总结数字推理十大规律1
- 格式:doc
- 大小:25.00 KB
- 文档页数:2
备考规律一:等差数列及其变式【例题】7,11,15,()A.19B.20C.22D.25【答案】A选项【解析】这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间也满足此规律,那么在此基础上对未知的一项进行推理,即15+4=19,第四项应该是19,即答案为A.(一)等差数列的变形一:【例题】7,11,16,22,()A.28B.29C.32D.33【答案】B选项【解析】这是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,这个规律是一种等差的规律。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是5;第四个与第三个数字之间的差值是6.假设第五个与第四个数字之间的差值是X,我们发现数值之间的差值分别为4,5,6,X.很明显数值之间的差值形成了一个新的等差数列,由此可以推出X=7,则第五个数为22+7=29.即答案为B选项。
(二)等差数列的变形二:【例题】7,11,13,14,()A.15B.14.5C.16D.17【答案】B选项【解析】这也是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种等比的规律。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是2;第四个与第三个数字之间的差值是1.假设第五个与第四个数字之间的差值是X.我们发现数值之间的差值分别为4,2,1,X.很明显数值之间的差值形成了一个新的等差数列,由此可以推出X=0.5,则第五个数为14+0.5=14.5.即答案为B选项。
(三)等差数列的变形三:【例题】7,11,6,12,()A.5B.4C.16D.15【答案】A选项【解析】这也是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号进行交叉变换的规律。
银行考试--十大数字推理规律备考规律一:等差数列及其变式【例题】7,11,15,()A 19B 20C 22D 25【答案】A选项【解析】这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间也满足此规律,那么在此基础上对未知的一项进行推理,即15+4=19,第四项应该是19,即答案为A。
(一)等差数列的变形一:【例题】7,11,16,22,()A.28B.29C.32D.33【答案】B选项【解析】这是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,这个规律是一种等差的规律。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是5;第四个与第三个数字之间的差值是6。
假设第五个与第四个数字之间的差值是X,我们发现数值之间的差值分别为4,5,6,X。
很明显数值之间的差值形成了一个新的等差数列,由此可以推出X=7,则第五个数为22+7=29。
即答案为B 选项。
(二)等差数列的变形二:【例题】7,11,13,14,()A.15B.14.5C.16D.17【答案】B选项【解析】这也是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种等比的规律。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是2;第四个与第三个数字之间的差值是1。
假设第五个与第四个数字之间的差值是X。
我们发现数值之间的差值分别为4,2,1,X。
很明显数值之间的差值形成了一个新的等差数列,由此可以推出X=0.5,则第五个数为14+0.5=14.5。
即答案为B选项。
(三)等差数列的变形三:【例题】7,11,6,12,()A.5B.4C.16D.15【答案】A选项【解析】这也是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号进行交叉变换的规律。
银行考试--十大数字推理规律备考规律一:等差数列及其变式【例题】7,11,15,(? )A 19????B 20 ????C 22 ???D 25【答案】A选项【解析】这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间也满足此规律,那么在此基础上对未知的一项进行推理,即15+4=19,第四项应该是19,即答案为A。
(一)等差数列的变形一:【例题】7,11,16,22,(? )A.28??? B.29???? C.32???? D.33【答案】B选项【解析】这是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,这个规律是一种等差的规律。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是5;第四个与第三个数字之间的差值是6。
