上过点(?1,?2)处的切线方程;⑶求该抛物线上过点(?2,1)处的法线方程;⑷问该抛物线上是否有(a,b),过该点的切线与抛物线顶点与焦点的连线平行?解 (1)因为?y?x?2(x??x)?3(x??x)?1?(2x?3x?1)?xf(x)?lim?y?x?4x?3。
22?4x?3?2?x,所以?x?0(2)由于(3)由于f(?1)??1,切线方程为y??1?[x?(?1)]?(?2)??x?3。
f(?2)??5,法线方程为y??1?5[x?(?2)]?1?x?75。
数值逼近题库(含参考答案)习题一1.用3位数字计算出方程:的解x,y,再用6位数字计算出x与y,已知正确解为练习练习x=1,y=-1,计算结果说明什么?解:用3位浮点计算:,即得:,解得:用6位浮点计算:,即得:,解得:此例说明,在计算过程中,选取有效数字位数越多,相对误差越小,计算结果越精确。
11.将(2,4,-2,2)中的数全部列出来,且在实轴上表示出来,问总共有多少?解:(2,4,-2,2)系统中的所有正数为:共有个,再加上中的80个负数以及0,故共有161个。
15.求的误差分析。
解:其中。
16.有误差,,问的传播误差是多少?解:因为若,则,又由于:,则:当时,,当时,,当时,。
14.假设有一种算法,求可得到6位有效数字,问为了使有4位有效数字,应取几位有效数字?解:因为其中:为取近似值时的相对误差,为求开方运算的相对误差,由题设和定理1知所以:若,即对取6位有效数字时,有4位有效数字(由定理1)。
10.都是中的数,试给出的向前误差分析和向后误差分析。
解:(1)由定理5,向前误差分析为其中,。
(2)向后误差分析,仍由定理5其中:。
第二章函数的插值1.下列函数表(表18)中的数字都是有效数字。
(1)通过ctgx的函数表,进行插值,求ctg(0.0015),并估计误差;解:先作差分表:取:又由:所以误差为:2.给定的函数值如表19所示,用3种途径求3次插值多项式。
解:(1)用牛顿方法。
先作差商表:所以:(2)用Lagrange 方法化简得:(3)用内维尔方法再由:得:3.给定的函数值如表20所示,求解:先作差商表:即:故:4.求,利用,取节点作插值,并估计截断误差。
解:先作差商表:所以,。
故:其截断误差:由于,所以5.证明:在两个节点:上作线性插值,当时,余项为证:因为其中:6.若是小量,则三个函数值应怎样线性组合,才能得到较好的的近似值。
解:由于所以:,即:。
7.证明。
证:设,则11.用拉格朗日途径导出如下的次埃尔米特插值,满足:。
206习题十1. 根据二重积分性质,比较ln()d D x y σ+⎰⎰与2[ln()]d D x y σ+⎰⎰的大小,其中:(1)D 表示以(0,1),(1,0),(1,1)为顶点的三角形; (2)D 表示矩形区域{(,)|35,02}x y x y ≤≤≤≤.解:(1)区域D 如图10-1所示,由于区域D 夹在直线x +y =1与x +y =2之间,显然有图10-112x y ≤+≤从而 0l n ()x y ≤+<故有2l n ()[l n ()]x y x y+≥+ 所以 2l n ()d [l n ()]dD Dx yx y σσ+≥+⎰⎰⎰⎰(2)区域D 如图10-2所示.显然,当(,)x y D ∈时,有3x y +≥.图10-2从而 ln(x +y )>1 故有2l n ()[l n ()]x y x y+<+207所以 2l n ()d [l n ()]dD Dx yx y σσ+<+⎰⎰⎰⎰2. 根据二重积分性质,估计下列积分的值: (1),{(,)|02,02}I D x y x y σ==≤≤≤≤⎰⎰;(2)22sin sin d ,{(,)|0π,0π}D I x y D x y x y σ==≤≤≤≤⎰⎰; (3)2222(49)d ,{(,)|4}D I x y D x y x y σ=++=+≤⎰⎰. 解:(1)因为当(,)x y D ∈时,有02x ≤≤, 02y ≤≤因而 04xy ≤≤.从而22≤故2d D D σσσ≤≤⎰⎰⎰⎰⎰⎰即2d d DDσσσ≤≤⎰⎰⎰⎰而 d D σσ=⎰⎰ (σ为区域D 的面积),由σ=4 得8σ≤≤⎰⎰(2) 因为220sin 1,0sin 1x y ≤≤≤≤,从而220sin sin 1x y ≤≤故 220d sin sin d 1d D D D x y σσσ≤≤⎰⎰⎰⎰⎰⎰ 即220sin sin d d D D x y σσσ≤≤=⎰⎰⎰⎰ 而2πσ=所以2220sin sin d πD x y σ≤≤⎰⎰(3)因为当(,)x y D ∈时,2204x y ≤+≤所以22229494()925x y x y ≤++≤++≤故 229d (49)d 25d D D D x y σσσ≤++≤⎰⎰⎰⎰⎰⎰ 即229(49)d 25Dx y σσσ≤++≤⎰⎰208而2π24πσ=⋅=所以2236π(49)d 100πDx y σ≤++≤⎰⎰3. 根据二重积分的几何意义,确定下列积分的值: (1)222(,{(,)|};D a D x y x y a σ=+≤⎰⎰(2)222,{(,)|}.D x y x y a σ=+≤⎰⎰解:(1)(,D a σ⎰⎰在几何上表示以D 为底,以z 轴为轴,以(0,0,a )为顶点的圆锥的体积,所以31(π3Da a σ=⎰⎰ (2)σ⎰⎰在几何上表示以原点(0,0,0)为圆心,以a为半径的上半球的体积,故32π.3a σ=⎰⎰ 4.设f (x ,y )为连续函数,求2220021lim(,)d ,{(,)|()()}πDr f x y D x y x x y y r r σ→=-+-≤⎰⎰.解:因为f (x ,y )为连续函数,由二重积分的中值定理得,(,),D ξη∃∈使得2(,)d (,)π(,)Df x y f r f σξησξη=⋅=⋅⎰⎰又由于D 是以(x 0,y 0)为圆心,r 为半径的圆盘,所以当0r →时,00(,)(,),x y ξη→ 于是:0022200000(,)(,)11lim(,)d limπ(,)lim (,)ππlim (,)(,)Dr r r x y f x y r f f r r f f x y ξησξηξηξη→→→→=⋅===⎰⎰5. 画出积分区域,把(,)d D f x y σ⎰⎰化为累次积分: (1) {(,)|1,1,0}D x y x y y x y =+≤-≤≥;(2)2{(,)|2,}D x y y x x y =≥-≥209(3)2{(,)|,2,2}D x y y y x x x=≥≤≤解:(1)区域D 如图10-3所示,D 亦可表示为11,01y x y y -≤≤-≤≤.所以1101(,)d d (,)d yD y f x y y f x y x σ--=⎰⎰⎰⎰(2) 区域D 如图10-4所示,直线y =x -2与抛物线x =y 2的交点为(1,-1),(4,2),区域D 可表示为22,12y x y y ≤≤+-≤≤.图10-3 图10-4所以2221(,)d d (,)d y D yf x y y f x y x σ+-=⎰⎰⎰⎰(3)区域D 如图10-5所示,直线y =2x 与曲线2y x=的交点(1,2),与x =2的交点为(2,4),曲线2y x=与x =2的交点为(2,1),区域D 可表示为22,1 2.y x x x≤≤≤≤图10-5210所以2221(,)d d (,)d xD xf x y x f x y y σ=⎰⎰⎰⎰.6. 画出积分区域,改变累次积分的积分次序: (1) 2220d (,)d yyy f x y x⎰⎰; (2)e ln 1d (,)d xx f x y y ⎰⎰;(3) 1320d (,)d yy f x y x-⎰; (4)πsin 0sin2d (,)d xx x f x y y -⎰⎰;(5) 1233001d (,)d d (,)d yyy f x y y y f x y x -+⎰⎰⎰⎰.解:(1)相应二重保健的积分区域为D :202,2.y y x y ≤≤≤≤如图10-6所示.图10-6D 亦可表示为:04,.2xx y ≤≤≤所以2224002d (,)d d (,)d .yx yy f x y x x f x y y =⎰⎰⎰⎰(2) 相应二重积分的积分区域D :1e,0ln .x y x ≤≤≤≤如图10-7所示.图10-7D 亦可表示为:01,e e,y y x ≤≤≤≤211所以e ln 1e10ed (,)d d (,)d y xx f x y y y f x y x =⎰⎰⎰⎰(3) 相应二重积分的积分区域D为:01,32,y x y ≤≤≤≤-如图10-8所示.图10-8D 亦可看成D 1与D 2的和,其中 D 1:201,0,x y x ≤≤≤≤D 2:113,0(3).2x y x ≤≤≤≤-所以2113213(3)2001d (,)d d (,)d d (,)d yx x y f x y x x f x y y x f x y y --=+⎰⎰⎰⎰⎰.(4) 相应二重积分的积分区域D 为:0π,sinsin .2xx y x ≤≤-≤≤如图10-9所示.图10-9D 亦可看成由D 1与D 2两部分之和,其中 D 1:10,2arcsin π;y y x -≤≤-≤≤ D 2:01,arcsin πarcsin .y y x y ≤≤≤≤-所以πsin 0π1πarcsin 0sin 12arcsin 0arcsin 2d (,)d d (,)d d (,)d xyx y yx f x y y y f x y x y f x y x ----=+⎰⎰⎰⎰⎰⎰(5) 相应二重积分的积分区域D 由D 1与D 2两部分组成,其212中 D 1:01,02,y x y ≤≤≤≤D 2:13,03.y x y ≤≤≤≤-如图10-10所示.图10-10D 亦可表示为:02,3;2xx y x ≤≤≤≤- 所以()1233230012d ,d d (,)d d (,)d yyxxy f x y x y f x y x x f x y y --+=⎰⎰⎰⎰⎰⎰7.解:因为(,)Df x y d σ⎰⎰为一常数,不妨设(,)Df x y C =⎰⎰则有(,)x y f xy C =+从而有(,)()x y Df xy f uv C dudv =++⎰⎰而{}2(,)0 1.0D x y x y x =≤≤≤≤21(,)00()u x y f xy uv C dv du ⎡⎤∴=+⎰⎰+⎣⎦2120012u xy uv cv du ⎡⎤=+⎰+⎢⎥⎣⎦ 152012xy u cu du ⎡⎤=+⎰+⎢⎥⎣⎦163011123xy u cu ⎡⎤=++⎢⎥⎣⎦11123xy C =++18C ∴=故(,)18x y f xy ∴=+8. 计算下列二重积分:213(1) 221d d ,:12,;Dx x y D x y x y x≤≤≤≤⎰⎰ (2) e d d ,x yD x y ⎰⎰D由抛物线y 2 = x ,直线x =0与y =1所围;(3) d ,x y ⎰⎰D 是以O (0,0),A (1,-1),B (1,1)为顶点的三角形; (4) cos()d d ,{(,)|0π,π}D x y x y D x y x x y +=≤≤≤≤⎰⎰.解:(1)()22222231221111d d d d d d xx D x x x x x x y x y x x x x y yy ==-=-⎰⎰⎰⎰⎰⎰2421119.424x x ⎡⎤=-=⎢⎥⎣⎦(2) 积分区域D 如图10-12所示.图10-12D 可表示为:201,0.y x y ≤≤≤≤所示22110000ed d de d d e d()xx x y y yyyD xx y y x y y y==⎰⎰⎰⎰⎰⎰ 2111100ed (e 1)d e d d y x y y yy y y y y y y y ==-=-⎰⎰⎰⎰1111120000011de d e e d .22yy yy y y y y y =-=--=⎰⎰⎰ (3) 积分区域D 如图10-13所示.214图10-13D 可表示为:01,.x x y x ≤≤-≤≤所以2110d d arcsin d 2xxxx y x y x y x x --⎡==+⎢⎣⎰⎰⎰⎰⎰ 112300ππ1πd .2236x x x ==⋅=⎰ ππππ0πππ0(4)cos()d d d cos()d [sin()]d [sin(π)sin 2]d (sin sin 2)d 11.cos cos 222x Dxx y x y x x y y x y xx x x x x x x x +=+=+=+-=--⎡⎤==+⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰9. 计算下列二次积分:10112111224(1)d d ;(2)d e d d e d .yy y xxyxy x xy x y x +⎰⎰⎰⎰解:(1)因为sin d x x x⎰求不出来,故应改变积分次序。
第四章 最佳逼近1. 若],[)(b a C x f ∈,试构造相应的Bernstain 多项式。
解:作变换)()(a b t a t x -+==ϕ,则当],[b a x ∈时,]1,0[∈t ,记:]1,0[)),(())(()(∈-+==t a b t a f t f t g ϕ,则其Bernstain 多项式为:,2,1,)1()()1()(00=-⎪⎭⎫ ⎝⎛-+=-⎪⎭⎫ ⎝⎛=-=-=∑∑n t t C a b n i a f t t C n i g g B i n i n i ni in i n i ni n再将ab ax t --=代入上式即得)(x f 在],[b a 上的Bernstain 多项式:,2,1,)1()()(0=---⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-+=-=∑n a b a x a b a x C a b n i a f f B i n in i ni n 2. 应用恒等式1)1(3)2)(1(2+-+--=k k k k ,证明在区间[0,1]上有x nx n n x n n n x B n 2223231)1(3)2)(1()(+-+--=证明:x nn x n n n x n n n n x n nx n n n i n i x x n x n n n n i n i x x n n i n i x x n n i n i x x n nx x iC x x C i i x x C i i i n x x C i i i i n x x C n i x B n i i n i ni in i n i i n i ni i n i ni i n i n i n i in i n i n i i n i n i n i in i n i ni in i n i n 323333233333132333123303033)1(3)2)(1()1(3)!()!3()1()!3()2)(1()!()!1()1(!1)!()!2()1(!3)!()!3()1(!1)1()1()1(3)1()2)(1(1)1(]1)1(3)2)(1[(1)1()(+-+--=+-+------=---+---+---=⎥⎦⎤⎢⎣⎡-+--+---=-+-+--=-⎪⎭⎫ ⎝⎛=∑∑∑∑∑∑∑∑∑=--=-=-=-=-=-=-=-=-4.假设],[b a C f ∈,证明f 关于0P 的最佳一致逼近多项式为:2m M +,其中:)(max ),(min ],[],[x f M x f m b a x b a x ∈∈==。
课程编号:A071001复旦大学2019-2020学年第一学期数学分析期末试题B一.填空题(每小题3分,共30分)1.极限=--+-→xe e x x x cos 12lim220__________.2.设11211)(-+=x x f ,则=+→)(lim 1x f x _____,=-→)(lim 1x f x _____,1=x 是)(x f 的第_____类间断点.3.设)1ln(1)(22++-+=x x x x x f ,则化成最简形式时,=')(x f __________________.4.方程0133=+-x x 有_____个实根,其中有_____个正实根,_____个负实根.5.x xe x f 2)(=的带皮亚诺型余项的三阶麦克劳林公式____________________________.6.一动点沿抛物线2x y =向右移动,已知动点经过点)4,2(时沿x 轴方向的分速度为s cm /3,则它沿y 轴方向的分速度为_______s cm /.7.设当0→x 时x x -sin 与k cx 是等价无穷小,则=c ______,=k ______.8.设)(1)(arctan 2x g x f y ++=,其中g f ,可导,则=dy _________________________.9.曲线23223+-=x x x y 有斜渐近线____________________.10.函数x x x x f --=2)1()(在点_________________处导数不存在.二.(8分)已知方程e xy ye x =+)ln(确定函数)(x y y =,求dx dy 及1=x dxdy.三.(8分)设⎩⎨⎧-==t t t y t x cos sin cos ln ,求dx dy ,22dx yd .四.(8分)设函数⎪⎩⎪⎨⎧=≠+-++=121)2)(1()(23x x x x bax x x f 在1=x 处连续,求b a ,的值.五.(8分)证明不等式22)1(ln )1(x x x <++)0(>x .六.(12分)利用导数研究函数1212+-=xy 的的性态,并作出其图形.七.(10分)由抛物线2x y =,直线8=x 和x 轴围成一曲边三角形OAB (如图),在曲线OB 上求一点M ,使过M 点所作抛物线的切线与AB OA ,所围成的三角形APQ 具有最大面积..八.(8分)设)(x f 在0=x 处可导,且310)1)(1(lim e xx f xx =-+→.(1)求)0(f ,)0(f ';(2)求xx xx f x 10)1)(1(lim -++→.九.(8分)设函数)(x f 在区间]2,0[上可导,且0)0(=f ,1)2()1(==f f ,证明在区间)2,0(内至少存在一点ξ,使12)(-='ξξf .OA Pxy2x y =QM 8B数值分析B 参考解答(2019.1)一.1.82.0,1,一(各1分)3.2322)1(+-x x (没化成最简形式扣1分)4.3,2,1(各1分)5.)(22332x o x x x +++6.127.61-,3(1分,2分)8.dxx g x g x g x x f ))(1)()(1)(arctan (22+'++'(其中两个导数各1分)9.62+=x y 10.=x 二.方程两端对x 求导0)(1='+++'y x y xyye e y x x …………………………(4分)ye x ye dxdy x x 11++-=…………………………(6分)在已知方程中令1=x ,得e y ye =+ln ,1=y ………………………(7分)11-==x dxdy …………………………(8分)三.tt tt t t t t dxdy cos cos sin sin cos cos -=-+-=…………………………(4分)t tt t t tt t t t dxy d sin cos sin cos cos sin sin cos 222-=-+-=………………………(8分)四.由题设得2)2)(1(lim 231=+-++→x x b ax x x …………………………(1分)故1)(lim 31=++=++→b a b ax x x ………………………(3分))2)(1(1lim )2)(1(lim 231231+---+=+-++→→x x a ax x x x b ax x x x 23321lim 221=+=++++=→a x a x x x …………………………(6分)3=a 41-=--=a b …………………………(8分)五.设22)1(ln )1()(x x x x f -++=…………………………(1分)x x x x f 2)1ln(2)1(ln )(2-+++='…………………………(2分)21211)1ln(2)(-++++=''xx x x f …………………………(3分)222)1(2)1()1ln(2)1(2)(x x x x x f +-++-+='''0)1()1ln(22<++-=x x …………………(4分))(x f ''又0)0(=''f 0)(<''∴x f ………………………(6分))(x f '又0)0(='f 0)(<'∴x f ………………………(7分))(x f 又0)0(=f 0)(<∴x f 即22)1(ln )1(x x x <++…………………………(8分)六.