公务员数学推理题十大规律大总结
- 格式:doc
- 大小:5.81 MB
- 文档页数:24
图形推理的两大灵魂是 数量关系 和 图形转动 。
牢牢把握住这两大灵魂就基本把握了图形推理题目。
在这两大灵魂统帅下的十大基本规律,是每个想要在公考中取得优异成绩的考生必须系统熟练把握的。
下面小考啦来为大家举例说明。
例1:解析:B方法一: 从图形旋转的角度来分析这个题目。
顺时针方向看,会发现黑色小方框在作顺时针旋转。
具体的说,第一行三个图形中,黑色小方框在作顺时针旋转;然后从第三列往下看,发现黑色小方框仍然在作顺时针旋转。
整个观察顺序是:第一行,从左向右,到了第三个图形,从上往下;到了右下角的图形,从右往左,到了左下角,再从下往上。
如果选择逆时针方向分析,会发现黑色小方框在作逆时针旋转。
最后同样得到答案B。
方法二: 从图形的数量关系来分析这个题目。
图中含有黑色小方框的图形是成对出现的。
因此答案为B。
例2:解析:A第一列,从下往上,三个图形中,图形外的线段数量分别是1,3,5。
第二列,从上往下,三个图形中,图形外的线段数量分别是7,9,11。
第三列,从下往上,三个图形中,图形外的线段数量分别是13,15,17。
从列的角度来考察的。
分析这类题目的时候,如果从行的角度去考察,难以发现规律,不妨改变一下角度,从列的角度去考察。
本题每个图形出头线段数目如下图:例3:解析:D这个题目看从什么角度来分析。
如果把第一行三个小图形放在一起分析,然后把第二行三个图形放在一起分析,就很难找到正确的答案来。
如果把第一列的三个图形放在一起分析,把第二列的三个图形放在一起分析,就比较容易找出答案来。
整个题目的规律是:从列方向上来看,第一个图形的直线边数等于下面两个图形的边数之和。
以前考试的题目和参考书上的练习题目大多是从行的方向来考察的,这次考题换了一个角度。
根据前面几道题的特点来看,从列方向的角度来设计题目,应该是命题者的真实意图例4:解析:A第一行的三个图形,封闭部分的数量分别是 3,2,3和3 2 3=8;第二行的三个图形,封闭部分的数量分别是1,3,4和1 3 4=8;按照这个规律,第三行三个图形封闭部分数量之和应该是8。
十大经典逻辑推理
1.倒推法:从结果推出原因,逆向思维。
2. 类比法:将不同领域的问题进行类比,找到相似之处,推导出解决问题的方法。
3. 归纳法:从一些特定的事实或现象中,总结出普遍规律,进而推导出结论。
4. 演绎法:从一般原则出发,逐步推导出具体的结论。
5. 等价转换法:将一个命题转换成另一个与之等价的命题,从而推出结论。
6. 假设法:假设某些条件成立,然后根据这些条件推导出结论。
7. 对比法:将两个相似或相反的事物进行对比,从中得到结论。
8. 消解法:找出命题中的矛盾点,通过消解矛盾点来推导出结论。
9. 逆否命题法:将命题的逆命题和否定命题进行推导,从而得出结论。
10. 经验法则法:依据过去的经验和常识,推导出结论。
- 1 -。
图形专项突破中绝大多数例题都是公考真题,命题标准,指导性明确,具有很高的价值。
图形专项突破编写系统,几乎含盖图形推理全部类型的题目。
图形推理的两大灵魂是数量关系和图形的转动。
牢牢把握住这两大灵魂就根本把握了图形推理题目。
在这两大灵魂统帅下的十大根本规律,是每个想要在公考中取得优异成绩的考生必须系统熟练把握的。
图形推理的两大灵魂:数量关系和图形的转动。
这里以2007年国家公务员考试真题为例子来说明图形推理的两大灵魂。
1.答案:B分析:方法一,从图形旋转的角度来分析这个题目。
顺时针方向看,会发现黑色小方框在作顺时针旋转。
具体的说,第一行三个图形中,黑色小方框在作顺时针旋转;然后从第三列往下看,发现黑色小方框仍然在作顺时针旋转。
整个观察顺序是:第一行,从左向右,到了第三个图形,从上往下;到了右下角的图形,从右往左,到了左下角,再从下往上。
如果选择逆时针方向分析,会发现黑色小方框在作逆时针旋转。
最后同样得到答案B。
方法二,从图形的数量关系来分析这个题目。
图中含有黑色小方框的图形是成对出现的。
因此答案为B。
2.答案:A分析:第一列,从下往上,三个图形中,图形外的线段数量分别是1,3,5。
第二列,从上往下,三个图形中,图形外的线段数量分别是7,9,11。
第三列,从下往上,三个图形中,图形外的线段数量分别是13,15,17。
从列的角度来考察的。
分析这类题目的时候,如果从行的角度去考察,难以发现规律,不妨改变一下角度,从列的角度去考察。
此题每个图形出头线段数目如以下图:3.答案:D分析:这个题目看从什么角度来分析。
如果把第一行三个小图形放在一起分析,然后把第二行三个图形放在一起分析,就很难找到正确的答案来。
如果把第一列的三个图形放在一起分析,把第二列的三个图形放在一起分析,就比较容易找出答案来。
整个题目的规律是:从列方向上来看,第一个图形的直线边数等于下面两个图形的边数之和。
以前考试的题目和参考书上的练习题目大多是从行的方向来考察的,这次考题换了一个角度。