假设第五个与第四个数字之间的差值是X,我们发现数值之间的差值分别为4,5,6,X。
很明显数值之间的差值形成了一个新的等差数列,由此可以推出X=7,则第五个数为22+7=29。
即答案为B 选项。
(二)等差数列的变形二:【例题】7,11,13,14,(? )A.15??? B.14.5???? C.16??? D.17【答案】B选项【解析】这也是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种等比的规律。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是2;第四个与第三个数字之间的差值是1。
假设第五个与第四个数字之间的差值是X。
我们发现数值之间的差值分别为4,2,1,X。
很明显数值之间的差值形成了一个新的等差数列,由此可以推出X=0.5,则第五个数为14+0.5=14.5。
即答案为B选项。
(三)等差数列的变形三:【例题】7,11,6,12,(? )A.5??? B.4???? C.16??? D.15【答案】A选项【解析】这也是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号进行交叉变换的规律。
一、行测考试十大数据推理规律:①奇偶数规律:各个数都是奇数(单数)或偶数(双数)。
②等差:相邻数之间的差值相等,整个数字序列依列递增或递减。
③等比:相邻数之间的比值相等,整个数字序列依次递增或递减。
④二级等差:相邻数之间的差或比构成了一个等差数列。
⑤二级等比数列:相邻数之间的差或比构成一个等比数列。
⑥加法规律:前两个数之和等于第三个数。
⑦减法规律:前两个数之差等于第三个数。
⑧乘法(除法)规律:前两个数之乘积(或相除)等于第三个数。
⑨完全平方数:数列中蕴含着一个完全平方数序列,或明显、或隐含。
⑩混合型规律:由以上基本规律组合而成,可以是二级、三级的基本规律,也可能是两个规律的数列交叉组合成一个数列。
二、经典题型分类练习:1.等差数列例1:1, 4, 7, 10, 13,( )A.14B.15C.16D.172.等差数列的变式例1:3, 4, 6, 9,( ),18A.11B.12C.13D.143.“两项之和等于第三项”型例1:34, 35, 69, 104, ( )A.138B.139C.173D.179例2:…101102203305508( )1321…A.812B.814C.813D. 8114.等比数列例1:3, 9, 27, 81, ( )A.433B.342C.243D.1355.等比数列的变式例1:8, 12, 24, 60, ( )A.90B.120C.180D.240例2:8, 14, 26, 50, ( )A.104B.100C. 98D. 76例3:1/2, 1, 7/5, 13/9, ( )A. 17/13B. 19/15C. 21/17D. 23/196.平方型及其变式例1:1, 4, 9, ( ), 25, 36A.10B.14C.16D.20例2:1/2, 1, 5/7, ( ), 9/32A. 5/11B.7/11C.7/16D.9/167.利用“凑整法”求解例1:52+136+38+64的值为:A. 300B. 292C. 290D. 280例2:12.5×0.25×0.5×32的值为:( )A. 50.25B. 100C. 50D. 258.利用“尾数估算法”求解例1:425+683+544+828的值是:A. 2484B. 2482C. 2480D. 2478例2:1997+1998+1999+2000+2001A. 9993B. 9994C. 9995D. 9996。
数字推理的十大规律数字推理是通过对数字、数字关系、数字规律等进行分析、推理来解决问题的一种思维方式。
数字推理可以应用于数学、逻辑、信息处理、统计学等领域。
在数字推理中,存在着一些常见的规律,通过了解这些规律,我们可以更好地进行数字推理。
下面是数字推理中的十大常见规律:1. 自然数规律自然数规律是最基本的数字规律之一。
自然数由1开始依次递增,其中包含了所有整数。
我们可以通过对自然数序列的观察,进一步推导出一些数学规律。
例如,自然数序列的平方数规律:1, 4, 9, 16, 25, ...,可以看出平方数是自然数序列的某种特殊规律。
2. 等差数列规律等差数列是一种特殊的数字序列,其中相邻的数字之间的差值是相等的。
等差数列常用于数学题目、数列的求和问题等。
例如,2, 5, 8, 11, 14, ...,可以看出每个数字都比前一个数字增加了3。
3. 等比数列规律等比数列是一种特殊的数字序列,其中相邻的数字之间的比值是相等的。
等比数列常用于数学问题中,比如指数增长、连续复利等。
例如,2, 6, 18, 54, ...,可以看出每个数字都是前一个数字乘以3。
4. 斐波那契数列规律斐波那契数列是一个非常特殊的数列,其中每个数字都是前两个数字之和。
斐波那契数列在自然界中广泛存在,如植物的叶子排列、兔子繁殖等。