定义域为),0()0,(+∞-∞ +∞=+-→)121(lim 2x xx ,1)121(lim 2=+-∞→x xx ,故0=x 是垂直渐近线,1=y 是水平渐近线…………………………(2分)323)1(222x x x x y -=+-='…………………………(3分)434)23(246x x x x y -=-+=''…………………………(4分)令0='y ,得1=x ,令0=''y ,得23=x …………………………(6分)分)分)…………………(10分)………………………(12分)七.设),(2x x M ,则过M 点的切线斜率为xx 2)(2='……………………(1分)切线方程为)(22x X x x Y -=-…………………………(2分)令0=Y ,得2x X =,令8=X ,得216x x Y -=………………(4分))1628(2121)(2x x xP A QA x S --=⋅=)80(<<x ………………(6分))216)(28(21)16)(21(212x xx x dx dS --+--=)256643(412+-=x x ………………………(8分)令0=dx dS ,得316=x …………………………(9分)由问题的实际意义,三角形的面积确有最大值,且驻点惟一,故点)316(,316(2为所求.…………………………(10分)1xy1=y 0231八.(1)由题设,有3)1)(1ln(lim 0=-+→xx x f x …………………………(1分)0)1)(1ln(lim 0=-+→xx f x …………………………(2分)01)(lim 0=-→xx f x 0)1)((lim 0=-→x f x …………………………(3分)1)(lim )0(0==∴→x f f x …………………………(4分)01)(lim )0()(lim)0(00=-=-='→→xx f x f x f f x x …………………………(5分)(2)x x x f x 1)(lim 30-=→201)(limx x f x -=→…………………………(6分)xx x f x x x x f x x x 1)(lim)1)(1ln(lim 00-+=-++→→4311)(lim 120=+=-+=→x x f x …………………………(7分)410)1)(1(lim e xx f x x x =-++∴→…………………………(8分)九.令x x x f x F +-=2)()(…………………………(2分)则)(x F 在区间]2,0[上可导(没此叙述不扣分)0)0(=F ,01)1(>=F ,01)2(<-=F ………………………(4分)由介值定理,)2,1(∈∃c ,使)(=c F …………………………(6分)由洛尔中值定理,)2,0(),0(⊂∈∃c ξ,使0)(='ξF 即12)(=+-'ξξf 12)(-='ξξf …………………………(8分)。
习题七1. 在空间直角坐标系中,定出下列各点的位置:A(1,2,3); B(-2,3,4); C(2,-3,-4);D(3,4,0); E(0,4,3); F(3,0,0).解:点A在第Ⅰ卦限;点B在第Ⅱ卦限;点C在第Ⅷ卦限;点D在xOy面上;点E在yOz面上;点F在x轴上.2. xOy坐标面上的点的坐标有什么特点?yOz面上的呢?zOx面上的呢?答: 在xOy面上的点,z=0;在yOz面上的点,x=0;在zOx面上的点,y=0.3. x轴上的点的坐标有什么特点?y轴上的点呢?z轴上的点呢?答:x轴上的点,y=z=0;y轴上的点,x=z=0;z轴上的点,x=y=0.4. 求下列各对点之间的距离:(1)(0,0,0),(2,3,4);(2)(0,0,0),(2,-3,-4);(3)(-2,3,-4),(1,0,3);(4)(4,-2,3),(-2,1,3).解:(1)s=(2) s==(3) s==(4) s==5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.解:点(4,-3,5)到x轴,y轴,z轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5).故2s=xs==ys==5zs==.6. 在z轴上,求与两点A(-4,1,7)和B(3,5,-2)等距离的点. 解:设此点为M(0,0,z),则222222(4)1(7)35(2)z z-++-=++--解得149 z=即所求点为M(0,0,149).1731747. 试证:以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.证明:因为|AB |=|AC |=7.且有 |AC |2+|AB |2=49+49=98=|BC |2. 故△ABC 为等腰直角三角形. 8. 验证:()()++=++a b c a b c . 证明:利用三角形法则得证.见图7-1图7-19. 设2, 3.=-+=-+-u a b c v a b c 试用a , b , c 表示23.-u v 解:232(2)3(3)2243935117-=-+--+-=-++-+=-+u v a b c a b c a b c a b c a b c10. 把△ABC 的BC 边分成五等份,设分点依次为D 1,D 2,D 3,D 4,再把各分点与A 连接,试以AB =c ,BC =a 表示向量1D A ,2D A ,3D A 和4D A . 解:1115D A BA BD =-=--c a 2225D A BA BD =-=--c a3335D A BA BD =-=--c a444.5D A BA BD =-=--c a11. 设向量OM 的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影. 解:设M 的投影为M ',则1Pr j cos 604 2.2u OM OM =︒=⨯= 12. 一向量的终点为点B (2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A 的坐标.解:设此向量的起点A 的坐标A (x , y , z ),则{4,4,7}{2,1,7}AB x y z =-=----解得x =-2, y =3, z =0故A 的坐标为A (-2, 3, 0).17513. 一向量的起点是P 1(4,0,5),终点是P 2(7,1,3),试求: (1) 12PP 在各坐标轴上的投影; (2) 12PP 的模;(3) 12PP 的方向余弦; (4) 12PP 方向的单位向量. 解:(1)12Pr j 3,x x a PP == 12Pr j 1,y y a PP == 12Pr j 2.z z a PP ==-(2) 12(7PP ==(3) 12cos 14x a PP α==12cos 14y a PP β==12cos 14z a PP γ==.(4) 12012{14PP PP ===+e j . 14. 三个力F 1=(1,2,3), F 2=(-2,3,-4), F 3=(3,-4,5)同时作用于一点. 求合力R 的大小和方向余弦.解:R =(1-2+3,2+3-4,3-4+5)=(2,1,4)||==Rcos cos cos αβγ=== 15. 求出向量a = i +j +k , b =2i -3j +5k 和c=-2i -j +2k 的模,并分别用单位向量,,a b c e e e 来表达向量a, b , c .解:||==a ||==b||3==c, , 3. a b c ===a b c e17616. 设m =3i +5j +8k , n =2i -4j -7k , p =5i +j -4k ,求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解:a =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k 在x 轴上的投影a x =13,在y 轴上分向量为7j . 17.解:设{,,}x y z a a a a =则有 c o s (1,1)3x a i a a i a i π⋅====⋅ 求得12x a =. 设a 在xoy 面上的投影向量为b 则有{,,0}x y b a a =则222cos 42a ba b π⋅=⇒=⋅ 则214y a =求得12y a =± 又1,a =则2221x y z a a a ++= 从而求得11{,,}222a =±或11{,,}222-± 18. 已知两点M 1(2,5,-3),M 2(3,-2,5),点M 在线段M 1M 2上,且123M M MM =,求向径OM 的坐标. 解:设向径OM ={x , y , z }12{2,5,3}{3,2,5}M M x y z MM x y z =--+=----因为,123M M MM =所以,11423(3)153(2) 433(5)3x x x y y y z z z ⎧=⎪-=-⎧⎪⎪⎪-=--⇒=-⎨⎨⎪⎪+=-⎩=⎪⎪⎩故OM ={111,,344-}.17719. 已知点P 到点A (0,0,12)的距离是7,OP 的方向余弦是236,,777,求点P 的坐标.解:设P 的坐标为(x , y , z ), 2222||(12)49PA x y z =++-= 得2229524x y z z ++=-+126570cos 6, 749z z γ=⇒==又122190cos 2, 749x x α==⇒==123285cos 3, 749y y β==⇒==故点P 的坐标为P (2,3,6)或P (190285570,,494949). 20. 已知a , b 的夹角2π3ϕ=,且3,4==b a ,计算: (1) a ·b ; (2) (3a -2b )·(a + 2b ). 解:(1)a ·b =2π1cos ||||cos3434632ϕ⋅⋅=⨯⨯=-⨯⨯=-a b (2) (32)(2)3624-⋅+=⋅+⋅-⋅-⋅a b a b a a a b b a b b2223||44||334(6)41661.=+⋅-=⨯+⨯--⨯=-a a b b21. 已知a =(4,-2, 4), b =(6,-3, 2),计算:(1)a ·b ; (2) (2a -3b )·(a + b ); (3)2||-a b 解:(1)46(2)(3)4238⋅=⨯+-⨯-+⨯=a b (2) (23)()2233-⋅+=⋅+⋅-⋅-⋅a b a b a a a b a b b b222222222||3||2[4(2)4]383[6(3)2]23638349113=-⋅-=⨯+-+--+-+=⨯--⨯=-a a b b (3) 222||()()2||2||-=-⋅-=⋅-⋅+⋅=-⋅+a b a b a b a a a b b b a a b b36238499=-⨯+=22. 已知四点A (1,-2,3),B (4,-4,-3),C (2,4,3),D (8,6,6),求向量AB 在178向量CD 上的投影.解:AB ={3,-2,-6},CD ={6,2,3}Pr j CD AB CD AB CD⋅=4.7==-23. 若向量a +3b 垂直于向量7a -5b ,向量a -4b 垂直于向量7a -2b ,求a 和b 的夹角. 解: (a +3b )·(7a -5b ) =227||1615||0+⋅-=a a b b ① (a -4b )·(7a -2b ) = 227||308||0-⋅+=a a b b ②由①及②可得:222221()1||||2||||4⋅⋅⋅==⇒=a b a b a b a b a b 又21||02⋅=>a b b ,所以1cos ||||2θ⋅==a b a b , 故1πarccos23θ==. 24. 设a =(-2,7,6),b =(4, -3, -8),证明:以a 与b 为邻边的平行四边形的两条对角线互相垂直. 证明:以a ,b 为邻边的平行四边形的两条对角线分别为a +b ,a -b ,且 a +b ={2,4, -2} a -b ={-6,10,14}又(a +b )·(a -b )= 2×(-6)+4×10+(-2)×14=0 故(a +b )⊥(a -b ).25. 已知a =3i +2j -k , b =i -j +2k ,求: (1) a ×b ; (2) 2a ×7b ; (3) 7b ×2a ; (4) a ×a . 解:(1) 211332375122111--⨯=++=----a b i j k i j k(2) 2714()429870⨯=⨯=--a b a b i j k(3) 7214()14()429870⨯=⨯=-⨯=-++b a b a a b i j k (4) 0⨯=a a .26. 已知向量a 和b 互相垂直,且||3, ||4==a b .计算: (1) |(a +b )×(a -b )|;(2) |(3a +b )×(a -2b )|.(1)|()()|||2()|+⨯-=⨯-⨯+⨯-⨯=-⨯a b a b a a a b b a b b a b179π2||||sin242=⋅⋅=a b (2) |(3)(2)||362||7()|+⨯-=⨯-⨯+⨯-⨯=⨯a b a b a a a b b a b b b aπ734sin842=⨯⨯⨯= 27. 求垂直于向量3i -4j -k 和2i -j +k 的单位向量,并求上述两向量夹角的正弦. 解:411334555111221----⨯=++=--+--a b i j k i j k与⨯a b平行的单位向量)||⨯==--+⨯a b e i j k a b||sin ||||26θ⨯===⨯a b a b . 28. 一平行四边形以向量a =(2,1,-1)和b =(1,-2,1)为邻边,求其对角线夹角的正弦.解:两对角线向量为13=+=-l a b i j ,232=-=+-l a b i j k因为12|||2610|⨯=++=l l i j k12||||l l 所以1212||sin 1||||θ⨯===l l l l .即为所求对角线间夹角的正弦.29. 已知三点A (2,-1,5), B (0,3,-2), C (-2,3,1),点M ,N ,P 分别是AB ,BC ,CA 的中点,证明:1()4MN MP AC BC ⨯=⨯. 证明:中点M ,N ,P 的坐标分别为31(1,1,), (1,3,), (0,1,3)22M N P --{2,2,2}MN =--3{1,0,}2MP =-{4,4,4}AC =-- {2,0,3}BC =-18022222235233100122MN MP ----⨯=++=++--i j k i j k 44444412208033220AC BC ---⨯=++=++--i j k i j k故 1()4MN MP AC BC ⨯=⨯. 30.(1)解: xy z xyzij k a b a a a b b b ⨯==-+-+-y z z y z x x z x y y x a b a b i a b a b j a b a b k ()()()则 C=-C +-+-y z z y x z x x z y x y y x y a b a b a b a b a b C a b a b C ⨯⋅()()()()xy z xy z xyza a ab b b C C C = 若 ,,C a b 共面,则有a b ⨯后与 C 是垂直的. 从而C 0a b ⨯⋅=() 反之亦成立. (2) C xy z xy z x y za a a ab b b b C C C ⨯⋅=() a xy z xy z x y z b b b b C C C C a a a ⨯⋅=() b xy z xy z xy z C C C C a a a a b b b ⨯⋅=() 由行列式性质可得:xy z x y z x y z xy z x y z xy z xyzxyzxyza a ab b b C C C b b b C C C a a a C C C a a a b b b == 故C a a b b C C a ⨯⋅=⨯⋅=⨯⋅()()()18131. 四面体的顶点在(1,1,1),(1,2,3),(1,1,2)和(3,-1,2)求四面体的表面积. 解:设四顶点依次取为A , B , C , D .{0,1,2}, {2,2,1}AB AD ==-则由A ,B ,D 三点所确定三角形的面积为111|||542|22S AB AD =⨯=+-=i j k .同理可求其他三个三角形的面积依次为12故四面体的表面积12S =+32.解:设四面体的底为BCD ∆,从A 点到底面BCD ∆的高为h ,则 13BCDV S h =⋅⋅,而11948222BCDSBC BD i j k =⨯=--+= 又BCD ∆所在的平面方程为:48150x y z +-+=则43h ==故1942323V =⋅⋅= 33. 已知三点A (2,4,1), B (3,7,5), C (4,10,9),证:此三点共线. 证明:{1,3,4}AB =,{2,6,8}AC = 显然2AC AB =则22()0AB AC AB AB AB AB ⨯=⨯=⨯=故A ,B ,C 三点共线.34. 一动点与M 0(1,1,1)连成的向量与向量n =(2,3,-4)垂直,求动点的轨迹方程. 解:设动点为M (x , y , z )0{1,1,1}M M x y z =---因0M M n ⊥,故00M M n ⋅=.即2(x -1)+3(y -1)-4(z -1)=0整理得:2x +3y -4z -1=0即为动点M 的轨迹方程. 35. 求通过下列两已知点的直线方程: (1) (1,-2,1), (3,1,-1); (2) (3,-1,0),(1,0,-3).182解:(1)两点所确立的一个向量为s ={3-1,1+2,-1-1}={2,3,-2}故直线的标准方程为:121232x y z -+-==- 或 311232x y z --+==- (2)直线方向向量可取为s ={1-3,0+1,-3-0}={-2,1,-3}故直线的标准方程为:31213x y z -+==-- 或 13213x y z -+==-- 36. 求直线234035210x y z x y z +--=⎧⎨-++=⎩的标准式方程和参数方程.解:所给直线的方向向量为 12311223719522335--=⨯=++=----s n n i j k i j k另取x 0=0代入直线一般方程可解得y 0=7,z 0=17于是直线过点(0,7,17),因此直线的标准方程为:7171719x y z --==-- 且直线的参数方程为:771719x t y t z t =⎧⎪=-⎨⎪=-⎩37. 求过点(4,1,-2)且与平面3x -2y +6z =11平行的平面方程. 解:所求平面与平面3x -2y +6z =11平行 故n ={3,-2,6},又过点(4,1,-2)故所求平面方程为:3(x -4)-2(y -1)+6(z +2)=0 即3x -2y +6z +2=0.38. 求过点M 0(1,7,-3),且与连接坐标原点到点M 0的线段OM 0垂直的平面方程. 解:所求平面的法向量可取为0{1,7,3}OM ==-n故平面方程为:x -1+7(y -7)-3(z +3)=0 即x +7y -3z -59=039. 设平面过点(1,2,-1),而在x 轴和z 轴上的截距都等于在y 轴上的截距的两倍,求此平面方程.解:设平面在y 轴上的截距为b 则平面方程可定为122x y z b b b++= 又(1,2,-1)在平面上,则有121122b b b-++=183得b =2.故所求平面方程为1424x y z ++= 40. 求过(1,1,-1), (-2,-2,2)和(1,-1,2)三点的平面方程. 解:由平面的三点式方程知1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 代入三已知点,有1112121210111121x y z --+----+=---+化简得x -3y -2z =0即为所求平面方程.41. 