备考规律一:等差数列及其变式【例题】7,11,15,()A.19B.20C.22D.25【答案】A选项【解析】这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间也满足此规律,那么在此基础上对未知的一项进行推理,即15+4=19,第四项应该是19,即答案为A.(一)等差数列的变形一:【例题】7,11,16,22,()A.28B.29C.32D.33【答案】B选项【解析】这是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,这个规律是一种等差的规律。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是5;第四个与第三个数字之间的差值是6.假设第五个与第四个数字之间的差值是X,我们发现数值之间的差值分别为4,5,6,X.很明显数值之间的差值形成了一个新的等差数列,由此可以推出X=7,则第五个数为22+7=29.即答案为B选项。
(二)等差数列的变形二:【例题】7,11,13,14,()A.15B.14.5C.16D.17【答案】B选项【解析】这也是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种等比的规律。
题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是2;第四个与第三个数字之间的差值是1.假设第五个与第四个数字之间的差值是X.我们发现数值之间的差值分别为4,2,1,X.很明显数值之间的差值形成了一个新的等差数列,由此可以推出X=0.5,则第五个数为14+0.5=14.5.即答案为B选项。
(三)等差数列的变形三:【例题】7,11,6,12,()A.5B.4C.16D.15【答案】A选项【解析】这也是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号进行交叉变换的规律。
公务员数字推理技巧总结精华版数字推理技巧总结备考规律一:等差数列及其变式(后一项与前一项的差 d 为固定的或是存在一定规律(这种规律包括等差、等比、正负号交叉、正负号隔两项交叉等)(1) 后面的数字与前面数字之间的差等于一个常数。
如7,11,15,( 19 ) (2)后面的数字与前面数字之间的差是存在一定的规律的,这个规律是一种等差的规律。
如7,11,16,22,( 29 )(3)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种等比的规律。
如7,11,13,14,( 14.5 )(4)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号进行交叉变换的规律。
【例题】7,11,6,12,( 5 )(5) 后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号每“相隔两项”进行交叉变换的规律。
【例题】7,11,16,10,3,11,(20 )备考规律二:等比数列及其变式(后一项与除以前一项的倍数 q 为固定的或是存在一定规律(这种规律包括等差、等比、幂字方等)(1)“后面的数字”除以“前面数字”所得的值等于一个常数。
【例题】4,8,16,32,( 64 )(2)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数加1。
【例题】4,8,24,96,( 480 )(3)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数乘 2【例题】4,8,32,256,( 4096 )(4)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数为 3 的n 次方。
【例题】2,6,54,1428,( 118098 )(5)后面的数字与前面数字之间的倍数是存在一定的规律的,“倍数”之间形成了一个新的等差数列。
【例题】2,-4,-12,48,(240 )备考规律三:“平方数”数列及其变式(an=n2+d,其中d为常数或存在一定规律)(1) “平方数”的数列【例题】1,4,9,16,25,36 ,49,64,81,100,121,144,169,196(2)每一个平方数减去或加上一个常数【例题】 0,3,8,15,24,(35 )【例题变形】2,5,10,17,26,(37 )(3) 每一个平方数加去一个数值,而这个数值本身就是有一定规律的。