例如,1, 1, 2, 3, 5, 8, 13, ...,可以看出每个数字都是前两个数字之和。
5. 奇偶数规律奇偶数规律是数字推理中的一种常见规律。
奇数是整数中不能被2整除的数,偶数则是能被2整除的数。
例如,1, 3, 5, 7, 9, ...是奇数序列;2, 4, 6, 8, 10, ...是偶数序列。
6. 质数规律质数是只能被1和自身整除的自然数。
质数规律在密码学、因数分解等领域有重要应用。
例如,2, 3, 5, 7, 11, ...,可以看出每个数字都是质数。
7. 素数规律素数是指除了1和本身外没有其他除数的数,素数可以是质数或者合数。
数字推理规律数字推理规律1.熟记各种数字的运算关系。
如各种数字的平⽅、⽴⽅以及它们的邻居,做到看到某个数字就有感觉。
这是迅速准确解好数字推理题材的前提。
常见的需记住的数字关系如下:(1)平⽅关系:2-4,3-9,4-16,5-25,6-36,7-49,8-64,9-81,10-100,11-12 1,12-14413-169,14-196,15-225,16-256,17-289,18-324,19 -361,20-400(2)⽴⽅关系:2-8,3-27,4-64,5-125,6-216,7-343,8-512,9-729,10-1000(3)质数关系:2,3,5,7,11,13,17,19,23,29......(4)开⽅关系:4-2,9-3,16-4......以上四种,特别是前两种关系,每次考试必有。
所以,对这些平⽅⽴⽅后的数字,及这些数字的邻居(如,64,63,65等)要有⾜够的敏感。
当看到这些数字时,⽴刻就能想到平⽅⽴⽅的可能性。
熟悉这些数字,对解题有很⼤的帮助,有时候,⼀个数字就能提供你⼀个正确的解题思路。
如216 ,125,64()如果上述关系烂熟于胸,⼀眼就可看出答案但⼀般考试题不会如此弱智,实际可能会这样215,124,63,()或是217,124,65,()即是以它们的邻居(加减1),这也不难,⼀般这种题5秒内搞定。
2.熟练掌握各种简单运算,⼀般加减乘除⼤家都会,值得注意的是带根号的运算。
根号运算掌握简单规律则可,也不难。
3.对中等难度以下的题,建议⼤家练习使⽤⼼算,可以节省不少时间,在考试时有很⼤效果。
⼆、规律按数字之间的关系,可将数字推理题分为以下⼗种类型:1.和差关系。
⼜分为等差、移动求和或差两种。
(1)等差关系。
这种题属于⽐较简单的,不经练习也能在短时间内做出。
建议解这种题时,⽤⼝算。
12,20,30,42,()127,112,97,82,()3,4,7,12,(),28(2)移动求和或差。
总结数字推理十大规律备考规律一:等差数列及其变式【例题】7,11,15,()A.19B.20C.22D.25【答案】A选项【解析】这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间也满足此规律,那么在此基础上对未知的一项进行推理,即15+4=19,第四项应该是19,即答案为A.(一)等差数列的变形一:【例题】7,11,16,22,()A.28B.29C.32D.33【答案】B选项【解析】这是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,这个规律是一种等差的规律。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是5;第四个与第三个数字之间的差值是6.假设第五个与第四个数字之间的差值是X,我们发现数值之间的差值分别为4,5,6,X.很明显数值之间的差值形成了一个新的等差数列,由此可以推出X=7,则第五个数为22+7=29.即答案为B选项。
(二)等差数列的变形二:【例题】7,11,13,14,()A.15B.14.5C.16D.17【答案】B选项【解析】这也是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种等比的规律。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是2;第四个与第三个数字之间的差值是1.假设第五个与第四个数字之间的差值是X.我们发现数值之间的差值分别为4,2,1,X.很明显数值之间的差值形成了一个新的等差数列,由此可以推出X=0.5,则第五个数为14+0.5=14.5.即答案为B选项。
(三)等差数列的变形三:【例题】7,11,6,12,()A.5B.4C.16D.15【答案】A选项【解析】这也是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号进行交叉变换的规律。
公务员数字推理技巧总结精华版数字推理技巧总结备考规律一:等差数列及其变式(后一项与前一项的差d为固定的或是存在一定规律(这种规律包括等差、等比、正负号交叉、正负号隔两项交叉等)(1)后面的数字与前面数字之间的差等于一个常数。
如7,11,15,(19)(2)后面的数字与前面数字之间的差是存在一定的规律的,这个规律是一种等差的规律。