指出下列各平面的特殊位置,并画出其图形: (1) y =0; (2) 3x -1=0; (3) 2x -3y -6=0; (4) x – y =0; (5) 2x -3y +4z =0.解:(1) y =0表示xOz 坐标面(如图7-2) (2) 3x -1=0表示垂直于x 轴的平面.(如图7-3)图7-2 图7-3(3) 2x -3y -6=0表示平行于z 轴且在x 轴及y 轴上的截距分别为x =3和y =-2的平面.(如图7-4) (4) x –y =0表示过z 轴的平面(如图7-5)(5) 2x -3y +4z =0表示过原点的平面(如图7-6).图7-4 图7-5 图7-6 42. 通过两点(1,1,1,)和(2,2,2)作垂直于平面x +y -z =0的平面. 解:设平面方程为Ax +By +Cz +D =0 则其法向量为n ={A ,B ,C }已知平面法向量为n 1={1,1,-1} 过已知两点的向量l ={1,1,1}由题知n·n1=0, n·l=0即0,.A B CC A B A B C+-=⎧⇒==-⎨++=⎩所求平面方程变为Ax-Ay+D=0又点(1,1,1)在平面上,所以有D=0故平面方程为x-y=0.43. 决定参数k的值,使平面x+ky-2z=9适合下列条件:(1)经过点(5,-4,6);(2)与平面2x-3y+z=0成π4的角.解:(1)因平面过点(5,-4,6)故有5-4k-2×6=9得k=-4.(2)两平面的法向量分别为n1={1,k,-2} n2={2,-3,1}且1212πcos cos||||42θ⋅====n nn n解得2k=±44. 确定下列方程中的l和m:(1) 平面2x+ly+3z-5=0和平面mx-6y-z+2=0平行;(2) 平面3x-5y+lz-3=0和平面x+3y+2z+5=0垂直.解:(1)n1={2,l,3}, n2={m,-6,-1}12232,18613lm lm⇒==⇒=-=--n n(2) n1={3, -5, l }, n2={1,3,2}12315320 6.l l⊥⇒⨯-⨯+⨯=⇒=n n45. 通过点(1,-1,1)作垂直于两平面x-y+z-1=0和2x+y+z+1=0的平面.解:设所求平面方程为Ax+By+Cz+D=0其法向量n={A,B,C}n1={1,-1,1}, n2={2,1,1}12203203A CA B CA B C CB⎧=-⎪⊥⇒-+=⎪⇒⎨⊥⇒++=⎪=⎪⎩n nn n又(1,-1,1)在所求平面上,故A-B+C+D=0,得D=0故所求平面方程为233CCx y Cz-++=即2x-y-3z=018418546. 求平行于平面3x -y +7z =5,且垂直于向量i -j +2k 的单位向量. 解:n 1={3,-1,7}, n 2={1,-1,2}.12,⊥⊥n n n n故1217733152122111--=⨯=++=+---n n n i j k i j k则2).n =+-e i j k 47. 求下列直线与平面的交点:(1)11126x y z-+==-, 2x +3y +z -1=0; (2) 213232x y z +--==, x +2y -2z +6=0. 解:(1)直线参数方程为1126x ty t z t =+⎧⎪=--⎨⎪=⎩代入平面方程得t =1 故交点为(2,-3,6).(2) 直线参数方程为221332x t y t z t =-+⎧⎪=+⎨⎪=+⎩代入平面方程解得t =0. 故交点为(-2,1,3). 48. 求下列直线的夹角: (1)533903210x y z x y z -+-=⎧⎨-+-=⎩ 和2223038180x y z x y z +-+=⎧⎨++-=⎩; (2)2314123x y z ---==- 和 38121y z x --⎧=⎪--⎨⎪=⎩ 解:(1)两直线的方向向量分别为:s 1={5, -3,3}×{3, -2,1}=533321ij k--={3,4, -1}s 2={2,2, -1}×{3,8,1}=221381i j k-={10, -5,10}186由s 1·s 2=3×10+4×(-5)+( -1) ×10=0知s 1⊥s 2 从而两直线垂直,夹角为π2. (2) 直线2314123x y z ---==-的方向向量为s 1={4, -12,3},直线38121y z x --⎧=⎪--⎨⎪=⎩的方程可变为22010y z x -+=⎧⎨-=⎩,可求得其方向向量s 2={0,2, -1}×{1,0,0}={0, -1, -2},于是1212cos 0.2064785θθ⋅==≈⋅'≈︒s s s s 49. 求满足下列各组条件的直线方程: (1)经过点(2,-3,4),且与平面3x -y +2z -4=0垂直; (2)过点(0,2,4),且与两平面x +2z =1和y -3z =2平行; (3)过点(-1,2,1),且与直线31213x y z --==-平行. 解:(1)可取直线的方向向量为 s ={3,-1,2}故过点(2,-3,4)的直线方程为234312x y z -+-==- (2)所求直线平行两已知平面,且两平面的法向量n 1与n 2不平行,故所求直线平行于两平面的交线,于是直线方向向量12102{2,3,1}013=⨯==--i j ks n n故过点(0,2,4)的直线方程为24231x y z --==- (3)所求直线与已知直线平行,故其方向向量可取为 s ={2,-1,3}故过点(-1,2,1)的直线方程为121213x y z +--==-. 50. 试定出下列各题中直线与平面间的位置关系:(1)34273x y z++==--和4x -2y -2z =3; (2)327x y z==-和3x -2y +7z =8;187(3)223314x y z -+-==-和x +y +z =3. 解:平行而不包含. 因为直线的方向向量为s ={-2,-7,3}平面的法向量n ={4,-2,-2},所以(2)4(7)(2)3(2)0⋅=-⨯+-⨯-+⨯-=s n于是直线与平面平行.又因为直线上的点M 0(-3,-4,0)代入平面方程有4(3)2(4)2043⨯--⨯--⨯=-≠.故直线不在平面上.(2) 因直线方向向量s 等于平面的法向量,故直线垂直于平面.(3) 直线在平面上,因为3111(4)10⨯+⨯+-⨯=,而直线上的点(2,-2,3)在平面上. 51. 求过点(1,-2,1),且垂直于直线23030x y z x y z -+-=⎧⎨+-+=⎩ 的平面方程.解:直线的方向向量为12123111-=++-ij ki j k , 取平面法向量为{1,2,3},故所求平面方程为1(1)2(2)3(1)0x y z ⨯-+++-=即x +2y +3z =0.52. 求过点(1,-2,3)和两平面2x -3y +z =3, x +3y +2z +1=0的交线的平面方程. 解:设过两平面的交线的平面束方程为233(321)0x y z x y z λ-+-++++= 其中λ为待定常数,又因为所求平面过点(1,-2,3) 故213(2)33(13(2)231)0λ⨯-⨯-+-++⨯-+⨯+=解得λ=-4.故所求平面方程为2x +15y +7z +7=053. 求点(-1,2,0)在平面x +2y -z +1=0上的投影.解:过点(-1,2,0)作垂直于已知平面的直线,则该直线的方向向量即为已知平面的法向量,即s =n ={1,2,-1}所以垂线的参数方程为122x t y t z t =-+⎧⎪=+⎨⎪=-⎩将其代入平面方程可得(-1+t )+2(2+2t )-(-t )+1=0188得23t =-于是所求点(-1,2,0)到平面的投影就是此平面与垂线的交点522(,,)333-54. 求点(3,-1,2)到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离.解:过点(3,-1,2)作垂直于已知直线的平面,平面的法向量可取为直线的方向向量即11133211==-=---ij kn s j k故过已知点的平面方程为y +z =1.联立方程组102401x y z x y z y z +-+=⎧⎪-+-=⎨⎪+=⎩解得131,,.22x y z ==-= 即13(1,,)22-为平面与直线的垂足于是点到直线的距离为d = 55. 求点(1,2,1)到平面x +2y +2z -10=0距离.解:过点(1,2,1)作垂直于已知平面的直线,直线的方向向量为s =n ={1,2,2}所以垂线的参数方程为12212x t y t z t =+⎧⎪=+⎨⎪=+⎩将其代入平面方程得13t =. 故垂足为485(,,)333,且与点(1,2,1)的距离为1d ==即为点到平面的距离.56. 建立以点(1,3,-2)为中心,且通过坐标原点的球面方程.解:球的半径为R =设(x ,y ,z )为球面上任一点,则(x -1)2+(y -3)2+(z +2)2=14 即x 2+y 2+z 2-2x -6y +4z =0为所求球面方程.57. 一动点离点(2,0,-3)的距离与离点(4,-6,6)的距离之比为3,求此动点的轨迹方程.189解:设该动点为M (x ,y ,z )3.=化简得:8x 2+8y 2+8z 2-68x +108y -114z +779=0 即为动点的轨迹方程.58. 指出下列方程所表示的是什么曲面,并画出其图形:(1)22()()22a a x y -+=; (2)22149x y -+=; (3)22194x z +=; (4)20y z -=; (5)220x y -=; (6)220x y +=. 解:(1)母线平行于z 轴的抛物柱面,如图7-7. (2)母线平行于z 轴的双曲柱面,如图7-8.图7-7 图7-8 (3)母线平行于y 轴的椭圆柱面,如图7-9. (4)母线平行于x 轴的抛物柱面,如图7-10.图7-9 图7-10(5)母线平行于z 轴的两平面,如图7-11. (6)z 轴,如图7-12.图7-11 图7-1219059. 指出下列方程表示怎样的曲面,并作出图形:(1)222149y z x ++=; (2)22369436x y z +-=; (3)222149y z x --=; (4)2221149y z x +-=; (5)22209z x y +-=. 解:(1)半轴分别为1,2,3的椭球面,如图7-13. (2) 顶点在(0,0,-9)的椭圆抛物面,如图7-14.图7-13 图7-14(3) 以x 轴为中心轴的双叶双曲面,如图7-15. (4) 单叶双曲面,如图7-16.图7-15 图7-16(5) 顶点在坐标原点的圆锥面,其中心轴是z 轴,如图7-17.图7-1760. 作出下列曲面所围成的立体的图形: (1) x 2+y 2+z 2=a 2与z =0,z =2a(a >0); (2) x +y +z =4,x =0,x =1,y =0,y =2及z =0; (3) z =4-x 2, x =0, y =0, z =0及2x +y =4; (4) z =6-(x 2+y 2),x =0, y =0, z =0及x +y =1.191解:(1)(2)(3)(4)分别如图7-18,7-19,7-20,7-21所示.图7-18 图7-19图7-20 图7-21 61. 求下列曲面和直线的交点:(1) 222181369x y z ++=与342364x y z --+==-; (2) 22211694x y z +-=与2434x y z +==-.解:(1)直线的参数方程为334624x ty t z t =+⎧⎪=-⎨⎪=-+⎩代入曲面方程解得t =0,t =1. 得交点坐标为(3,4,-2),(6,-2,2). (2) 直线的参数方程为4324x t y tz t =⎧⎪=-⎨⎪=-+⎩代入曲面方程可解得t =1, 得交点坐标为(4,-3,2).62. 设有一圆,它的中心在z 轴上,半径为3,且位于距离xOy 平面5个单位的平面上,试建立这个圆的方程.192解:设(x ,y ,z )为圆上任一点,依题意有2295x y z ⎧+=⎨=±⎩ 即为所求圆的方程.63. 试考察曲面22219254x y z -+=在下列各平面上的截痕的形状,并写出其方程. (1) 平面x =2; (2) 平面y =0; (3) 平面y =5; (4) 平面z =2.解:(1)截线方程为2212x ⎧=⎪⎪⎨⎪⎪=⎩ 其形状为x =2平面上的双曲线.(2)截线方程为221940x z y ⎧+=⎪⎨⎪=⎩为xOz 面上的一个椭圆.(3)截线方程为2215y ==⎩为平面y =5上的一个椭圆.(4) 截线方程为2209252x y z ⎧-=⎪⎨⎪=⎩为平面z =2上的两条直线.64. 求曲线x 2+y 2+z 2=a 2, x 2+y 2=z 2在xOy 面上的投影曲线. 解:以曲线为准线,母线平行于z 轴的柱面方程为2222a x y +=故曲线在xOy 面上的投影曲线方程为22220a x y z ⎧+=⎪⎨⎪=⎩65. 建立曲线x 2+y 2=z , z =x +1在xOy 平面上的投影方程. 解:以曲线为准线,母线平行于z 轴的柱面方程为x 2+y 2=x +1即2215()24x y -+=.193故曲线在xOy 平面上的投影方程为2215()240x y z ⎧-+=⎪⎨⎪=⎩习题八1. 判断下列平面点集哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点集和边界: (1) {(x , y )|x ≠0};(2) {(x , y )|1≤x 2+y 2<4}; (3) {(x , y )|y <x 2};(4) {(x , y )|(x -1)2+y 2≤1}∪{(x , y )|(x +1)2+y 2≤1}.解:(1)开集、无界集,聚点集:R 2,边界:{(x , y )|x =0}. (2)既非开集又非闭集,有界集, 聚点集:{(x , y )|1≤x 2+y 2≤4},边界:{(x , y )|x 2+y 2=1}∪{(x , y )| x 2+y 2=4}. (3)开集、区域、无界集, 聚点集:{(x , y )|y ≤x 2}, 边界:{(x , y )| y =x 2}.(4)闭集、有界集,聚点集即是其本身,边界:{(x , y )|(x -1)2+y 2=1}∪{(x , y )|(x +1)2+y 2=1}. 2. 已知f (x , y )=x 2+y 2-xy tanxy,试求(,)f tx ty . 解:222(,)()()tan(,).tx f tx ty tx ty tx ty t f x y ty=+-⋅= 3. 已知(,,)w u v f u v w u w +=+,试求(,,).f x y x y xy +- 解:f ( x + y , x -y , x y ) =( x + y )xy +(x y )x +y +x -y =(x + y )xy +(x y )2x . 4. 求下列各函数的定义域:2(1)ln(21);z y x =-+(2)z =(3)z =(4)u =(5)z =(6)ln()z y x =-194(7)u =解:2(1){(,)|210}.D x y y x =-+>(2){(,)|0,0}.D x y x y x y =+>->22222(3){(,)|40,10,0}.D x y x y x y x y =-≥-->+≠(4){(,,)|0,0,0}.D x y z x y z =>>>2(5){(,)|0,0,}.D x y x y x y =≥≥≥ 22(6){(,)|0,0,1}.D x y y x x x y =->≥+< 22222(7){(,,)|0,0}.D x y z x y x y z =+≠+-≥5. 求下列各极限:10(1)y x y →→ 22001(2)lim;x y x y →→+00(3)x y →→x y →→00sin (5)lim ;x y xy x →→2222221cos()(6)lim.()ex y x y x y x y +→→-++解:(1)原式0ln 2.=(2)原式=+∞. (3)原式=01.4x y →→=-(4)原式=002.x y →→=(5)原式=00sin lim100.x y xyy xy →→⋅=⨯=(6)原式=22222222222()00001()2lim lim 0.()e 2ex y x y x x y y x y x y x y ++→→→→++==+1956. 判断下列函数在原点O (0,0)处是否连续:33222222sin(),0,(1)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩33333333sin(),0,(2)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩(3) 222222222,0,(2)()0,0;x y x y z x y x y x y ⎧+≠⎪=+-⎨⎪+=⎩解:(1)由于3333333322223333sin()sin()sin()0()x y x y x y x y y x x y x y x y x y++++≤=≤+⋅++++ 又00lim()0x y y x →→+=,且3333000sin()sin lim lim 1x u y x y ux y u →→→+==+, 故0lim 0(0,0)x y z z →→==.故函数在O (0,0)处连续. (2)000sin lim lim1(0,0)0x u y uz z u→→→==≠=故O (0,0)是z 的间断点.(3)若P (x ,y ) 沿直线y =x 趋于(0,0)点,则2222000lim lim 10x x y x x x z x x →→=→⋅==⋅+, 若点P (x ,y ) 沿直线y =-x 趋于(0,0)点,则22222220000()lim lim lim 0()44x x x y x x x x z x x x x →→→=-→-===⋅-++ 故00lim x y z →→不存在.故函数z 在O (0,0)处不连续.7. 指出下列函数在向外间断:(1) f (x ,y )=233x y x y -+; (2) f (x ,y )=2222y xy x +-;(3) f (x ,y )=ln(1-x 2-y 2);(4)f (x ,y )=22e ,0,0,0.x y x y yy -⎧⎪≠⎨⎪=⎩196解:(1)因为当y =-x 时,函数无定义,所以函数在直线y =-x 上的所有点处间断,而在其余点处均连续.(2)因为当y 2=2x 时,函数无定义,所以函数在抛物线y 2=2x 上的所有点处间断.而在其余各点处均连续.(3)因为当x 2+y 2=1时,函数无定义,所以函数在圆周x 2+y 2=1上所有点处间断.而在其余各点处均连续.(4)因为点P (x ,y )沿直线y =x 趋于O (0,0)时.1200lim (,)lime x x y x xf x y x-→→=→==∞. 故(0,0)是函数的间断点,而在其余各点处均连续. 8. 求下列函数的偏导数:(1)z = x 2y +2xy;(2)s =22u v uv+;(3)z = x;(4)z = lntan x y; (5)z = (1+xy )y ; (6)u = z xy ;(7)u = arctan(x -y )z; (8)y zu x =.解:(1)223122,.z z x xy x x y y y∂∂=+=-∂∂ (2)u v s v u =+ 2211,.s v s u u v u v v u∂∂=-=-+∂∂(3)2222212ln(),2z x x x x y x x y ∂==++∂+222.z xy x y y x y ∂==∂+ (4)21122sec csc ,tan z x x x x y y y yy∂=⋅⋅=∂222122sec ()csc .tan z x x x x x y y y y yy∂=⋅⋅-=-∂ (5)两边取对数得ln ln(1)z y xy =+故[]221(1)(1)(1).ln(1)1y yy x z y xy xy y xy y xy x xy-∂'=+⋅=+⋅=++∂+197[]ln(1)(1)(1)ln(1)1ln(1)(1).1y y y y x z xy yxy xy y xy xy y xy xy xy xy ∂⎡⎤'++=+⋅=++⎢⎥+∂⎣⎦⎡⎤++=+⎢⎥+⎣⎦(6)1ln ln xy xy xy u u uz z y z z x xy z x y z-∂∂∂=⋅⋅=⋅⋅=⋅∂∂∂ (7)11221()().1[()]1()z z z zu z x y z x y x x y x y --∂-=⋅-=∂+-+- 112222()(1)().1[()]1()()ln()()ln().1[()]1()z z z z z zz zu z x y z x y y x y x y u x y x y x y x y z x y x y --∂-⋅--==-∂+-+-∂----==∂+-+-(8)1.yzu y x x z-∂=∂ 2211ln ln .ln ln .y yz z yy z zu x x x x y z zu y y x x x x z z z ∂=⋅=∂∂⎛⎫=⋅=-- ⎪∂⎝⎭9.