如7,11,16,22,(29)(3)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种等比的规律。
如7,11,13,14,()(4)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号进行交叉变换的规律。
【例题】7,11,6,12,(5)(5)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号每“相隔两项”进行交叉变换的规律。
【例题】7,11,16,10,3,11,(20)备考规律二:等比数列及其变式(后一项与除以前一项的倍数q为固定的或是存在一定规律(这种规律包括等差、等比、幂字方等)(1)“后面的数字”除以“前面数字”所得的值等于一个常数。
【例题】4,8,16,32,(64)(2)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数加1。
【例题】4,8,24,96,(480)(3)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数乘2【例题】4,8,32,256,(4096)(4)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数为3的n次方。
【例题】2,6,54,1428,(118098)(5)后面的数字与前面数字之间的倍数是存在一定的规律的,“倍数”之间形成了一个新的等差数列。
【例题】2,-4,-12,48,(240)备考规律三:“平方数”数列及其变式(an=n2+d,其中d为常数或存在一定规律)(1)“平方数”的数列【例题】1,4,9,16,25,36,49,64,81,100,121,144,169,196(2)每一个平方数减去或加上一个常数【例题】0,3,8,15,24,(35)【例题变形】2,5,10,17,26,(37)(3)每一个平方数加去一个数值,而这个数值本身就是有一定规律的。
数字推理规律总结
一、数字推理基本规律
1、相邻数字之和:对于一组数字,如果它们两两相邻,则其和可能是一定的数,如1+2+3+4+5=15;
2、相邻两数之积:对于一组数字,如果它们两两相邻,则其积可能是一定的数,如1×2×3×4×5=120;
3、等比数列之和:对于一组等比数,若其公比为q,则其和可能是:Sn=a1(1-qn)/(1-q);
4、等比数列之积:对于一组等比数,若其公比为q,则其积可能是:Pn=a1qn-1;
5、数字变换:对于一组数字,如果规律的进行某种变换,有时可以更容易地找出它们之间的关系,如把它们反过来,把它们的相反数,把它们连续加和;
6、质数求解:对于一组数字,如果它们之间存在一定的关系,则可以尝试把它们转化为质数求解,如2+3+5=10,就可以转化为2×5=10;
7、补集求解:对于一组数字,如果它们之间存在一定的关系,则可以尝试把它们的补集求解,如3+4+7=14,可以转化为10-3-4=7;
二、数字推理的应用
1、统计:数字推理可以用于统计,比如分析市场需求、测定价格走势、统计购买者的消费习惯等;
2、投资:数字推理也可以用于投资,如投资期货、股票、基金等,用于分析价格走势,做出投资决策;
3、游戏:数字推理也可以用于游戏,比如拼图游戏、数独游戏、算术游戏等,通过推理的方式解决游戏的问题;
4、解决实际问题:除此之外,数字推理还可以用于解决一些实际问题,比如规划资源分配、设计预算方案等。
公务员考试行测数字推理必知的30个规律公务员考试中,数字推理是一个非常重要的考试科目。
数字推理是指通过对数字、图形、文字等信息的分析和推理,得出正确的结论。
在数字推理中,有很多规律需要掌握。
本文将介绍公务员考试行测数字推理必知的30个规律。
一、数字规律1. 数字序列规律数字序列规律是指在一组数字中,数字之间的关系所遵循的规律。
常见的数字序列规律有等差数列、等比数列、斐波那契数列等。
2. 数字排列规律数字排列规律是指在一组数字中,数字的排列顺序所遵循的规律。
常见的数字排列规律有逆序、顺序、交替等。
3. 数字替换规律数字替换规律是指在一组数字中,数字被替换成其他数字的规律。
常见的数字替换规律有加减乘除、平方、开方等。
4. 数字组合规律数字组合规律是指在一组数字中,数字之间的组合所遵循的规律。
常见的数字组合规律有排列组合、加减乘除等。
二、图形规律图形旋转规律是指在一组图形中,图形的旋转方向和角度所遵循的规律。
常见的图形旋转规律有顺时针旋转、逆时针旋转等。
6. 图形翻转规律图形翻转规律是指在一组图形中,图形的翻转方向和方式所遵循的规律。
常见的图形翻转规律有水平翻转、垂直翻转等。
7. 图形平移规律图形平移规律是指在一组图形中,图形的平移方向和距离所遵循的规律。
常见的图形平移规律有水平平移、垂直平移等。
8. 图形缩放规律图形缩放规律是指在一组图形中,图形的缩放比例所遵循的规律。
常见的图形缩放规律有放大、缩小等。
9. 图形填充规律图形填充规律是指在一组图形中,图形的填充方式和颜色所遵循的规律。
常见的图形填充规律有交替填充、渐变填充等。
三、文字规律10. 文字替换规律文字替换规律是指在一组文字中,文字被替换成其他文字的规律。
常见的文字替换规律有字母替换、数字替换等。
文字排列规律是指在一组文字中,文字的排列顺序所遵循的规律。
常见的文字排列规律有逆序、顺序、交替等。
12. 文字组合规律文字组合规律是指在一组文字中,文字之间的组合所遵循的规律。
昨天整理了十道题发上来,刚刚看到版友反馈,Ta连做带蒙错了四个,感叹道:蒙果然不行啊!!!!!为解决这一问题,现特将数列各种技巧汇总,让大家掌握方法,顺便提高蒙对的概率,加油!!!第一步:整体观察,若有线性趋势则走思路A,若没有线性趋势或线性趋势不明显则走思路B。
**注:线性趋势是指数列总体上往一个方向发展,即数值越来越大,或越来越小,且直观上数值的大小变化跟项数本身有直接关联(别觉得太玄乎,其实大家做过一些题后都能有这个直觉)第二步思路A:分析趋势1,增幅(包括减幅)一般做加减。
基本方法是做差,但如果做差超过三级仍找不到规律,立即转换思路,因为公考没有考过三级以上的等差数列及其变式。
例1:-8,15,39,65,94,128,170,()A.180 B.210 C. 225 D 256解:观察呈线性规律,数值逐渐增大,且增幅一般,考虑做差,得出差23,24,26,29,34,42,再度形成一个增幅很小的线性数列,再做差得出1,2,3,5,8,很明显的一个和递推数列,下一项是5+8=13,因而二级差数列的下一项是42+13=55,因此一级数列的下一项是170+55=225,选C。
总结:做差不会超过三级;一些典型的数列要熟记在心2,增幅较大做乘除例2:0.25,0.25,0.5,2,16,()A.32 B. 64 C.128 D.256解:观察呈线性规律,从0.25增到16,增幅较大考虑做乘除,后项除以前项得出1,2,4,8,典型的等比数列,二级数列下一项是8*2=16,因此原数列下一项是16*16=256总结:做商也不会超过三级3,增幅很大考虑幂次数列例3:2,5,28,257,()A.2006 B。
1342 C。
3503 D。
3126解:观察呈线性规律,增幅很大,考虑幂次数列,最大数规律较明显是该题的突破口,注意到257附近有幂次数256,同理28附近有27、25,5附近有4、8,2附近有1、4。
银行考试十大数字推理规律例题和答案解析备考规律一:等差数列及其变式【例题】7,11,15,( )A 19B 20C 22D 25【答案】A选项【解析】这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间也满足此规律,那么在此基础上对未知的一项进行推理,即15+4=19,第四项应该是19,即答案为A。
(一)等差数列的变形一:【例题】7,11,16,22,( )A.28 B.29 C.32 D.33【答案】B选项【解析】这是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,这个规律是一种等差的规律。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是5;第四个与第三个数字之间的差值是6。
假设第五个与第四个数字之间的差值是X,我们发现数值之间的差值分别为4,5,6,X。
很明显数值之间的差值形成了一个新的等差数列,由此可以推出X=7,则第五个数为22+7=29。
即答案为B选项。
(二)等差数列的变形二:【例题】7,11,13,14,( )A.15 B.14.5 C.16 D.17【答案】B选项【解析】这也是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种等比的规律。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是2;第四个与第三个数字之间的差值是1。
假设第五个与第四个数字之间的差值是X。
我们发现数值之间的差值分别为4,2,1,X。
很明显数值之间的差值形成了一个新的等差数列,由此可以推出X=0.5,则第五个数为14+0.5=14.5。
即答案为B选项。
(三)等差数列的变形三:【例题】7,11,6,12,( )A.5 B.4 C.16 D.15【答案】A选项【解析】这也是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号进行交叉变换的规律。
数字推理十大题型秒杀技巧
1. 数字推理里的等差数列题型,那简直就是送分题呀!比如说1,3,5,7,这不是很明显的等差数列嘛,公差为2,下一个数不就是9 嘛!
2. 等比数列题型,哇塞,一旦发现规律就超简单的!像2,4,8,16,这倍数关系多明显呀,下一个肯定是 32 啦!
3. 平方数列题型,这可得瞪大眼睛找呀!像 1,4,9,16,不就是平方数嘛,下一个就是 25 咯!
4. 立方数列题型,这个有点难度哦,但找到了就很有成就感呀!比如1,8,27,64,那下一个就是 125 呀!