已知22x y u x y=+,求证:3u u x y u x y ∂∂+=∂∂. 证明: 222223222()2()()u xy x y x y x y xy x x y x y ∂+-+==∂++. 由对称性知 22322()u x y yx y x y ∂+=∂+. 于是 2223()3()u u x y x y x y u x y x y ∂∂++==∂∂+.10.设11ex y z ⎛⎫+- ⎪⎝⎭=,求证:222z z xy z x y∂∂+=∂∂. 证明: 11112211e e x y x y z x x x ⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭∂⎡⎤⎛⎫=-=- ⎪⎢⎥∂⎝⎭⎣⎦, 由z 关于x ,y 的对称性得1981121e x y z y y ⎛⎫+- ⎪⎝⎭∂=∂ 故 11111122222211e e 2e 2.x y x y x y z z x y x y z x y x y⎛⎫⎛⎫⎛⎫+++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∂∂+⋅=⋅+⋅==∂∂11.设f (x ,y ) = x +(y,求f x (x ,1) .解:1(,)1(x f x y y y =+- 则(,1)101x f x =+=.12.求曲线2244x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与正向x 轴所成的倾角.解:(2,4,5)1,1,2z z x x x ∂∂==∂∂ 设切线与正向x 轴的倾角为α, 则tan α=1. 故α=π4. 13.求下列函数的二阶偏导数: (1)z = x 4+ y 4-4x 2y 2; (2)z = arctan y x; (3)z = y x ;(4)z = 2ex y+.解:(1)2322224812816z z z x xy x y xy x x x y∂∂∂=-=-=-∂∂∂∂ ,,由x ,y 的对称性知22222128.16.z z y x xy y y x∂∂=-=-∂∂∂ (2)222211zy y xx y x y x ∂⎛⎫=⋅=-- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭,1992222222222222222222222222222222222222222()022,()()11,12,()()2,()()2.()()z x y y x xyx x y x y z x y x x y y x z xyy x y z x y y y y x x y x y x y z x y x x y x y x x y x y ∂+⋅-⋅=-=∂++∂=⋅=∂+⎛⎫+ ⎪⎝⎭∂=-∂+∂+-⋅-=-=∂∂++∂+-⋅-=-=∂∂++ (3)222ln ,ln ,xx z z y y y y x x∂∂==∂∂ 21222112111,(1),1ln (1ln ),ln (1ln ).x x x x x x x x z z xy x x y y y z y xy y y x y x y y zy x y y y x y y x-------∂∂==-∂∂∂=⋅+=+∂∂∂=+⋅⋅=+∂∂ (4)22e 2,e ,x y x y z zx x y++∂∂=⋅=∂∂ 222222222e 22e 22e (21),e ,2e ,2e .x y x y x y x y x y x y z x x x xz z z x x y x y y x++++++∂=⋅⋅+⋅=+∂∂∂∂===∂∂∂∂∂14.设f (x , y , z ) = xy 2+yz 2+zx 2,求(0,0,1),(0,1,0),(2,0,1).xx yz zzx f f f - 解:2(,,)2x f x y z y zx =+22(,,)2,(0,0,1)2,(,,)2(,,)2,(0,1,0)0,(,,)2(,,)2(,,)0,(2,0,1)0.xx xx y yz yz z zz zzx zzx f x y z z f f x y z xy z f x y z z f f x y z yz x f x y z yf x y z f ===+=-==+===15315.设z = x ln ( x y ),求32z x y ∂∂∂及32zx y ∂∂∂.解:ln()1ln(),z yx xy xy x xy∂=⋅+=+∂ 232223221,0,11,.z y zx xy x x y z x z x y xy y x y y∂∂===∂∂∂∂∂===-∂∂∂∂16.求下列函数的全微分: (1)22e xy z +=;(2)z =(3)zyu x =;(4)yzu x =.解:(1)∵2222e 2,e 2x y x y z z x y x y++∂∂=⋅=⋅∂∂ ∴222222d 2e d 2e d 2e (d d )xy x y x y z x x y y x x y y +++=+=+(2)∵22223/21()z xy y x y x x y ∂⎛⎫-=⋅=- ⎪+∂+⎝⎭2223/2()z x yx y ∂==∂+ ∴ 223/2d (d d ).()x z y x x y x y =--+ (3)∵11,ln z z z y y z u uy x x x zy x y --∂∂==⋅⋅∂∂ 2ln ln y z ux x y y z∂=⋅⋅⋅∂ ∴211d d ln d ln ln d .z z zy y z y z u y x x x x zy y x x y y z --=+⋅+⋅⋅⋅(4)∵1yz u y x x z-∂=∂ 1ln yz u x x y z∂=⋅⋅∂154ln yz u y x x z z 2∂⎛⎫=⋅⋅- ⎪∂⎝⎭∴121d d ln d ln d .y y yz z z y y u x x x x y x x z z z z -⎛⎫=+⋅⋅+⋅⋅- ⎪⎝⎭17. 求下列函数在给定点和自变量增量的条件下的全增量和全微分: (1)222,2,1,0.2,0.1;z x xy y x y x y =-+==-∆=∆=- (2)e ,1,1,0.15,0.1.xy z x y x y ===∆=∆=解:(1)22()()()2()9.688 1.68z x x x x y y y y z ∆=+∆-+∆+∆++∆-=-=d (2)(4) 1.6z x y x x y y =-∆+-+∆=(2)()()0.265e e e(e 1)0.30e.x x y y xy z +∆+∆∆=-=-=d e e e ()0.25e xy xy xy z y x x y y x x y =∆+∆=∆+∆=18.利用全微分代替全增量,近似计算: (1) (1.02)3·(0.97)2;;(3)(1.97)1.05.解:(1)设f (x ,y )=x 3·y 2,则223(,)3,(,)2,x y f x y x y f x y x y ==故d f (x ,y )=3x 2y 2d x +2x 3y d y =xy (3xy d x +2x 2d y ) 取x =1,y =1,d x =0.02,d y =-0.03,则(1.02)3·(0.97)2=f (1.02,0.97)≈f (1,1)+d f (1,1)d 0.02d 0.03x y ==-=13×12+1×1[3×1×1×0.02+2×12×(-0.03)]=1.(2)设f (x ,y,则(,)(,)x y f x y f x y ===故d (,)d d )f x y x x y y =+取4,3,d 0.05,d 0.07x y x y ====-,则155d 0.05d 0.07(4.05,2.93)(4,3)d (4,3)0.053(0.07)]15(0.01)54.998x y f f f ==-=≈+=⨯+⨯-=+⨯-=(3)设f (x ,y )=x y ,则d f (x ,y )=yx y -1d x +x y ln x d y , 取x =2,y =1,d x =-0.03,d y =0.05,则1.05d 0.03d 0.05(1.97)(1.97,1.05)(2,1)d (2,1)20.0393 2.0393.x y f f f =-==≈+=+=19.矩型一边长a =10cm ,另一边长b =24cm, 当a 边增加4mm ,而b 边缩小1mm 时,求对角线长的变化.解:设矩形对角线长为l ,则d d ).l l x x y y ==+当x =10,y =24,d x =0.4,d y =-0.1时,d 0.4240.1)0.062l =⨯-⨯=(cm)故矩形的对角线长约增加0.062cm.20.解:因为圆锥体的体积为21.3V r h π=⋅0030,0.1,60,0.5r r h h ====- 而221.33V V V dV r h yh r r h r h ππ∂∂≈=⋅+⋅=⋅+⋅∂∂0030,0.1,60,0.5r r h h ====-时, 2213.1430600.130(0.5)33V π≈⨯⨯⨯⨯+⨯⨯- 230()cm =-21.解:设水池的长宽深分别为,,x y z 则有:V xyz =精确值为:50.242 2.850.22 3.62V =⨯⨯+⨯⨯⨯+⨯⨯⨯ 313.632()m = 近似值为:156V dV zx y xy z ≈=+0.4,0.4,0.2x y z ===430.4530.454V d V ≈=⨯⨯+⨯⨯+⨯⨯314.8()m =22. 求下列复合函数的偏导数或全导数:(1)22,cos ,sin ,z x y xy x u v y u v =-==求z u ∂∂,zv∂∂; (2)z =arc tanxy, x =u +v ,y =u -v , 求z u ∂∂,z v ∂∂;(3)ln(e e )xyu =+, y =x 3, 求d d u x; (4) u =x 2+y 2+z 2, x =e cos tt , y =e sin tt , z =e t, 求d d ut. 解:(1)222(2)cos (2)sin 3sin cos (cos sin )z z x z yxy y v x xy v u x u y u u v v v v ∂∂∂∂∂=⋅+⋅=-⋅+-∂∂∂∂∂=-223333(2)sin (2)cos 2sin cos (sin cos )(sin cos ).z z x z yxy y u v x xy u v v x v y v u v v v v u v v ∂∂∂∂∂=⋅+⋅=--⋅+-⋅∂∂∂∂∂=-+++ (2)222222211111x z z x z y y x v y u x u y uy x y u v x x y y ∂∂∂∂∂--⎛⎫-=⋅+⋅=⋅+⋅== ⎪∂∂∂∂∂++⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭ 2222222111(1)11.x z z x z yy v x v y vyx x y y y x ux y u v -∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅⋅- ⎪∂∂∂∂∂⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭+==++ (3)33222d d d 11e 3e e 3e e e 3.d d d e e e e e e e ex y xx x y x y x y x y x x u u x u y x x x x x x y x ∂∂++=⋅+⋅=⋅+⋅⋅==∂∂++++ (4)d d d d d d d d u u x u y u z t x t y t z t∂∂∂=⋅+⋅+⋅∂∂∂ 22(e cos e sin )2(e sin e cos )2e 4e t t t t t t x t t y t t z =-+++⋅=.15723. 设f 具有一阶连续偏导数,试求下列函数的一阶偏导数: (1)22(,e );xy u f x y =- (2),;x y u f y z ⎛⎫= ⎪⎝⎭(3)().,,u f x xy xyz = 解:(1)12122e 2e .xy xy uf x f y xf y f x∂''''=⋅+⋅⋅=+∂ 1212(2)e 2e .xy xy uf y f x yf x f y∂''''=⋅-+⋅⋅=-+∂ (2)1111u f f x y y∂''=⋅=∂ 121222222211..x u x f f f f y y z y z u y y f f z z z ∂⎛⎫''''-=⋅+⋅=-+ ⎪∂⎝⎭∂⎛⎫''=⋅=-- ⎪∂⎝⎭(3)1231231,uf f y f yz f yf yzf x∂''''''=⋅+⋅+⋅=++∂ 12323330,.uf f x f xz xf xzf yuf xy xyf z∂'''''=⋅+⋅+⋅=+∂∂''=⋅=∂24.设(),,()yz xy xF u u F u x=+=为可导函数,证明: .z zxy z xy x y∂∂+=+∂∂ 证明:2()()()()z y y y xF u F u F u y F u x x x ∂⎛⎫''=+⋅+=+-- ⎪∂⎝⎭1()().z x xF u x F u y x∂''=+⋅=+∂ 故[]()()()()()()().z z F u y xy x y x F u F u y x y x xF u xy yF u xy yF u xy xF u xy z xy '∂∂⎡⎤'+=+++-⎢⎥∂∂⎣⎦''=+-++=++=+15825. 设22()yz f x y =-,其中f (u )为可导函数,验证: 211z z zx x y y y∂∂+=∂∂. 证明:∵2222z yf x xyf x f f''∂⋅=-=-∂, 222(2)2z f y f y f y f y f f''∂-⋅⋅-+==∂, ∴22222112211z z yf f y f y zx x y y f yf yf f y y ''∂∂++=-+==⋅=∂∂⋅ 26. 22()z f x y =+,其中f 具有二阶导数,求22222,,.z z z x x y y∂∂∂∂∂∂∂解:2,2,z zxf yf x y∂∂''==∂∂ 222222224,224,zf x xf f x f xzxf y xyf x y∂''''''=+⋅=+∂∂''''=⋅=∂∂ 由对称性知,22224.z f y f y∂'''=+∂27. 设f 具有二阶偏导函数,求下列函数的二阶偏导数: (1),;x x z f y ⎛⎫= ⎪⎝⎭(2)()22;,z f xy x y =(3)().sin ,cos ,e x y z f x y += 解:(1)1212111,z f f f f x y y∂''''=⋅+⋅=+∂1592212211121112222221222122222222222222222223211121,1111,,2z f f f f f f f y x y y y yx x z x f f f f f f y y y x y y y y yx z x f f y y y z x x f f y y y ∂⎛⎫''''''''''''''+⋅=+⋅+=+⋅+ ⎪∂⎝⎭∂⎛⎫⎛⎫⎛⎫''''''''''--+=⋅-+⋅=-- ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭∂⎛⎫''-==- ⎪∂⎝⎭∂''=-∂22222342.x x x f f y yy ⎛⎫''''-⋅=+ ⎪⎝⎭,(2)22121222,zf y f xy y f xyf x∂''''=⋅+⋅=+∂ ()()22222211122122432221112222222244,zy yf xy f y f xy f y f xy x yf y f xy f x y f ∂'''''''''=++⋅+⋅⋅+⋅∂'''''''=+++()()()()222212111221223322121122122212122222121112212212222222225,22,22222zyf y xf xy f xy f x f xy f x x yyf xf xy f x yf x y f zf xy f x xyf x f yzxf xy x f xy f x f xy f x yxf ∂''''''''''=+++⋅+⋅⋅+⋅∂∂''''''''=++++∂''''=⋅+⋅=+∂∂'''''''''=++⋅+⋅⋅+⋅∂'=223411122244.x y f x yf x f ''''''+++(3)1313cos e cos e ,x y x y zf x f xf f x++∂''''=⋅+⋅=+∂ ()()1321113313322()311113332312133233sin cos e e cos e cos e e sin cos 2e cos e ,cos e e (sin )e (sin )x y x y x y x y x y x y x y x y x y x y zxf x f f x f f x f xf xf xf xf f z x f f y f f y f x y++++++++++∂''''''''''=-+++⋅+⋅+⋅∂''''''''=-+++∂'⎡⎤''''''=++⋅⋅-+⋅⋅-+⎣⎦∂∂2()3121332332323223222233233e e cos sin e cos e sin e ,(sin )e sin e ,cos sin e e (sin )e (sin )e x y x y x y x y x y x y x y x y x y x y x y f x yf xf yf f zf y f yf f yz yf y f f y f f y f y +++++++++++⎡⎤''⋅⎣⎦'''''''''=-+-+∂''''=-+=-+∂∂''⎡⎤⎡''''''''=--++-+⋅-+⋅⎣⎦∂22()32222333e cos sin 2e sin e .x y x y x y f yf yf yf f +++⎤⎣⎦''''''''=-+-+28. 试证:利用变量替换1,3x y x y ξη=-=-,可将方程。
《数值逼近》课程简介0611052 数值逼近 3.0Numerical Approximation 3-0预修要求:数学分析, 高等代数面向对象:三年级本科生内容简介:数值逼近是一门历史悠久,内容丰富而且实践很强的数学,它是现代计算科学发展的必要基础。
课程主要讲授一元实函数的数值逼近理论和方法,系统地介绍了数值逼近的理论和各种数值逼近方法.全书内容包括:函数的插值、样条插值和曲线拟合、最佳逼近、数值积分、快速傅立叶变换、函数方程求根等.推荐教材或主要参考书:《数值逼近》,蒋尔雄,赵风光,复旦大学出版社,ISBN:7-309-01682-3,出版日期:1996-7。
《数值逼近》,黄友谦,李岳生,高等教育出版社,ISBN:7-04-001604-4,出版日期:1987-5。
《数值逼近》教学大纲0611052 数值逼近 3.0Numerical Approximation 3-0预修要求:数学分析, 高等代数面向对象:三年级本科生一、教学目的和基本要求本课程是为数学系信息与计算科学专业开设的专业课。
本课程为3学分,上课时间大约为16×3=48学时,一学期完成。
通过本课程的学习,要求学生掌握数值逼近的理论和各种数值逼近的方法。
能够掌握函数的插值、样条插值和曲线拟合、最佳逼近、数值积分、非线性方程求根等内容。
了解各种数值逼近方法的应用。
二、主要内容及学时分配(一)绪论(3学时)1.数值分析简介2.误差和有效数字(二)函数的插值(11学时)1.多项式插值2.等距插值和插分3.艾米特插值4.非多项式插值(三)样条插值和曲线拟合(6学时)1.样条插值2.曲线拟合四、教学方式:课堂讲授、案例讨论、团队任务。