5. 组合数列题型,就像玩拼图一样有趣呢!比如奇数项和偶数项各有规律,找到就轻松解题啦!
6. 数字拆分题型,把数字拆开来分析,哎呀,真的很有意思!像34 可以拆成 3 和 4 嘛,然后再找规律。
7. 分数数列题型,这可不能被分数吓到呀!比如1/2,2/3,3/4,那下一个不就是 4/5 嘛!
8. 根式数列题型,虽然看着有点复杂,但找到了根号里的规律就迎刃而解啦!
9. 周期数列题型,就像循环播放的音乐一样有规律呀!比如1,2,
3,1,2,3,那下一个当然还是 1 啦!
10. 递推数列题型,一环扣一环的,多有意思呀!像前面两个数相加等于后面一个数,找到这个关系就好办啦!
我觉得呀,掌握了这些数字推理的秒杀技巧,就像是拥有了一把打开数字世界大门的钥匙,能让我们在数字的海洋里畅游无阻!。
公务员数字推理技巧总结精华版数字推理技巧总结备考规律一:等差数列及其变式?(后一项与前一项的差d为固定的或是存在一定规律(这种规律包括等差、等比、正负号交叉、正负号隔两项交叉等)?(1)?后面的数字与前面数字之间的差等于一个常数。
?如7,11,15,(?19?)??(2)后面的数字与前面数字之间的差是存在一定的规律的,这个规律是一种等差的规律。
如7,11,16,22,(?29?)??(3)?后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种等比的规律。
?如7,11,13,14,(?14.5?)??(4)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号进行交叉变换的规律。
【例题】7,11,6,12,(?5?)?(5)?后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号每“相隔两项”进行交叉变换的规律。
??【例题】7,11,16,10,3,11,(20?)???备考规律二:等比数列及其变式?(后一项与除以前一项的倍数q为固定的或是存在一定规律(这种规律包括等差、等比、幂字方等)?(1)“后面的数字”除以“前面数字”所得的值等于一个常数。
??【例题】4,8,16,32,(?64?)?(2)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数加1。
??【例题】4,8,24,96,(?480?)?(3)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数乘2?【例题】4,8,32,256,(?4096?)?(4)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数为3的n次方。
??【例题】2,6,54,1428,(?118098?)?(5)后面的数字与前面数字之间的倍数是存在一定的规律的,“倍数”之间形成了一个新的等差数列。
??【例题】2,-4,-12,48,(240?)??备考规律三:“平方数”数列及其变式?(an=n2+d,其中d为常数或存在一定规律)?(1)“平方数”的数列【例题】1,4,9,16,25,36?,49,64,81,100,121,144,169,196(2)每一个平方数减去或加上一个常数??【例题】0,3,8,15,24,(35?)??【例题变形】2,5,10,17,26,(37?)?(3)?每一个平方数加去一个数值,而这个数值本身就是有一定规律的。
数字推理口诀
整体观察分AB,线性趋势明走A,
增幅一般做加减,做差不会超三级,减幅同样此道理,典型数列熟记心。
增幅较大做乘除,做商同样不超三。
增幅很大想幂次,常用幂数要熟悉。
线性趋势弱走B,要找视觉冲击点,何为此点如何找,特殊数字勿放过。
列长项多6以上,考虑分组或隔项。
摇摆数列忽大小,基本思路是隔项,若要见到双括号,一定隔项成规律。
摇摆双括同时出,义无反顾找隔项。
整数分数混着搭,提示要做乘除法。
全是分数先约分,能划一时先划一,突破口在固定数,分子、母与项有关。
正负交叠要做商,肯定没错不夸张。
根数整数混搭时,先将整数化根数,号外数字移号里,此为一定是药方。
遇到根数加减式,平方差公式帮忙。
递推数列很难做,五则运算和乘方。
看到纯小数数列,整、小部分分开想。
似连续而不连贯,考虑质数或合数。
数字很大3位上,考虑微观是抓手。
数列如有公约数,约去公因是正法。
相邻项有公约数,因式分解可办好。
以上方法皆受挫,除3 除 5看余数。
如若还是想不出,蒙猜办法可帮忙。
选项整数小数混,小数多半是答案。
数项负数选项同,负数多半是选择。
另外直猜接近值,肯定八九不离十。
欢迎共阅数字找规律类型总结在实际解题过程中,根据相邻数之间的关系分为两大类:一、相邻数之间通过加、减、乘、除、平方、开方等方式发生联系,产生规律,主要有以下几种规律:1、相邻两个数加、减、乘、除等于第三数2、相邻两个数加、减、乘、除后再加或者减一个常数等于第三数3、等差数列:数列中各个数字成等差数列4、二级等差:数列中相邻两个数相减后的差值成等差数列5、等比数列:数列中相邻两个数的比值相等67891011121的平方加减n2n 3解答1)24,70,208,622,规律为a*3-2=b2)深一点模式,各数之间的差有规律,如1、2、5、10、17。
它们之间的差为1、3、5、7,成等差数列。
这些规律还有差之间成等比之类。
B,各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。
3)看各数的大小组合规律,做出合理的分组。
如7,9,40,74,1526,5436,7和9,40和74,1526和5436这三组各自是大致处于同一大小级,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个组。
而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。
所以7*7-9=40,9*9-7=74,40*40-74=1526,74*74-40=5436,这就是规律。
4)如根据大小不能分组的,A,看首尾关系,如7,10,9,12,11,14,这组数7+14=10+11=9+12。
首尾关系经常被忽略,但又是很简单的规律。
B,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。
5)各数间相差较大,但又不相差大得离谱,就要考虑乘方,这就要看各位对数字敏感程度了。
如6、24、60、120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。
这组数比较巧的是都是6的倍数,容易导入歧途。
数量关系规律*对于特殊数列要记规律,最后没有答案时放弃计算猜一个,避免浪费答题时间。
1.相邻项(间隔一个数的两项)做加、减,观察所得和、差之间等差等比平方等规律;和、差与原数之间(又是可忽略第一个和、差)的倍数或平方等规律。
(做题时容易只做差,忽略了和),相邻两项加减后无规律考虑相邻三项和间的规律。
2.观察奇偶项之间的关系(又是奇、偶项独立自成规律),和差关系是重点。
3.数列呈单调性时等差等比数列可能大,非单调性时考虑转化(后者由前项相加或相减或倍数再加减常数或递增减数列)还要考虑相邻两三项加和与后一项比较等。
4.观察数组中数的个数,进行分组,每组数的和、积之间的坑能存在等差等规律。
常见规律为奇、偶数规律,等差,等比,二级等差,二级等比,递推规律;幂次数,混合型规律等等。
1.当数列呈递增或递减趋势,且变化幅度不大时,优先使用作差法。
相邻项做差做商都无规律,考虑相邻两项或几项相加后的数周规律,另外,当数列中无明显规律,寻找数项特征和结构特征也没有头绪时,也可以考虑使用作差法理清关系。
2.当数字之间存在明显倍数关系时,应优先应考虑使用作商法。
3.当数列各项的跳跃性较大时,则应考虑多次方、相邻项相乘等关系。
4.数列有平稳、递增趋势,但通过作差不能解决问题,利用多次方和作商也不能解决时,可考虑取两项或三项求和,从而寻找新数列的规律。
5.拆分法的应用,拆分法是指将数列中的数字拆分成两个或多个部分,然后通过每部分的规律得到原数列规律的方法,在公务员考试中,拆分法主要有整数乘积拆分与整数加减拆分两种。
6.当数列的项数很多时,可以首先考虑分组,两个一组(或三个一组),观察每组之间及组与组之间是否有规律等一、基本特征观察数列是否具有幂次及幂次修正、分数、小数、根号、超长、双括号、图形数列、基础数列明显特征,如具备上述某一特征数列,就按照其对应的法则进行,而对于隐蔽性很强的幂次数列及修正数列,二、多级变形如果不具备上述数列基本特征,则利用+、-、×、÷法进行多级变形来寻找规律。