(四)最佳逼近(10学时)1.最佳逼近2.最佳平方逼近3.正交多项式(五)数值积分(10学时)1.牛顿-柯特斯公式2.提高精度的方法3.高斯型公式4.多重积分(六) 函数方程求根(8学时)1.二分法2.迭代法3.牛顿法4.其它方法三、相关教学环节安排每周布置作业,题目选择教材中的习题。
第一章 误差1. 试举例,说明什么是模型误差,什么是方法误差.解: 例如,把地球近似看为一个标准球体,利用公式24A r π=计算其表面积,这个近似看为球体的过程产生的误差即为模型误差.在计算过程中,要用到π,我们利用无穷乘积公式计算π的值:12222...q q π=⋅⋅⋅ 其中112,3,...n q q n +⎧=⎪⎨==⎪⎩ 我们取前9项的乘积作为π的近似值,得3.141587725...π≈这个去掉π的无穷乘积公式中第9项后的部分产生的误差就是方法误差,也成为截断误差.2. 按照四舍五入的原则,将下列各数舍成五位有效数字:816.956 7 6.000 015 17.322 50 1.235 651 93.182 13 0.015 236 23 解: 816.96 6.000 0 17.323 1.235 7 93.182 0.015 2363. 下列各数是按照四舍五入原则得到的近似数,它们各有几位有效数字? 81.897 0.008 13 6.320 05 0.180 0 解: 五位 三位 六位 四位4. 若1/4用0.25表示,问有多少位有效数字? 解: 两位5. 若 1.1062,0.947a b ==,是经过舍入后得到的近似值,问:,a b a b +⨯各有几位有效数字?解: 已知4311d 10,d 1022a b --<⨯<⨯, 又0.2053210a b +=⨯,()433211110100.551010222d a b da db da db ----+=+≤+=⨯+⨯=⨯<⨯,所以a b +有三位有效数字;因为0.1047571410a b ⨯=⨯,()43321110.94710 1.1062100.600451010222d a b b da a db ----⨯=+=⋅⨯+⋅⨯=⨯<⨯所以a b ⨯有三位有效数字.6. 设120.9863,0.0062y y ==,是经过舍入后作为12,x x 的近似值.求1211,y y 的计算值与真值的相对误差限及12y y ⋅与真值的相对误差限. 解: 已知-4-41112221211d ,d ,d =10,d 1022x y x x y x x x =+=+⨯=⨯, ()44111111110d d 12dr dr 0.50100.9863x xx x x y --⨯⎛⎫==≈=≈⨯ ⎪⎝⎭;()42222222110d d 12dr dr 0.81100.0062x xx x x y --⨯⎛⎫==≈=≈⨯ ⎪⎝⎭;()()()4221212dr dr dr 0.50100.81100.8210x x x x ---⋅=+≈⨯+⨯≈⨯.7. 正方形的边长约为100cm,应该怎样测量,才能使其面积的误差不超过1cm 2.解: 设正方形面积为S,边长为a,则S=a 2.所以要使:2d d 2d 1s a a a ==≤,则要求211d 0.5102200a a -≤==⨯.所以边长的误差不能超过20.510-⨯cm.8. 用观测恒星的方法求得某地维度为4502'''o(读到秒),试问:计算sin ϕ将有多大误差?解: ()()1d sin cos d cos 45022ϕϕϕ*''⎛⎫'''== ⎪⎝⎭o.9 . 真空中自由落体运动距离s 与时间的关系由公式212s gt =确定,g 是重力加速度.现在假设g 是准确的,而对t 的测量有0.1s ±的误差,证明t 增加时,距离的绝对误差增加而相对误差却减小.证明: 因为:221d d d d d d d ;2.122s gt t gt t t s gt gt t s s t gt ⎛⎫=====⎪⎝⎭ d s 与t 成正比,d s s与t 成反比,所以当d t 固定的时候, t 增加时,距离的绝对误差增加而相对误差却减小.10. 设0x >,x 的相对误差为δ,求ln x 的绝对误差. 解: 已知d x x δ=,所以ln x 的绝对误差()d d ln x x xδ==.11. 设x 的相对误差为%α,求nx 的相对误差.解: 1d d d %n n n n x nx x n xn x x xα-===.12. 计算球的体积,为了使相对误差限为1%,问度量半径R 时允许的相对误差限如何? 解: 已知343V R π=,设()d dr R R a R ==,则要使得 ()()3d dr dln d ln 3d ln 3d ln 3dr 31%V V V R R R R a V ========,则11%3a =⋅. 第二章 函数的插值2.给定的函数值如表19所示,用3种途径求3次插值多项式。
习题七1.在空间直角坐标系中,定出下列各点的位置:A(1,2,3);B(-2,3,4);C(2,-3,-4);D(3,4,0);E(0,4,3);F(3,0,0).解:点A在第Ⅰ卦限;点B在第Ⅱ卦限;点C在第Ⅷ卦限;点D在xOy面上;点E在yOz面上;点F在x轴上.2.xOy坐标面上的点的坐标有什么特点?yOz面上的呢?zOx面上的呢?答:在xOy面上的点,z=0;在yOz面上的点,x=0;在zOx面上的点,y=0.3.x轴上的点的坐标有什么特点?y轴上的点呢?z轴上的点呢?答:x轴上的点,y=z=0;y轴上的点,x=z=0;z轴上的点,x=y=0.4.求下列各对点之间的距离:(1)(0,0,0),(2,3,4);(2)(0,0,0),(2,-3,-4);(3)(-2,3,-4),(1,0,3);(4)(4,-2,3),(-2,1,3).解:(1)s=(2)s==(3)s==(4)s==5.求点(4,-3,5)到坐标原点和各坐标轴间的距离.解:点(4,-3,5)到x轴,y轴,z轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5).故s==5zs==.6.在z轴上,求与两点A(-4,1,7)和B(3,5,-2)等距离的点.解:设此点为M(0,0,z),则解得149 z=即所求点为M(0,0,149).7.试证:以三点A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形. 证明:因为|AB|=|AC|=7.且有|AC|2+|AB|2=49+49=98=|BC|2.故△ABC为等腰直角三角形.8.验证:()()++=++a b c a b c .证明:利用三角形法则得证.见图7-1图7-19.设2, 3.=-+=-+-u a b c v a b c 试用a ,b ,c 表示23.-u v解:10.把△ABC 的BC 边分成五等份,设分点依次为D 1,D 2,D 3,D 4,再把各分点与A 连接,试以AB =c ,BC =a 表示向量1D A ,2D A ,3D A 和4D A . 解:1115D A BA BD =-=--c a 11.设向量OM 的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影.解:设M 的投影为M ',则12.一向量的终点为点B (2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A 的坐标.解:设此向量的起点A 的坐标A (x ,y ,z ),则解得x =-2,y =3,z =0故A 的坐标为A (-2,3,0).13.一向量的起点是P 1(4,0,5),终点是P 2(7,1,3),试求:(1)12PP 在各坐标轴上的投影;(2)12PP 的模;(3)12PP 的方向余弦;(4)12PP 方向的单位向量.解:(1)12Pr j 3,xx a PP ==(2)12(7PP == (3)12cos 14x a PP α==12cos 14z a PP γ==(4)12012{14PP PP ===+e j . 14.三个力F 1=(1,2,3),F2=(-2,3,-4),F 3=(3,-4,5)同时作用于一点.求合力R 的大小和方向余弦.解:R =(1-2+3,2+3-4,3-4+5)=(2,1,4)15.求出向量a =i +j +k ,b =2i -3j +5k 和c =-2i -j +2k 的模,并分别用单位向量,,a b c e e e 来表达向量a ,b ,c . 解:||==a16.设m =3i +5j +8k ,n =2i -4j -7k ,p =5i +j -4k ,求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量. 解:a =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k在x 轴上的投影a x =13,在y 轴上分向量为7j .17.解:设{,,}x y z a a a a =则有 求得12x a =. 设a 在xoy 面上的投影向量为b 则有{,,0}x y b a a =则222cos 42a ba b π⋅=⇒=⋅则214y a =求得12y a =± 又1,a =则2221x y z a a a ++= 从而求得11{,,}222a =±或11{,,}222-± 18.已知两点M 1(2,5,-3),M 2(3,-2,5),点M 在线段M 1M 2上,且123M M MM =,求向径OM 的坐标.解:设向径OM ={x ,y ,z }因为,123M M MM =所以,11423(3)153(2) 433(5)3x x x y y y z z z ⎧=⎪-=-⎧⎪⎪⎪-=--⇒=-⎨⎨⎪⎪+=-⎩=⎪⎪⎩故OM ={111,,344-}. 19.已知点P 到点A (0,0,12)的距离是7,OP 的方向余弦是236,,777,求点P 的坐标. 解:设P 的坐标为(x ,y ,z ),2222||(12)49PA x y z =++-= 得2229524x y z z ++=-+又122190cos 2, 749x x α==⇒==故点P 的坐标为P (2,3,6)或P (190285570,,494949). 20.已知a ,b 的夹角2π3ϕ=,且3,4==b a ,计算: (1)a ·b ;(2)(3a -2b )·(a +2b ). 解:(1)a ·b =2π1cos ||||cos3434632ϕ⋅⋅=⨯⨯=-⨯⨯=-a b (2)(32)(2)3624-⋅+=⋅+⋅-⋅-⋅a b a b a a a b b a b b21.已知a =(4,-2,4),b =(6,-3,2),计算:(1)a ·b ;(2)(2a -3b )·(a +b );(3)2||-a b解:(1)46(2)(3)4238⋅=⨯+-⨯-+⨯=a b(2)(23)()2233-⋅+=⋅+⋅-⋅-⋅a b a b a a a b a b b b(3)222||()()2||2||-=-⋅-=⋅-⋅+⋅=-⋅+a b a b a b a a a b b b a a b b22.已知四点A (1,-2,3),B (4,-4,-3),C (2,4,3),D (8,6,6),求向量AB 在向量CD 上的投影.解:AB ={3,-2,-6},CD ={6,2,3}23.若向量a +3b 垂直于向量7a -5b ,向量a -4b 垂直于向量7a -2b ,求a 和b 的夹角.解:(a +3b )·(7a -5b )=227||1615||0+⋅-=a a b b ①(a -4b )·(7a -2b )=227||308||0-⋅+=a a b b ② 由①及②可得:222221()1||||2||||4⋅⋅⋅==⇒=a b a b a b a b a b 又21||02⋅=>a b b ,所以1cos ||||2θ⋅==a b a b , 故1πarccos 23θ==. 24.设a =(-2,7,6),b =(4,-3,-8),证明:以a 与b 为邻边的平行四边形的两条对角线互相垂直. 证明:以a ,b 为邻边的平行四边形的两条对角线分别为a +b ,a -b ,且a +b ={2,4,-2}a -b ={-6,10,14}又(a +b )·(a -b )=2×(-6)+4×10+(-2)×14=0故(a +b )⊥(a -b ).25.已知a =3i +2j -k ,b =i -j +2k ,求:(1)a ×b ;(2)2a ×7b ;(3)7b ×2a ;(4)a ×a .解:(1)211332375122111--⨯=++=----a b i j k i j k(2)2714()429870⨯=⨯=--a b a b i j k(3)7214()14()429870⨯=⨯=-⨯=-++b a b a a b i j k(4)0⨯=a a .26.已知向量a 和b 互相垂直,且||3, ||4==a b .计算:(1)|(a +b )×(a -b )|;(2)|(3a +b )×(a -2b )|.(1)|()()|||2()|+⨯-=⨯-⨯+⨯-⨯=-⨯a b a b a a a b b a b b a b(2)|(3)(2)||362||7()|+⨯-=⨯-⨯+⨯-⨯=⨯a b a b a a a b b a b b b a27.求垂直于向量3i -4j -k 和2i -j +k 的单位向量,并求上述两向量夹角的正弦. 解:411334555111221----⨯=++=--+--a b i j k i j k与⨯a b平行的单位向量)||⨯==--+⨯a b e i j k a b||sin ||||θ⨯===⨯a b a b . 28.一平行四边形以向量a =(2,1,-1)和b =(1,-2,1)为邻边,求其对角线夹角的正弦. 解:两对角线向量为13=+=-l a b i j ,232=-=+-l a b i j k因为12|||2610|⨯=++=l l i j k所以1212||sin 1||||θ⨯===l l l l . 即为所求对角线间夹角的正弦.29.已知三点A (2,-1,5),B (0,3,-2),C (-2,3,1),点M ,N ,P 分别是AB ,BC ,CA 的中点,证明:1()4MN MP AC BC ⨯=⨯. 证明:中点M ,N ,P 的坐标分别为故1()4MN MP AC BC ⨯=⨯. 30.(1)解:x yz x y z i j k a b a a a b b b ⨯=则 C=-C +-+-y z z y x z x x z y x y y x y a b a b a b a b a b C a b a b C ⨯⋅()()()()若,,C a b 共面,则有 a b ⨯后与 C 是垂直的. 从而C 0a b ⨯⋅=()反之亦成立. (2) C xy z x y z xy z a a a a b b b b C C C ⨯⋅=() 由行列式性质可得:故 C a ?b a b bC C a ⨯⋅=⨯⋅=⨯⋅()()()31.四面体的顶点在(1,1,1),(1,2,3),(1,1,2)和(3,-1,2)求四面体的表面积. 解:设四顶点依次取为A ,B ,C ,D.则由A ,B ,D 三点所确定三角形的面积为111|||542|22S AB AD =⨯=+-=i j k 同理可求其他三个三角形的面积依次为12故四面体的表面积12S =+32.解:设四面体的底为BCD ∆,从A 点到底面BCD ∆的高为h ,则13BCD V S h =⋅⋅, 而11948222BCD S BC BD i j k =⨯=--+= 又BCD ∆所在的平面方程为:48150x y z +-+=则43h == 故1942323V =⋅⋅= 33.已知三点A (2,4,1),B (3,7,5),C (4,10,9),证:此三点共线.证明:{1,3,4}AB =,{2,6,8}AC =显然2AC AB =则22()0AB AC AB AB AB AB ⨯=⨯=⨯=故A ,B ,C 三点共线.34.一动点与M 0(1,1,1)连成的向量与向量n =(2,3,-4)垂直,求动点的轨迹方程.解:设动点为M (x ,y ,z )因0M M n ⊥,故00M M n ⋅=.即2(x -1)+3(y -1)-4(z -1)=0整理得:2x +3y -4z -1=0即为动点M 的轨迹方程.35.求通过下列两已知点的直线方程:(1)(1,-2,1),(3,1,-1);(2)(3,-1,0),(1,0,-3).解:(1)两点所确立的一个向量为s ={3-1,1+2,-1-1}={2,3,-2}故直线的标准方程为:121232x y z -+-==-或311232x y z --+==- (2)直线方向向量可取为s ={1-3,0+1,-3-0}={-2,1,-3}故直线的标准方程为:31213x y z -+==--或13213x y z -+==-- 36.求直线234035210x y z x y z +--=⎧⎨-++=⎩的标准式方程和参数方程.解:所给直线的方向向量为另取x 0=0代入直线一般方程可解得y 0=7,z 0=17于是直线过点(0,7,17),因此直线的标准方程为:且直线的参数方程为:37.求过点(4,1,-2)且与平面3x -2y +6z =11平行的平面方程.解:所求平面与平面3x -2y +6z =11平行故n ={3,-2,6},又过点(4,1,-2)故所求平面方程为:3(x -4)-2(y -1)+6(z +2)=0即3x -2y +6z +2=0.38.求过点M 0(1,7,-3),且与连接坐标原点到点M 0的线段OM 0垂直的平面方程.解:所求平面的法向量可取为0{1,7,3}OM ==-n故平面方程为:x -1+7(y -7)-3(z +3)=0即x +7y -3z -59=039.设平面过点(1,2,-1),而在x 轴和z 轴上的截距都等于在y 轴上的截距的两倍,求此平面方程.解:设平面在y 轴上的截距为b 则平面方程可定为122x y z b b b++= 又(1,2,-1)在平面上,则有得b =2. 故所求平面方程为1424x y z ++= 40.求过(1,1,-1),(-2,-2,2)和(1,-1,2)三点的平面方程.解:由平面的三点式方程知 代入三已知点,有1112121*********x y z --+----+=---+化简得x -3y -2z =0即为所求平面方程.41.指出下列各平面的特殊位置,并画出其图形:(1)y =0;(2)3x -1=0;(3)2x -3y -6=0;(4)x –y =0;(5)2x -3y +4z =0.解:(1)y =0表示xOz 坐标面(如图7-2)(2)3x -1=0表示垂直于x 轴的平面.(如图7-3)图7-2图7-3(3)2x -3y -6=0表示平行于z 轴且在x 轴及y 轴上的截距分别为x =3和y =-2的平面.(如图7-4)(4)x –y =0表示过z 轴的平面(如图7-5)(5)2x -3y +4z =0表示过原点的平面(如图7-6).图7-4图7-5图7-642.通过两点(1,1,1,)和(2,2,2)作垂直于平面x +y -z =0的平面.解:设平面方程为Ax +By +Cz +D =0则其法向量为n ={A ,B ,C }已知平面法向量为n 1={1,1,-1}过已知两点的向量l ={1,1,1}由题知n ·n 1=0,n ·l =0即0 0, .0A B C C A B A B C +-=⎧⇒==-⎨++=⎩所求平面方程变为Ax -Ay +D =0又点(1,1,1)在平面上,所以有D =0故平面方程为x -y =0.43.决定参数k 的值,使平面x +ky -2z =9适合下列条件:(1)经过点(5,-4,6);(2)与平面2x -3y +z =0成π4的角. 解:(1)因平面过点(5,-4,6)故有5-4k -2×6=9得k =-4.(2)两平面的法向量分别为n1={1,k,-2}n2={2,-3,1}且1212πcos cos||||4θ⋅====n nn n解得k=±44.确定下列方程中的l和m:(1)平面2x+ly+3z-5=0和平面mx-6y-z+2=0平行;(2)平面3x-5y+lz-3=0和平面x+3y+2z+5=0垂直.解:(1)n1={2,l,3},n2={m,-6,-1}(2)n1={3,-5,l},n2={1,3,2}45.通过点(1,-1,1)作垂直于两平面x-y+z-1=0和2x+y+z+1=0的平面. 解:设所求平面方程为Ax+By+Cz+D=0其法向量n={A,B,C}n1={1,-1,1},n2={2,1,1}又(1,-1,1)在所求平面上,故A-B+C+D=0,得D=0故所求平面方程为即2x-y-3z=046.求平行于平面3x-y+7z=5,且垂直于向量i-j+2k的单位向量.解:n1={3,-1,7},n2={1,-1,2}.故1217733152122111--=⨯=++=+---n n n i j k i j k则2).n=+-e i j k47.求下列直线与平面的交点:(1)11126x y z-+==-,2x+3y+z-1=0;(2)213232x y z+--==,x+2y-2z+6=0.解:(1)直线参数方程为1126x ty tz t=+⎧⎪=--⎨⎪=⎩代入平面方程得t=1故交点为(2,-3,6).(2)直线参数方程为221332x ty tz t=-+⎧⎪=+⎨⎪=+⎩代入平面方程解得t =0.故交点为(-2,1,3).48.求下列直线的夹角:(1)533903210x y z x y z -+-=⎧⎨-+-=⎩和2223038180x y z x y z +-+=⎧⎨++-=⎩; (2)2314123x y z ---==-和38121y z x --⎧=⎪--⎨⎪=⎩ 解:(1)两直线的方向向量分别为:s 1={5,-3,3}×{3,-2,1}=533321ij k --={3,4,-1}s 2={2,2,-1}×{3,8,1}=221381i j k-={10,-5,10}由s 1·s 2=3×10+4×(-5)+(-1)×10=0知s 1⊥s 2 从而两直线垂直,夹角为π2. (2)直线2314123x y z ---==-的方向向量为s 1={4,-12,3},直线38121y z x --⎧=⎪--⎨⎪=⎩的方程可变为22010y z x -+=⎧⎨-=⎩,可求得其方向向量s 2={0,2,-1}×{1,0,0}={0,-1,-2},于是 49.求满足下列各组条件的直线方程:(1)经过点(2,-3,4),且与平面3x -y +2z -4=0垂直;(2)过点(0,2,4),且与两平面x +2z =1和y -3z =2平行;(3)过点(-1,2,1),且与直线31213x y z --==-平行. 解:(1)可取直线的方向向量为s ={3,-1,2}故过点(2,-3,4)的直线方程为(2)所求直线平行两已知平面,且两平面的法向量n 1与n 2不平行,故所求直线平行于两平面的交线,于是直线方向向量故过点(0,2,4)的直线方程为(3)所求直线与已知直线平行,故其方向向量可取为s ={2,-1,3}故过点(-1,2,1)的直线方程为121213x y z +--==-. 50.试定出下列各题中直线与平面间的位置关系:(1)34273x y z++==--和4x -2y -2z =3; (2)327x y z ==-和3x -2y +7z =8;(3)223314x y z -+-==-和x +y +z =3. 解:平行而不包含.因为直线的方向向量为s ={-2,-7,3} 平面的法向量n ={4,-2,-2},所以 于是直线与平面平行.又因为直线上的点M 0(-3,-4,0)代入平面方程有4(3)2(4)2043⨯--⨯--⨯=-≠.故直线不在平面上.(2)因直线方向向量s 等于平面的法向量,故直线垂直于平面.(3)直线在平面上,因为3111(4)10⨯+⨯+-⨯=,而直线上的点(2,-2,3)在平面上. 51.求过点(1,-2,1),且垂直于直线 的平面方程.解:直线的方向向量为12123111-=++-ij ki j k , 取平面法向量为{1,2,3},故所求平面方程为1(1)2(2)3(1)0x y z ⨯-+++-= 即x +2y +3z =0.52.求过点(1,-2,3)和两平面2x -3y +z =3,x +3y +2z +1=0的交线的平面方程. 解:设过两平面的交线的平面束方程为233(321)0x y z x y z λ-+-++++= 其中λ为待定常数,又因为所求平面过点(1,-2,3) 故213(2)33(13(2)231)0λ⨯-⨯-+-++⨯-+⨯+= 解得λ=-4. 故所求平面方程为2x +15y +7z +7=053.求点(-1,2,0)在平面x +2y -z +1=0上的投影.解:过点(-1,2,0)作垂直于已知平面的直线,则该直线的方向向量即为已知平面的法向量,即s =n ={1,2,-1}所以垂线的参数方程为122x ty t z t =-+⎧⎪=+⎨⎪=-⎩将其代入平面方程可得(-1+t )+2(2+2t )-(-t )+1=0 得23t=-于是所求点(-1,2,0)到平面的投影就是此平面与垂线的交点522(,,)333-54.求点(3,-1,2)到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离.解:过点(3,-1,2)作垂直于已知直线的平面,平面的法向量可取为直线的方向向量即11133211==-=---ij kn s j k 故过已知点的平面方程为y +z =1.联立方程组102401x y z x y z y z +-+=⎧⎪-+-=⎨⎪+=⎩解得131,,.22x y z ==-=即13(1,,)22-为平面与直线的垂足于是点到直线的距离为d ==55.求点(1,2,1)到平面x +2y +2z -10=0距离.解:过点(1,2,1)作垂直于已知平面的直线,直线的方向向量为s =n ={1,2,2}所以垂线的参数方程为12212x ty t z t =+⎧⎪=+⎨⎪=+⎩将其代入平面方程得13t=. 故垂足为485(,,)333,且与点(1,2,1)的距离为1d ==即为点到平面的距离.56.建立以点(1,3,-2)为中心,且通过坐标原点的球面方程.解:球的半径为R ==设(x ,y ,z )为球面上任一点,则(x -1)2+(y -3)2+(z +2)2=14 即x 2+y 2+z 2-2x -6y +4z =0为所求球面方程.57.一动点离点(2,0,-3)的距离与离点(4,-6,6)的距离之比为3,求此动点的轨迹方程.解:设该动点为M (x ,y ,z ) 3.=化简得:8x 2+8y 2+8z 2-68x +108y -114z +779=0 即为动点的轨迹方程.58.指出下列方程所表示的是什么曲面,并画出其图形:(1)22()()22a a x y -+=;(2)22149x y -+=; (3)22194x z +=;(4)20y z -=; (5)220x y -=;(6)220x y +=.解:(1)母线平行于z 轴的抛物柱面,如图7-7. (2)母线平行于z 轴的双曲柱面,如图7-8.图7-7图7-8(3)母线平行于y 轴的椭圆柱面,如图7-9. (4)母线平行于x 轴的抛物柱面,如图7-10.图7-9图7-10(5)母线平行于z 轴的两平面,如图7-11. (6)z 轴,如图7-12.图7-11图7-1259.指出下列方程表示怎样的曲面,并作出图形:(1)222149y z x ++=;(2)22369436x y z +-=; (3)222149y z x --=;(4)2221149y z x +-=; (5)22209z x y +-=. 解:(1)半轴分别为1,2,3的椭球面,如图7-13. (2)顶点在(0,0,-9)的椭圆抛物面,如图7-14.图7-13图7-14(3)以x 轴为中心轴的双叶双曲面,如图7-15. (4)单叶双曲面,如图7-16.图7-15图7-16(5)顶点在坐标原点的圆锥面,其中心轴是z 轴,如图7-17.图7-1760.作出下列曲面所围成的立体的图形:(1)x 2+y 2+z 2=a 2与z =0,z =2a(a >0);(2)x +y +z =4,x =0,x =1,y =0,y =2及z =0; (3)z =4-x 2,x =0,y =0,z =0及2x +y =4;(4)z =6-(x 2+y 2),x =0,y =0,z =0及x +y =1. 解:(1)(2)(3)(4)分别如图7-18,7-19,7-20,7-21所示.图7-18图7-19 图7-20图7-2161.求下列曲面和直线的交点:(1)222181369x y z ++=与342364x y z --+==-; (2)22211694x y z +-=与2434x y z +==-. 解:(1)直线的参数方程为 代入曲面方程解得t =0,t =1.得交点坐标为(3,4,-2),(6,-2,2). (2)直线的参数方程为 代入曲面方程可解得t =1, 得交点坐标为(4,-3,2).62.设有一圆,它的中心在z 轴上,半径为3,且位于距离xOy 平面5个单位的平面上,试建立这个圆的方程.解:设(x ,y ,z )为圆上任一点,依题意有 即为所求圆的方程.63.试考察曲面22219254x y z -+=在下列各平面上的截痕的形状,并写出其方程. (1)平面x =2;(2)平面y =0; (3)平面y =5;(4)平面z =2.解:(1)截线方程为2212x ⎧=⎪⎪⎨⎪⎪=⎩ 其形状为x =2平面上的双曲线.(2)截线方程为221940x z y ⎧+=⎪⎨⎪=⎩为xOz 面上的一个椭圆.(3)截线方程为2215y ⎧+==⎩为平面y =5上的一个椭圆.(4)截线方程为2209252x y z ⎧-=⎪⎨⎪=⎩为平面z =2上的两条直线.64.求曲线x 2+y 2+z 2=a 2,x 2+y 2=z 2在xOy 面上的投影曲线. 解:以曲线为准线,母线平行于z 轴的柱面方程为故曲线在xOy 面上的投影曲线方程为22220a x y z ⎧+=⎪⎨⎪=⎩65.建立曲线x 2+y 2=z ,z =x +1在xOy 平面上的投影方程. 解:以曲线为准线,母线平行于z 轴的柱面方程为x 2+y 2=x +1即2215()24x y -+=. 故曲线在xOy 平面上的投影方程为2215()240x y z ⎧-+=⎪⎨⎪=⎩习题八1.判断下列平面点集哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点集和边界: (1){(x ,y )|x ≠0}; (2){(x ,y )|1≤x 2+y 2<4}; (3){(x ,y )|y <x 2};(4){(x ,y )|(x -1)2+y 2≤1}∪{(x ,y )|(x +1)2+y 2≤1}.解:(1)开集、无界集,聚点集:R 2,边界:{(x ,y )|x =0}. (2)既非开集又非闭集,有界集, 聚点集:{(x ,y )|1≤x 2+y 2≤4}, 边界:{(x ,y )|x 2+y 2=1}∪{(x ,y )|x 2+y 2=4}. (3)开集、区域、无界集, 聚点集:{(x ,y )|y ≤x 2}, 边界:{(x ,y )|y =x 2}.(4)闭集、有界集,聚点集即是其本身, 边界:{(x ,y )|(x -1)2+y 2=1}∪{(x ,y )|(x +1)2+y 2=1}. 2.已知f (x ,y )=x 2+y 2-xy tanxy,试求(,)f tx ty .解:222(,)()()tan(,).tx f tx ty tx ty tx ty t f x y ty=+-⋅= 3.已知(,,)w u vf u v w u w+=+,试求(,,).f x y x y xy +-解:f (x +y ,x -y ,xy )=(x +y )xy +(xy )x +y +x -y =(x +y )xy +(xy )2x . 4.求下列各函数的定义域:解:2(1){(,)|210}.D x y y x =-+> 5.求下列各极限: 解:(1)原式0ln 2.=(2)原式=+∞. (3)原式=01.4x y →→=-(4)原式=002.x y →→=(5)原式=00sin lim100.x y xyy xy →→⋅=⨯=(6)原式=22222222222()00001()2lim lim 0.()e 2ex y x y x x y y x y x y x y ++→→→→++==+6.判断下列函数在原点O (0,0)处是否连续:(3)222222222,0,(2)()0,0;x y x y z x y x y x y ⎧+≠⎪=+-⎨⎪+=⎩解:(1)由于3333333322223333sin()sin()sin()0()x y x y x y x y y x x y x y x y x y++++≤=≤+⋅++++ 又00lim()0x y y x →→+=,且3333000sin()sin lim lim 1x u y x y ux y u →→→+==+, 故0lim 0(0,0)x y zz →→==.故函数在O (0,0)处连续. (2)000sin lim lim1(0,0)0x u y uzz u→→→==≠=故O (0,0)是z 的间断点.(3)若P (x ,y )沿直线y =x 趋于(0,0)点,则2222000lim lim 10x x y x x x z x x →→=→⋅==⋅+, 若点P (x ,y )沿直线y =-x 趋于(0,0)点,则 故00lim x y z →→不存在.故函数z 在O (0,0)处不连续.7.指出下列函数在向外间断:(1)f (x ,y )=233x y x y -+;(2)f (x ,y )=2222y xy x+-;(3)f (x ,y )=ln(1-x 2-y 2);(4)f (x ,y )=222e ,0,0,0.x y x y yy -⎧⎪≠⎨⎪=⎩解:(1)因为当y =-x 时,函数无定义,所以函数在直线y =-x 上的所有点处间断,而在其余点处均连续. (2)因为当y 2=2x 时,函数无定义,所以函数在抛物线y 2=2x 上的所有点处间断.而在其余各点处均连续. (3)因为当x 2+y 2=1时,函数无定义,所以函数在圆周x 2+y 2=1上所有点处间断.而在其余各点处均连续. (4)因为点P (x ,y )沿直线y =x 趋于O (0,0)时.1200lim (,)lime x x y x xf x y x-→→=→==∞. 故(0,0)是函数的间断点,而在其余各点处均连续. 8.求下列函数的偏导数:(1)z =x 2y +2xy;(2)s =22u v uv+;(3)z =x;(4)z =lntan x y; (5)z =(1+xy )y ; (6)u =z xy ;(7)u =arctan(x -y )z; (8)y zu x =.解:(1)223122,.z z x xy x x y y y∂∂=+=-∂∂ (2)u v s v u =+2211,.s v s u u v u v v u∂∂=-=-+∂∂(3)2222212ln(),2z x x x x y x x y ∂==++∂+(4)21122sec csc ,tan z x x x x y y y yy∂=⋅⋅=∂ (5)两边取对数得ln ln(1)z y xy =+故[]221(1)(1)(1).ln(1)1y y y x z y xy xy y xy y xy x xy-∂'=+⋅=+⋅=++∂+ (6)1ln ln xy xy xy u u uz z y z z x xy z x y z-∂∂∂=⋅⋅=⋅⋅=⋅∂∂∂ (7)11221()().1[()]1()z z z z u z x y z x y x x y x y --∂-=⋅-=∂+-+- (8)1.yz u y x x z-∂=∂ 9.已知22x y u x y =+,求证:3u uxy u x y ∂∂+=∂∂. 证明:222223222()2()()u xy x y x y x y xy x x y x y ∂+-+==∂++. 由对称性知22322()u x y yx y x y ∂+=∂+. 于是2223()3()u u x y x y x y u x y x y ∂∂++==∂∂+. 10.设11ex y z ⎛⎫+- ⎪⎝⎭=,求证:222z z xy z x y∂∂+=∂∂. 证明:11112211e e x y x y z x x x ⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭∂⎡⎤⎛⎫=-=- ⎪⎢⎥∂⎝⎭⎣⎦, 由z 关于x ,y 的对称性得故11111122222211e e 2e 2.x y x y x y z z x y x y z x y x y⎛⎫⎛⎫⎛⎫+++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∂∂+⋅=⋅+⋅==∂∂11.设f (x ,y )=x +(yf x (x ,1).解:1(,)1(x f x y y y =+- 则(,1)101x f x =+=.12.求曲线2244x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与正向x 轴所成的倾角.解:(2,4,5)1,1,2z z x x x ∂∂==∂∂ 设切线与正向x 轴的倾角为α, 则tan α=1.故α=π4. 13.求下列函数的二阶偏导数: (1)z =x 4+y 4-4x 2y 2; (2)z =arctany x; (3)z =y x;(4)z =2exy+.解:(1)2322224812816z z z x xy x y xy x x x y∂∂∂=-=-=-∂∂∂∂ ,, 由x ,y 的对称性知 (2)222211z y y xx y x y x ∂⎛⎫=⋅=-- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭, (3)222ln ,ln ,xx z z y y y y x x∂∂==∂∂ (4)22e 2,e ,x y x y z zx x y++∂∂=⋅=∂∂ 14.设f (x ,y ,z )=xy 2+yz 2+zx 2,求(0,0,1),(0,1,0),(2,0,1).xx yz zzx f f f - 解:2(,,)2x f x y z y zx=+15.设z =x ln(xy ),求32z x y ∂∂∂及32zx y ∂∂∂.解:ln()1ln(),z yx xy xy x xy∂=⋅+=+∂ 16.求下列函数的全微分: (1)22ex y z +=;(2)z =;(3)zy u x=;(4)yzu x =.解:(1)∵2222e 2,e 2x y x y z zx y x y++∂∂=⋅=⋅∂∂ ∴222222d 2e d 2e d 2e (d d )x y xy xy z x x y y x x y y +++=+=+(2)∵22223/21()z xy y x y x x y ∂⎛⎫-=⋅=- ⎪+∂+⎝⎭ ∴223/2d (d d ).()xz y x x y x y =--+ (3)∵11,ln z z z y y z u u y x x x zy x y--∂∂==⋅⋅∂∂ ∴211d d ln d ln ln d .z z zy y z y z u y x x x x zy y x x y y z --=+⋅+⋅⋅⋅(4)∵1yzu y x x z-∂=∂ ∴121d d ln d ln d .y y yz z z y y u x x x x y x x z z z z -⎛⎫=+⋅⋅+⋅⋅- ⎪⎝⎭17.求下列函数在给定点和自变量增量的条件下的全增量和全微分: (1)222,2,1,0.2,0.1;z x xy y x y x y =-+==-∆=∆=- (2)e ,1,1,0.15,0.1.xy z x y x y ===∆=∆=解:(1)22()()()2()9.688 1.68z x x x x y y y y z ∆=+∆-+∆+∆++∆-=-= (2)()()0.265ee e(e 1)0.30e.x x y y xy z +∆+∆∆=-=-=18.利用全微分代替全增量,近似计算:(1)(1.02)3·(0.97)2; (3)(1.97)1.05.解:(1)设f (x ,y )=x 3·y 2,则故d f (x ,y )=3x 2y 2d x +2x 3y d y =xy (3xy d x +2x 2d y ) 取x =1,y =1,d x =0.02,d y =-0.03,则(1.02)3·(0.97)2=f (1.02,0.97)≈f (1,1)+d f (1,1)d 0.02d 0.03x y ==-=13×12+1×1[3×1×1×0.02+2×12×(-0.03)]=1.(2)设f (x ,y 则故d (,)d d )f x y x x y y =+取4,3,d 0.05,d 0.07x y x y ====-,则 (3)设f (x ,y )=x y ,则d f (x ,y )=yx y -1d x +x y ln x d y , 取x =2,y =1,d x =-0.03,d y =0.05,则19.