欢迎共阅数字找规律类型总结在实际解题过程中,根据相邻数之间的关系分为两大类:一、相邻数之间通过加、减、乘、除、平方、开方等方式发生联系,产生规律,主要有以下几种规律:1、相邻两个数加、减、乘、除等于第三数2、相邻两个数加、减、乘、除后再加或者减一个常数等于第三数3、等差数列:数列中各个数字成等差数列4、二级等差:数列中相邻两个数相减后的差值成等差数列5、等比数列:数列中相邻两个数的比值相等6、二级等比:数列中相邻两个数相减后的差值成等比数列7、前一个数的平方等于第二个数8、前一个数的平方再加或者减一个常数等于第二个数;9、前一个数乘一个倍数加减一个常数等于第二个数;10、隔项数列:数列相隔两项呈现一定规律,11、全奇、全偶数列12、排序数列二、数列中每一个数字本身构成特点形成各个数字之间的规律。
1、数列中每一个数字都是n的平方构成或者是n的平方加减一个常数构成,或者是n的平方加减n构成2、每一个数字都是n的立方构成或者是n的立方加减一个常数构成,或者是n的立方加减n3、数列中每一个数字都是n的倍数加减一个常数以上是数字推理的一些基本规律,必须掌握。
但掌握这些规律后,怎样运用这些规律以最快的方式来解决问题呢?这就需要在对各种题型认真练习的基础上,应逐步形成自己的一套解题思路和技巧。
第一步,观察数列特点,看是否存是隔项数列,如果是,那么相隔各项按照数列的各种规律来解答第二步,如果不是隔项数列,那么从数字的相邻关系入手,看数列中相邻数字在加减乘除后符合上述的哪种规律,然后得出答案。
第三步,如果上述办法行不通,那么寻找数列中每一个数字在构成上的特点,寻找规律。
当然,也可以先寻找数字构成的规律,在从数字相邻关系上规律。
这里所介绍的是数字推理的一般规律,在对各种基本题型和规律掌握后,很多题是可以直接通过观察和心算得出答案。
数字推理题的一些经验1)等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b2)深一点模式,各数之间的差有规律,如1、2、5、10、17。
总结数字推理十大规律(四)
2010-01-14 安徽公务员考试网【字体: 】
备考规律七:求差相减式数列
规律点拨:在国考中经常看到有“第一项减去第二项等于第三项”这种规律的数列,以下李老师和大家一起来探讨该类型的数列
【例题】8,5,3,2,1,()
A.0
B.1
C.-1
D.-2
备考规律八:“平方数”数列及其变式
【例题】1,4,9,16,25,()
A.36
B.28
C.32
D.40
(一)“平方数”数列的变形一:
【例题】0,3,8,15,24,()
A.35
B.28
C.32
D.40
【例题变形】2,5,10,17,26,()
A.37
B.38
C.32
D.40
(二)“平方数”数列的变形二:
【例题】2,6,12,20,30,()
A.42
B.38
C.32
D.40
更多详情请查询:安徽公务员考试网(/)
【答案】B选项
解析】这题与“求和相加式的数列”有点不同的是,这题属于相减形式,即“第一项减去第二项等于第三项”。
我们看第一项8与第二项5的差等于第三项3;第二项5与第三项3的差等
于第三项2;第三项3与第四项2的差等于第五项1;
同理,我们推敲,第六项应该是第四项2与第五项1的差,即等于0;所以A选项正确。
【答案】A选项
【解析】这是一个典型的“平方数”的数列,即第一项是1的平方,第二项是2的平方,第三项是3的平方,第四项是4的平方,第五项是5的平方。
同理我们推出第六项应是6的平方。
所以A选项正确。
【答案】A选项
【解析】这是一个典型的“立方数”的数列,其规律是每一个平方数减去一个常数,即第一项是1的平方减去1,第二项是2的平方减去1,第三项是3的平方减去1,第四项是4的平方减去1,第五项是5的平方减去1.同理我们推出第六项应是6的平方减去1.所以A选项正确。
题目规律的延伸:既然可以是“每一个立方数减去一个常数”,李老师认为就一定可以演变成“每一个立方数加上一个常数”。
就上面那道题目而言,同样可以做一个变形:
【答案】A选项
【解析】这是一个典型的“平方数”的数列,其规律是每一个平方数减去一个常数,即第一项是1的平方加上1,第二项是2的平方加上1,第三项是3的平方加上1,第四项是4的平方加上1,第五项是5的平方加上1.同理我们推出第六项应是6的平方加上1.所以A选项正确。
【答案】A选项
【解析】这就是一个典型的“平方数”的数列变形,其规律是每一个立方数加去一个数值,而这个数值本身就是有一定规律的。
即第一项是1的平方加上1,第二项是2的平方加上2,第三项是3的平方加上3,第四项是4的平方加上4,第五项是5的平方加上5.同理我们假设推出第六项应是6的平方加上X.而把各种数值摆出来分别是:1,2,3,4,5,X.由此我们可以得出X=6,即第六项是6的平方加上6,所以A选项正确。