矩型一边长a =10cm ,另一边长b =24cm,当a 边增加4mm ,而b 边缩小1mm 时,求对角线长的变化.解:设矩形对角线长为l ,则 当x =10,y =24,d x =0.4,d y =-0.1时,d 0.4240.1)0.062l =⨯-⨯=(cm)故矩形的对角线长约增加0.062cm. 20.解:因为圆锥体的体积为21.3V r h π=⋅ 而221.33V V V dV r h yh r r h r h ππ∂∂≈=⋅+⋅=⋅+⋅∂∂0030,0.1,60,0.5r r h h ====-时,21.解:设水池的长宽深分别为,,x y z 则有:V xyz = 精确值为: 近似值为:22.求下列复合函数的偏导数或全导数:(1)22,cos ,sin ,z x y xy x u v y u v =-==求z u ∂∂,z v∂∂; (2)z =arc tan xy,x =u +v ,y =u -v ,求z u ∂∂,z v∂∂;(3)ln(e e )x y u =+,y =x 3,求d d u x; (4)u =x 2+y 2+z 2,x =e cos t t ,y =e sin t t ,z =e t ,求d d u t. 解:(1) (2)222222211111x z z x z y y x v y u x u y uyx y u v x x y y ∂∂∂∂∂--⎛⎫-=⋅+⋅=⋅+⋅== ⎪∂∂∂∂∂++⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭(3)33222d d d 11e 3e e 3e e e 3.d d d e e e e e e e exyxx x y x y x y x y x x u u x u y x x x x x x y x ∂∂++=⋅+⋅=⋅+⋅⋅==∂∂++++ (4)d d d d d d d d u u x u y u z t x t y t z t∂∂∂=⋅+⋅+⋅∂∂∂ 22(e cos e sin )2(e sin e cos )2e 4e t t t t t t x t t y t t z =-+++⋅=.23.设f 具有一阶连续偏导数,试求下列函数的一阶偏导数: (1)22(,e );xyu f x y =- (2),;x y uf y z ⎛⎫= ⎪⎝⎭(3)().,,u f x xy xyz = 解:(1)12122e 2e .xy xy uf x f y xf y f x∂''''=⋅+⋅⋅=+∂ (2)1111u f f x y y∂''=⋅=∂ (3)1231231,uf f y f yz f yf yzf x∂''''''=⋅+⋅+⋅=++∂ 24.设(),,()yz xy xF u u F u x=+=为可导函数,证明:证明:2()()()()z y y y xF u F u F u y F u x x x ∂⎛⎫''=+⋅+=+-- ⎪∂⎝⎭故 25.设22()yz f x y =-,其中f (u )为可导函数,验证:211z z zx x y y y∂∂+=∂∂. 证明:∵2222z yf x xyf x f f ''∂⋅=-=-∂,222(2)2z f y f y f y f y f f ''∂-⋅⋅-+==∂, ∴22222112211z z yf f y f y zx x y y f yf yf f y y ''∂∂++=-+==⋅=∂∂⋅ 26.22()z f x y =+,其中f 具有二阶导数,求22222,,.z z zx x y y ∂∂∂∂∂∂∂ 解:2,2,z zxf yf x y∂∂''==∂∂ 由对称性知,22224.z f y f y∂'''=+∂27.设f 具有二阶偏导函数,求下列函数的二阶偏导数: (1),;x x zf y ⎛⎫= ⎪⎝⎭(2)()22;,z f xy x y =(3)().sin ,cos ,e x y z f x y +=解:(1)1212111,z f f f f x y y∂''''=⋅+⋅=+∂ 2212211121112222221222122222222222222222223211121,1111,,2z f f f f f f f y x y y y yx x z x f f f f f f y y y x y y y y yx z x f f y y y z x x f f y y y ∂⎛⎫''''''''''''''+⋅=+⋅+=+⋅+ ⎪∂⎝⎭∂⎛⎫⎛⎫⎛⎫''''''''''--+=⋅-+⋅=-- ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭∂⎛⎫''-==- ⎪∂⎝⎭∂''=-∂22222342.x x x f f y yy ⎛⎫''''-⋅=+ ⎪⎝⎭,(2)22121222,zf y f xy y f xyf x ∂''''=⋅+⋅=+∂ (3)1313cos e cos e ,x y x y zf x f xf f x++∂''''=⋅+⋅=+∂()()1321113313322()311113332312133233sin cos e e cos e cos e e sin cos 2e cos e ,cos e e (sin )e (sin )x y x y x y x y x y x y x y x y x y x y z xf x f f x f f x f x f xf xf xf f z x f f y f f y f x y++++++++++∂''''''''''=-+++⋅+⋅+⋅∂''''''''=-+++∂'⎡⎤''''''=++⋅⋅-+⋅⋅-+⎣⎦∂∂2()3121332332323223222233233e e cos sin e cos e sin e ,(sin )e sin e ,cos sin e e (sin )e (sin )e x y x y x y x y x y x y x y x y x y x y x y f x yf xf yf f zf y f yf f yz yf y f f y f f y f y+++++++++++⎡⎤''⋅⎣⎦'''''''''=-+-+∂''''=-+=-+∂∂''⎡⎤⎡''''''''=--++-+⋅-+⋅⎣⎦∂22()32222333e cos sin 2e sin e .x y x y x y f yf yf yf f +++⎤⎣⎦''''''''=-+-+28.试证:利用变量替换1,3x y x y ξη=-=-,可将方程化简为20uξη∂=∂∂. 证明:设1(,),3u f f x y x y ξη⎛⎫==-- ⎪⎝⎭2222222222222222222222221411(1)(1)3333u u u u ux x x u u u u u u u ux x x x x u u u uuu u x y ξηξηξηξηξηξξηηξηξξηηξξηηξηξξη∂∂∂∂∂∂∂=⋅+⋅=+∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=⋅+⋅+⋅+⋅=++∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂⎛⎫⎛⎫=+⋅-+⋅+⋅-=----- ⎪ ⎪∂∂∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭22u η∂∂222222222222222222222222211(1)33111211(1)(1)33933343142433u u u u u y u u u uuu u u y u u u x x y yu u u u ξηξηξξηηξηξξηηξξηηξ∂∂∂∂∂⎛⎫=⋅+⋅-=--- ⎪∂∂∂∂∂⎝⎭∂∂∂∂∂∂∂∂⎛⎫⎛⎫=-⋅-⋅--⋅-⋅-=++-- ⎪ ⎪∂∂∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭∂∂∂++∂∂∂∂∂∂∂∂∂=+++--∂∂∂∂∂2222222221239340.3u u u u u u ξηηξξηηξη⎛⎫⎛⎫∂∂∂∂+-++ ⎪ ⎪∂∂∂∂∂∂∂⎝⎭⎝⎭∂=-=∂∂故20.uξη∂=∂∂29.求下列隐函数的导数或偏导数:(1)2sin e 0xy xy +-=,求d d y x ;(2)ln arctan y x =,求d d y x;(3)20x y z ++-=,求,z zx y∂∂∂∂; (4)333z xyz a -=,求22,z z x y∂∂∂∂. 解:(1)[解法1]用隐函数求导公式,设F (x ,y )=sin y +e x -xy 2, 则2e ,cos 2,x xy F y F y xy =-=-故22d e e d cos 2cos 2x xx y F y y y x F y xy y xy--=-=-=--. [解法2]方程两边对x 求导,得故2e .cos 2xy y y xy-'=- (2)设()221(,)arctanln arctan ,2y y F x y x y x x==-+ ∵222222121,21xxx y y F x y x y x y x +⎛⎫=-⋅=- ⎪++⎝⎭⎛⎫+ ⎪⎝⎭∴d .d x y F y x y x F x y+=-=- (3)方程两边求全微分,得则d ,zx y =+故z z x y ∂∂==∂∂ (4)设33(,,)3F x y z z xyz a =--,则223,33x z F z yz yz x F z xy z xy∂-=-=-=∂-- 30.设F (x ,y ,z )=0可以确定函数x =x (y ,z ),y =y (x ,z ),z =z (x ,y ),证明:1x y zy z x∂∂∂⋅⋅=-∂∂∂.证明:∵,,,y x z x y zF F F x y zy F z F x F ∂∂∂=-=-=-∂∂∂ ∴ 1.y z x y z x F F F x y z F F F y z x ⎛⎫⎛⎫∂∂∂⎛⎫---⋅⋅=⋅⋅=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭31.设11,0F y z x y ⎛⎫++= ⎪⎝⎭确定了函数z =z (x ,y ),其中F 可微,求,z z x y ∂∂∂∂.解:12122110x F F F F x x ⎛⎫'''=⋅+⋅=--⎪⎝⎭32.求由下列方程组所确定的函数的导数或偏导数:(1)22222,2320,z x y x y z ⎧=+⎪⎨++=⎪⎩求:d d ,;d d y z x x(2)1,0,xu yv yu xv +=⎧⎨-=⎩求:,,,;u v u v x x y y ∂∂∂∂∂∂∂∂ (3)2(,),(,),u f ux v y v g u x v y =+⎧⎨=-⎩其中f ,g 具有连续偏导数函数,求,;u vx x ∂∂∂∂ (4)e sin ,e cos ,uux u v y u v ⎧=+⎪⎨=-⎪⎩求,,,.u u v vx y x y∂∂∂∂∂∂∂∂ 解:(1)原方程组变为 方程两边对x 求导,得 当2162023y Jyz y y z-==+≠(2)设(,,,)1,(,,,),F x y u v xu yv G x y u v yu xv =+-=-故22x vx v F F u yG G v x uux yv x J J x y--∂-+=-=-=∂+ (3)设(,,,)(,),F u v x y f ux v y u =+-则121221121(1)(21),21u v uvF F xf f J xf yvg f gG G g vyg ''-''''===---''-故12121221122121(21),(1)(21)x v xvuf f F F G G g yvg uf yvg f g u xJJ xf yvg f g ''''''''-----∂=-=-=∂''''---(4)(,),(,)u u x y v v x y ==是已知函数的反函数,方程组两边对x 求导,得整理得(e sin )cos 1,(e cos )sin 0,uu u v v u v x xu v v u v x x ∂∂⎧++=⎪⎪∂∂⎨∂∂⎪-+=⎪∂∂⎩解得sin e (sin cos )1u u v x v v ∂=∂-+ 方程组两边对y 求导得整理得(e sin )cos 0(e cos )sin 1uu u v v u v y y u v v u v y y ∂∂⎧++=⎪∂∂⎪⎨∂∂⎪-+=⎪∂∂⎩解得cos sin ,.e (sin cos )[e (sin cos )1]u u u u v v v e y v v y u v v ∂-∂+==∂-∂-+ 33.设e cos ,e sin ,uux v y v z uv ===,试求,.z zx y∂∂∂∂ 解:由方程组e cos e sin uux vy v⎧=⎪⎨=⎪⎩可确定反函数(,),(,)u u x y v v x y ==,方程组两边对x 求导,得解得cos sin ,e e u u u v v v x x ∂∂==-∂∂ 所以cos sin e uz u v v v u v v u x x x ∂∂∂-=+=∂∂∂ 方程组两边对y 求导,得 解得sin cos ,e e u u u v v v x y ∂∂==∂∂ 所以sin cos eu z u v v v u v v u y y y ∂∂∂+=+=∂∂∂. *34.求函数322(,)51054f x y x x xy y x y =--+++-在(2,-1)点的泰勒公式.解:(2,1)2f -= 故*35.将函数(,)xf x y y =在(1,1)点展到泰勒公式的二次项. 解:(1,1)1,f =习题九1.求下曲线在给定点的切线和法平面方程: (1)x =a sin 2t ,y =b sin t cos t ,z =c cos 2t ,点π4t=; (2)x 2+y 2+z 2=6,x +y +z =0,点M 0(1,-2,1); (3)y 2=2mx ,z 2=m -x ,点M 0(x 0,y 0,z 0).解:2sin cos ,cos 2,2cos sin x a t t y b t z c t t '''===-曲线在点π4t=的切向量为 当π4t =时,,,222a b c x y z ===切线方程为2220a b cx y z a c---==-. 法平面方程为即22022a c ax cz --+=. (2)联立方程组它确定了函数y =y (x ),z =z (x ),方程组两边对x 求导,得 解得d d ,,d d y z x z x y x y z x y z--==-- 在点M 0(1,-2,1)处,00d d 0,1d d M M y zx x ==- 所以切向量为{1,0,-1}. 故切线方程为 法平面方程为1(x -1)+0(y +2)-1(z -1)=0即x -z =0.(3)将方程y 2=2mx ,z 2=m -x 两边分别对x 求导,得于是d d 1,d d 2y m z x y x z==- 曲线在点(x 0,y 0,z 0)处的切向量为0011,,2my z ⎧⎫-⎨⎬⎩⎭,故切线方程为 法平面方程为000001()()()02m x x y y z z y z -+---=. 2.t (0<t <2π)为何值时,曲线L :x =t -sin t ,y =1-cos t ,z =4sin2t在相应点的切线垂直于平面0x y +=,并求相应的切线和法平面方程。
数值分析练习题一、数值逼近1.1 利用泰勒公式求函数f(x) = e^x在x=0处的二阶近似表达式。
1.2 给定函数f(x) = sin(x),在区间[0, π]上,用插值法求三次多项式插值函数。
1.3 设已知点(0, 1),(1, 2),(2, 5),(3, 10),求通过这四个点的拉格朗日插值多项式。
x: 0, 1, 2, 3, 4y: 1, 3, 7, 11, 171.5 对于函数f(x) = e^(x^2),在区间[1, 1]上,求最佳平方逼近多项式。
二、数值积分与数值微分2.1 利用梯形公式计算定积分I = ∫(0, 1) e^x dx。
2.2 给定函数f(x) = x^3 3x,使用辛普森公式计算定积分I =∫(0, 2) f(x) dx。
2.3 对函数f(x) = 1/(1+x^2),在区间[5, 5]上,使用高斯勒让德求积公式计算定积分。
2.4 利用数值微分公式求函数f(x) = sin(x)在x=π/4处的导数。
2.5 给定数据点(x, y),其中x = 0, 1, 2, 3, 4, y = 1, 3, 7, 11, 17,求y在x=2处的导数。
三、常微分方程数值解法3.1 用欧拉法求解初值问题y' = x + y,y(0) = 1,步长h=0.1,计算y(0.5)的近似值。
3.2 对于初值问题y' = y + x^2,y(0) = 1,使用改进的欧拉法(梯形法)求解y(1)。
3.3 利用龙格库塔方法求解初值问题y' = 2xy,y(0) = 1,计算y(0.5)的近似值。
3.4 给定边值问题y'' + 4y = 0,y(0) = 0,y(π) = 1,使用有限差分法求解。
四、线性方程组数值解法4.1 利用高斯消元法求解线性方程组:3x + 4y z = 72x 3y + 5z = 8x + 2y + 3z = 35x + 2y z = 102x 6y + 3z = 4x + 0.5y + 4z = 74.3 给定矩阵A,使用共轭梯度法求解线性方程组Ax = b,其中:A = [[4, 1, 0], [1, 4, 1], [0, 1, 4]]b = [12, 9, 3]A = [[2, 1, 0], [1, 2, 1], [0, 1, 2]]b = [1, 0, 1]五、非线性方程数值解法5.1 使用二分法求解方程f(x) = x^3 2x 5 = 0在区间[2, 3]内的根。
习题一1.用3位数字计算出方程:的解x,y,再用6位数字计算出x与y,已知正确解为练习练习x=1,y=-1,计算结果说明什么?解:用3位浮点计算:,即得:,解得:用6位浮点计算:,即得:,解得:此例说明,在计算过程中,选取有效数字位数越多,相对误差越小,计算结果越精确。
11.将(2,4,-2,2)中的数全部列出来,且在实轴上表示出来,问总共有多少?解:(2,4,-2,2)系统中的所有正数为:共有个,再加上中的80个负数以及0,故共有161个。
15.求的误差分析。
解:其中。
16.有误差,,问的传播误差是多少?解:因为若,则,又由于:,则:当时,,当时,,当时,。
14.假设有一种算法,求可得到6位有效数字,问为了使有4位有效数字,应取几位有效数字?解:因为其中:为取近似值时的相对误差,为求开方运算的相对误差,由题设和定理1知所以:若,即对取6位有效数字时,有4位有效数字(由定理1)。
10.都是中的数,试给出的向前误差分析和向后误差分析。
解:(1)由定理5,向前误差分析为其中,。
(2)向后误差分析,仍由定理5其中:。
第二章函数的插值1.下列函数表(表18)中的数字都是有效数字。
(1)通过ctgx的函数表,进行插值,求ctg(0.0015),并估计误差;解:先作差分表:取:又由:所以误差为:2.给定的函数值如表19所示,用3种途径求3次插值多项式。
解:(1)用牛顿方法。
先作差商表:所以:(2)用Lagrange 方法化简得:(3)用内维尔方法再由:得:3.给定的函数值如表20所示,求解:先作差商表:即:故:4.求,利用,取节点作插值,并估计截断误差。
解:先作差商表:所以,。
故:其截断误差:由于,所以5.证明:在两个节点:上作线性插值,当时,余项为证:因为其中:6.若是小量,则三个函数值应怎样线性组合,才能得到较好的的近似值。
解:由于所以:,即:。
7.证明。
证:设,则11.用拉格朗日途径导出如下的次埃尔米特插值,满足:。
课程编号:A071001复旦大学2017-2018学年第二学期2017级数值分析期末试题(A)一.解下列各题(每小题6分)1.设直线nz y a x L 2112:-=+=-在平面0823:=-+-z y x π上,求a 与n 的值.2.设)((22y x x y xf z ++=ϕ,其中ϕ,f 二阶可导,求yx z ∂∂∂2.3.设D 是由直线x y =,x y 2=,1=y 所围成的均匀薄片(面密度为1),求D 对于y 轴的转动惯量.4.设有级数∑∞=-11sin1)1(n p nnn ,指出p 在什么范围内取值时级数绝对收敛,p 在什么范围内取值时级数条件收敛,p 在什么范围内取值时级数发散(要说明理由).二.解下列各题(每小题7分)1.已知n 是曲面522222=++z y x 在点)2,1,1(处指向x 增大方向的单位法向量,)1ln(22z y e u x +++=,求)1,1,0(nu∂∂.2.设S 是球面4222=++z y x 位于平面1=z 上方的部分,计算曲面积分⎰⎰=SdS z I 1.3.计算⎰⎰⎰Ω+=dV y x I 22,其中Ω是球面z z y x 2222=++所围成的立体.4.求二元函数xy y x z 223-+=的极值点与极值.三.(8分)设x x f 2)(-=π,ππ≤≤-x ,将)(x f 展开成以π2为周期的傅里叶级数.四.(8分)求幂级数∑∞=-13)1(n n nn x 的收敛域与和函数.五.(8分)计算第二类曲面积分⎰⎰-+=Sdxdy z yzdzdx xzdydz I 22,其中S 是曲面22y x z +=)10(≤≤z 的上侧.六.(8分)将)25ln()(x x f -=展开成1-x 的幂级数,确定其收敛域,并求)1()5(f 的值.七.(10分)设)(x ϕ是),(+∞-∞内不取零值的可微函数,已知dy y x x dx y y x xy x ))((32)((2232++++ϕϕ是某二元函数),(y x u 的全微分.(1)求)(x ϕ满足的微分方程及)(x ϕ的表达式;(2)求),(y x u 的表达式.八.(6分)设0>t ,以)(t Ω表示由曲面22y x z +=与平面t z =围成的有界闭区域.已知)(x f 在),0[+∞内连续,又设⎰⎰⎰+=)(22)()(t dxdydz y x f t F Ω.(1)求证:)(t F 在),0(+∞内连可导,并求)(t F '的表达式;(2)若0>∀t ,有⎰-=-tt dx x f e t F 0)()(1π,且1)0(=f ,试求)(x f 的表达式.2017级第二学期期末数值分析试题(A 卷)参考解答(2017.7)一.1.4}1,2,3{},1,2{=+=-⋅n n …………………………..(2分)4-=n …………………………..(3分)将点)2,1,(-a 代入平面方程得043=-a ….………………………..(5分)34=a .…………………………..(6分)2.)(2)()(22y x x x yf x y x y f x z +'+'-=∂∂ϕ…………………………..(3分))(4)(2222y x xy x yf xy y x z +''+''-=∂∂∂ϕ…………………………..(6分)3.⎰⎰=Dy dxdyx I 2…………………………..(2分)⎰⎰=yy dxx dy 2210…………………………..(4分)967247103==⎰dy y .…………………………..(6分)4.当21->P ,有nn p n 1sin 1)1(-~211+p n ,………………………..(1分)当21>P ,∑∞=+1211n p n收敛,原级数绝对收敛……………………..(2分)当2121≤<-P ,∑∞=+1211n p n发散,但当n 充分大时nn p1sin 1单调减少趋于0,原级数条件收敛…….……..(4分)当21-≤p ,01sin 1)1(lim ≠-∞→nn p p n ,级数发散……………………..(6分)二.1.曲面在点)2,1,1(处的法向量为}2,4,2{},4,2{)2,1,1(=z y x }61,62,61{=n …….………………..(2分)x e x u=∂∂2212z y y y u ++=∂∂2212z y z z u ++=∂∂……………………..(5分)在点)1,1,0(1=∂∂x u 32=∂∂y u 32=∂∂z u ……………………..(6分)6362326232611)1,1,0(=⋅+⋅+⋅=∂∂nu ………………………..(7分)2.⎰⎰⎰⋅=ϕππϕϕϕθcos 2022020sin sin dr r r d d I ..……………………..(3分)⎰=2042cos sin 8πϕϕϕπd …………………………..(6分)42π=..………………………..(7分)3.dxdyz dxdy z y z x dS 212222=++=…………………………..(2分)⎰⎰⎰⎰--=xyD S dxdy y x dS z 22421…………………………..(4分)⎰⎰-=3022042ρρρθπd d …………………………..(6分)4ln 2π=…………………………..(7分)4.0232=-=∂∂y x x z022=-=∂∂x y yz…………………………..(1分)解得0==y x 或32==y x …………………………..(3分)x x z622=∂∂22-=∂∂∂y x z222=∂∂y z在点)0,0(,,0=A 2-=B ,2=C 042<-=-B AC ,故)0,0(不是极值点…………………………..(5分)在点32,32(,,4=A 2-=B ,2=C 042>=-B AC ,且0>A ,故)32,32(是极小值点极小值274)32,32(-=z …………………………..(7分)三.)2(20=-=⎰πππdx x a …………………………..(2分)⎰-=πππ0cos )2(2nxdxx a n …………………………..(3分)π2))1(1(4n n --=…………………………..(5分)⎪⎩⎪⎨⎧-=-==12)12(8202k n k k n π∑∞=--=12)12cos()12(18)(n x n n x f π)(ππ≤≤-x ..…………………..(8分)或∑∞=--=12cos )1(14)(n nnx nx f π)(ππ≤≤-x ..…………………..(8分)四.令31-=x t ,得∑∞=1n nnt (1)…..…………………..(1分)11lim lim1=+=∞→+∞→n na a n nn n 1=t R 1-=t 时级数(1)收敛,1=t 时级数(1)发散级数(1)的收敛域为)1,1[-∈t ………………………..(3分)由1311<-≤-x 得原级数收敛域42<≤-x ………………………..(4分)∑∞==1)(n nnt t S tt t S n n -=='∑∞=-11)(11…………………………..(6分)t t S --=1ln )(…..……………………..(7分)311ln 3)1(1---=⋅-∑∞=x nx n nn ...………………………..(8分)五.⎰⎰⎰⎰---+-=+1122S S S dxdyz yzdzdx xzdydz I …………………………..(2分)⎰⎰⎰⎰⎰----=12S Vdxdyz zdV …………………………..(4分)⎰⎰⎰-=11020ρπρρθzdz d d ⎰⎰≤+-122y x dxdy….………………………..(6分)πππ454-=--=…………………………..(8分)六.))1(23ln()(--=x x f ))1(321ln(3ln --+=x ……………………..(2分)∑∞=----+=11))1(32()1(3ln n nn x n ∑∞=-⋅-+=1)1(323ln n nnn x n .………………………..(5分)由1)1(321≤--<-x ,得收敛域2521<≤-x ………………………..(7分)由55)5(352!5)1(⋅-=f,得!432()1(5)5(-=f.………………………..(8分)七.(1)由yXx Y ∂∂=∂∂,得)2)(()(2))((2222y x x x x x y x x ++=++'ϕϕϕ.……………………..(3分))()(x x ϕϕ='…………………………..(4分)dx x x d =)()(ϕϕxCe x =)(ϕ…………………………..(6分)(2)1),()0,0(2232)()32(),(C dy y x Ce dx y y x xy Ce y x u y x x x+++++=⎰……………..(7分)10220)(0C dy y x Ce dx yx x+++=⎰⎰…………………………..(9分)1323(C y y x Ce x++=…...……………………..(10分)八.(1)⎰⎰⎰=tt dzd f d t F 2220)()(ρπρρρθ⎰⎰-=t t d f d f t 03202)(2)(2ρρρπρρρπ………………………..(2分)ρρ)(2f 与32)(ρρf 连续,故⎰t d f 02)(ρρρ与⎰t d f 032)(ρρρ可导,因此)(t F 可导⎰='t d f t F 02)(2)(ρρρπ…………………………..(4分)(2)由⎰-=-ttdx x f e t F 0)()(1π对t 求导得)()(202t f e d f t t --=-⎰ρρρte tf t f -=+')()(…………………………..(5分)解得)()(C t e t f t +=-由1)0(=f ,得1=C )1()(+=-x e x f x …………………………..(6分)或(1)⎰⎰⎰=z td f d dz t F 0220)()(ρρρθπ⎰⎰=z t d f dz 020)(2ρρρπ…………………………..(2分)由于ρρ)(2f 连续,故⎰z d f 02)(ρρρ可导,因此)(t F 可导⎰='t d f t F 02)(2)(ρρρπ…………………………..(4分)(2)由⎰-=-t tdx x f e t F 0)()(1π对t 求导得)()(202t f e d f t t --=-⎰ρρρte tf t f -=+')()(…………………………..(5分)解得)()(C t e t f t +=-由1)0(=f ,得1=C )1()(+=-x e x f x …………………………..(6分)。
习题一1.用3位数字计算出方程:的解x,y,再用6位数字计算出x与y,已知正确解为练习练习x=1,y=-1,计算结果说明什么?解:用3位浮点计算:,即得:,解得:用6位浮点计算:,即得:,解得:此例说明,在计算过程中,选取有效数字位数越多,相对误差越小,计算结果越精确。
11.将(2,4,-2,2)中的数全部列出来,且在实轴上表示出来,问总共有多少?解:(2,4,-2,2)系统中的所有正数为:共有个,再加上中的80个负数以及0,故共有161个。
15.求的误差分析。
解:其中。
16.有误差,,问的传播误差是多少?解:因为若,则,又由于:,则:当时,,当时,,当时,。
14.假设有一种算法,求可得到6位有效数字,问为了使有4位有效数字,应取几位有效数字?解:因为其中:为取近似值时的相对误差,为求开方运算的相对误差,由题设和定理1知所以:若,即对取6位有效数字时,有4位有效数字(由定理1)。
10.都是中的数,试给出的向前误差分析和向后误差分析。
解:(1)由定理5,向前误差分析为其中,。
(2)向后误差分析,仍由定理5其中:。
第二章函数的插值1.下列函数表(表18)中的数字都是有效数字。
(1)通过ctgx的函数表,进行插值,求ctg(0.0015),并估计误差;解:先作差分表:取:又由:所以误差为:2.给定的函数值如表19所示,用3种途径求3次插值多项式。
解:(1)用牛顿方法。
先作差商表:所以:(2)用Lagrange 方法化简得:(3)用内维尔方法再由:得:3.给定的函数值如表20所示,求解:先作差商表:即:故:4.求,利用,取节点作插值,并估计截断误差。
解:先作差商表:所以,。
故:其截断误差:由于,所以5.证明:在两个节点:上作线性插值,当时,余项为证:因为其中:6.若是小量,则三个函数值应怎样线性组合,才能得到较好的的近似值。
解:由于所以:,即:。
7.证明。
证:设,则11.用拉格朗日途径导出如下的次埃尔米特插值,满足:。
解:先构造次数不高于的多项式满足下列2n个条件:满足上述条件的的多项式可以写成:其中A为待定系数,再由条件得:即:再构造次数不高于的多项式满足下列2n个条件:,令:它满足上述条件中除外的所有其他条件,于是再由所以,于是:于是所求的埃尔米特插值多项式为13.找一个5次Hermite多项式,满足解:由差商表:(略)14.证明(34)式成立,即证明证明:因为:17.解:因为,若是贝塞尔函数的反函数,为求的零点,只需求,下面用插值方法计算,先作差商表:于是根:或样条插值和曲线拟合2.,作4次多项式的等距插值,求,并比较与的差别,如果用分段插值,那么结果将如何?解:(1)先作差商表所以:,故:。
(2)若采用分段插值,则在上,,所以:,结果一样。
4.对在中用等距分段Hermite 3次插值,其余项是什么?解:若对在中用等距分段Hermite 3次插值,则在每个小区间上,由第二章定理8知:由于,所以在上,注意右端与无关,故在上,有:。
5.对函数,在区间上用等距线性插值、等距Hermite 3次插值、等距样条插值,问步长应取多少才能保证各自的截断误差小于?解:因为,所以,因此。
若在区间上用等距线性插值,则误差为:欲使,只须。
若在区间上用等距Hermite 3次插值,则误差为:欲使,只须若在区间上用等距样条插值,则由定理5,有:欲使,只须。
7.对,在上取5个等距节点,求3次自然样条插值。
解:取节点,作差商表:对于自然样条,,按公式(10)形成方程组:解得:。
由(9)式即得样条函数的表达式(略)。
11.对于3次样条函数,如果给定的条件是,如何给出边界条件使得唯一确定。
解:由于在上是3次多项式,故在上是1次多项式,而且满足,因此可表示为于是积分两次并利用(为未知量)可定出积分常数:事实上,积分两次后,记,再由可定出。
于是:即:若考虑在上,有两边的应相等,即:,整理并记,得:若给定边界条件,则形成方程组:该方程组的系数矩阵为严格对角占优矩阵,故唯一确定。
12.若是实轴上个由小到大排列的点,考虑一个上的函数,它在上是一个二次多项式,并且是已知值,又在内节点上连续,这样的称为二次样条插值。
试证这样的二次样条插值有很多,并问加上何种条件才能使它唯一,给出求的方程。
解:由于在每个小区间上,有3个待定系数,于是在上共有个待定系数,。
要满足的条件是:通过型值点:,共有个方程;的一阶导数连续,即共有个方程。
这样总共有个方程,而待定系数有个,于是可以有很多。
若要使它唯一确定,加上即可。
事实上:考虑在上是一个二次多项式,可以写成:,若记为未知量,则:,再由得,故,再由得:再由为已知,从而由,可求得,且由递推关系知是唯一确定的。
15.证明满足周期边界条件的3次样条插值函数也具有极小模性质,即:,其中是二阶导数连续函数,且,,。
证:设是二阶导数连续,且满足,,的任意一个函数,令,则。
由:得:故:。
证毕16.证明:贝齐尔曲线。
证:因17.对于贝齐尔曲线,若要求,问应是什么?解:由得:,即:,再由得:,解得:18.利用作图定理证明:。
证:利用数学归纳法。
当时:成立。
假设当时有:,则当时:故由数学归纳法知,对任意有:。
19.证明:。
证:因为:,两边求导得:故:。
最佳逼近1.若,试构造相应的Bernstain多项式。
解:作变换,则当时,,记:,则其Bernstain多项式为:再将代入上式即得在上的Bernstain多项式:4.假设,证明关于的最佳一致逼近多项式为:,其中:。
证明:因在上连续,故存在使:,。
(1)若,(2)则为常数,(3)显然就是在上的0次最佳一致逼近多项式。
(4)若则,(5)且记,(6)由于当,(7)于是:,(8)即,(9)又,(10) 9;,(11)即为误差曲线的两个正负相间的偏差点,(12)由契比雪夫定理知,(13) 9; 就是在上的0次最佳一致逼近多项式。
6.证明的最佳一致逼近次多项式就是在上的某个次拉格朗日插值多项式。
证明:(1)若,则的最佳一致逼近次多项式就是自身。
这时在上任取个不同的点,就可以看作以这个点为插值节点的关于自身的拉格朗日插值多项式。
(2)若,且是的最佳一致逼近次多项式,则由契比雪夫定理知,误差曲线在上有至少由个点组成的交错点组,从而由介值定理知在上至少有个零点,于是就是以这个零点为插值节点的次拉格朗日插值多项式。
7.假设是奇(偶)函数,问其最佳一致逼近多项式是否也是奇(偶)函数?解:回答是肯定的。
这里只证明当是偶函数时,相应的最佳一致逼近多项式也是偶函数。
事实上,由于是在上的最佳一致逼近多项式,则有:用代替,并注意到,也有:这说明也是在上的最佳一致逼近多项式,再由唯一性知:成立,说明是偶函数。
证毕8.求解在上的一次最佳一致逼近多项式。
解:因:,故由定理4的推论2知是契比雪夫交错点。
假设是在上的一次最佳一致逼近多项式,则,又若是另一个契比雪夫交错点,则由,再由得,所以在上的一次最佳一致逼近多项式为。
9.选取常数,使最小,又问这样的常数是否唯一?解:令,由,解得,再由,,所以,欲使最小,只需取,即解得。
11.证明第一类契比雪夫多项式具有如下性质:(1),(2)(3)(4)证明:(1)(2)(3)因,则因代入上式即得(4)同理因12.构造区间上的最小零偏差次代数多项式。
解:已知在[的最小零偏差次代数多项式为,即它是次首一多项式,且在[-1,1]上的个点处轮流取得其最大值与最小值。
对于区间,作变换,则当时,,以代入得,其首项系数为,于是是在上的次首一多项式,且在个点处轮流取得其最大值与最小值,故上的最小零偏差次代数多项式为。
14.试求在上关于的最佳一致逼近三角多项式,并求出最佳逼近值。
解:不妨设,则取,则误差曲线满足,且在区间上的个点:,处轮流取得其最大值与最小值,由于是以为周期的周期函数,故这一性质在上也成立。
因此的最佳一致逼近三角多项式为,最佳逼近值为。
当时,上述结论也成立。
15.假设是上的个互不相同的点,证明:对于任意向量,方程组有唯一解。
证明:原方程组的矩阵形式为:为证明上述方程组有唯一解,仅需证明对应的齐次方程组只有零解。
用反证法,假设对应的齐次方程组有非零解,由此令,于是对应的齐次方程组相当于,注意到已知且互不相同以及在中为奇函数,故,再加上,从而次三角多项式在中有个零点,这与引理3的性质6相矛盾。
于是原方程组有唯一解。
16.证明在区间上,。
证明:因在区间上,是在所有次首一多项式中,与零偏差最小的多项式,故以的零点:为插值节点,构造拉格朗日次插值多项式,则:,因为根据的取法有:,从而于是。
17.证明许瓦兹不等式,并借此证明内积范数满足范数的3条性质。
证:取,则故:。
并由内积的性质:推出:(1)且(2)(3)由于:所以:18.求在[0,1]上的一次最佳平方逼近多项式。
解:由于,则:,,,,,可得方程组:,解之得:。
故在[0,1]上的一次最佳平方逼近多项式为:。
19.若是秩为的矩阵,试求解问题:,其中:。
解:若记为矩阵A的第列向量,则由于A的秩为,故线性无关,且记,显然:,于是子空间V对的最佳平方逼近为:。
从而上述问题即为最小二乘问题,其解满足法方程组:,故所求问题的解为:。
20.若连续函数列在上带权正交,且恒正,证明:对任意个数,广义多项式在上至少有一个零点。
证明:用反证法。
若存在个数,使广义多项式在上没有零点,由于为连续函数,故在上恒正,或恒负。
不妨设,又由恒正,故。
但由于在上带权正交,故,这与上式矛盾。
因此,对任意个数,广义多项式在上至少有一个零点。
21.试写出勒让德多项式的前4项。
解:由递推公式:得:。
22.证明:第二类契比雪夫多项式在内积意义下正交。
问其规范正交系又怎样?证明:由于因此第二类契比雪夫多项式在内积意义下正交,且其规范正交系为:第五章数值积分1.若求积公式(2)具有m次代数精度,试证明对于任意次数不超过m的代数多项式,都有。
证明:因为对,都有,从而由的线性性质以及任意有:。
结论成立。
2.证明柯特斯系数满足。
证明:(1)由,令,则故(2)由于牛顿-柯特斯公式的代数精度,故对零次多项式,有,即,也就是,即,由得。
3.证明柯特斯系数满足方程组:证明:由于牛顿-柯特斯公式的代数精度,故在区间上使用牛顿-柯特斯公式对精确成立,即:,也就是:或,写成矩阵形式即为:4.证明,若不是整数,且,则;若不是整数,且,则。
证明:因为,所以:若不是整数,且时,有成立,所以:,于是。
再由:和得:。
同理当时,,两边再减有:,即,所以若不是整数,且时,。
证毕5.假设在上连续,。
证明:存在成立证明:因在上连续,故在上必取得最大值和最小值,即当时。
又若令,则由得:。
故由连续函数的介值定理知:必存在,使,即。
6.若用复化梯形公式求积分,则积分区间要多少等分才能保证计算结果有五位有效数字?解:欲使,其中,只须,即积分区间要68等分才能保证计算结果有五位有效数字。