公务员常见图形推理规律总结一组图(跳着看)、九宫格(竖着看、米字形、S型)元素组成相同-位置规律1.平移方向:上下、左右、斜对角线绕圈:顺逆时针步数:恒定、等差16宫格可以考虑内外圈分开看2.旋转、翻转旋转:顺逆时针45度、90度、180度翻转:左右翻转竖轴对称上下翻转:横轴对称(注意上下翻的横着画)3.从头跑、折返跑元素组成相似-样式规律(线条重复出现)1.加减同异相加相减求同求异2.黑白运算得出黑+白=?这样的运算(相同位置运算)区分:黑块数量相同优先平移,黑块数量不同,优先黑白运算注意:位置和样式的复合考法分类:一个图形里有规律,几个图形规律一样元素组成不相同、不相似-属性规律1.对称性轴对称(对称轴方向、数量、对称轴间关系平行/垂直、对称轴是不是自己带的);中心对称;轴对称+中心对称2.曲直性全曲全直、半曲半直3.开闭性完整的图形留了个小开口注:五角星轴对称图形,有5条对称轴,不是中心对称图形元素组成不相同、不相似-数量规律考点:点、线、面、素、角1.点数量切点也属于交点,端点不是交点特征:线条交叉明显、乱糟糟一团线交叉、相切较多与圆相交的交点2.线数量2.1直线和曲线直线数特征:多边形、单一直线数量、关系(平行/垂直,比如第一条边与最后一条边,有时还需考虑方向)曲线数特征:曲线图形特殊:曲-直数量、曲+直数量、竖线数量、横线数量2.2一笔画问题特征图、图形出现多端点图形、多三角形图案,考虑数笔画数一笔画:线条之间连通、奇点数=0或2(端点、丁字口)多笔画笔画数=奇点数/2(奇点数一定是偶数个)常见:一笔画:五角星、日及其变形、圆相切、相交(圆相切和相交的点均发射出偶数条线,不是奇点)二笔画:田及其变形3.面数量—图形被分割、封闭面明显、生活化图形、粗线条图形中留空白区域面的数量、形状、最大的面、最小的面4.素数量4.1小元素特征-多个独立小图形元素种类、个数(个数组成形式311、221)、替换(一种图形是一个数值或一种图形=几个另一种图形)4.2部分数特征-生活化图形、黑色粗线条图形(线条与线条连在一起叫做一部分)5.角数量(直角、钝角、锐角)扇形、改造图、折线图有直角优先关注直角注意:综合几种性质(如对称轴数量和面数量相等、曲直+面)特殊规律1.功能元素点:观察点对其他图形的标记作用、观察点与点之间的关系箭头:观察箭头的指向性、观察箭头与箭头之间的关系2.图形间关系—每幅图都是两个元素或者几个封闭空间连在一起相离、相压、相交(1)相交于面相交面的形状、面积等(2)相交于点相交点的位置(上下左右和内外)(3)相交于边相交于边的数量、相交边的样式(相交边是长边、短边;包含相交、交错相交;曲直)其他规律汉字、数字、字母:笔画数、线、面、部分、属性空间重构相对面同时出现为错误选项相对面-同行或同列相隔一个面、Z字形两端三视图三视图都是平面图原图有线就有线,原图没线就没线。
公务员行测数字推理必知的30个规律一、当一列数中出现几个整数,而只有一两个分数而且是几分之一的时候,这列数往往是负幂次数列。
【例】1、4、3、1、1/5、1/36、( )92 124 262 343二、当一列数几乎都是分数时,它基本就是分式数列,我们要注意观察分式数列的分子、分母是一直递增、递减或者不变,并以此为依据找到突破口,通过“约分”、“反约分”实现分子、分母的各自成规律。
【例】1/16 2/13 2/5 8/7 4 ()3三、当一列数比较长、数字大小比较接近、有时有两个括号时,往往是间隔数列或分组数列。
【例】33、32、34、31、35、30、36、29、( )A. 33B. 37C. 39四、在数字推理中,当题干和选项都是个位数,且大小变动不稳定时,往往是取尾数列。
取尾数列一般具有相加取尾、相乘取尾两种形式。
【例】6、7、3、0、3、3、6、9、5、( )五、当一列数都是几十、几百或者几千的“清一色”整数,且大小变动不稳定时,往往是与数位有关的数列。
【例】448、516、639、347、178、( )六、幂次数列的本质特征是:底数和指数各自成规律,然后再加减修正系数。
对于幂次数列,考生要建立起足够的幂数敏感性,当数列中出现6?、12?、14?、21?、25?、34?、51?、312?,就优先考虑43、112(53)、122、63、44、73、83、55。
【例】0、9、26、65、124、( )A. 165B. 193C. 217七、在递推数列中,当数列选项没有明显特征时,考生要注意观察题干数字间的倍数关系,往往是一项推一项的倍数递推。
【例】118、60、32、20、( )八、如果数列的题干和选项都是整数且数字波动不大时,不存在其它明显特征时,优先考虑做差多级数列,其次是倍数递推数列,往往是两项推一项的倍数递推。
【例】0、6、24、60、120、( )九、当题干和选项都是整数,且数字大小波动很大时,往往是两项推一项的乘法或者乘方的递推数列。
一、行测考试十大数据推理规律:①奇偶数规律:各个数都是奇数(单数)或偶数(双数)。
②等差:相邻数之间的差值相等,整个数字序列依列递增或递减。
③等比:相邻数之间的比值相等,整个数字序列依次递增或递减。
④二级等差:相邻数之间的差或比构成了一个等差数列。
⑤二级等比数列:相邻数之间的差或比构成一个等比数列。
⑥加法规律:前两个数之和等于第三个数。
⑦减法规律:前两个数之差等于第三个数。
⑧乘法(除法)规律:前两个数之乘积(或相除)等于第三个数。
⑨完全平方数:数列中蕴含着一个完全平方数序列,或明显、或隐含。
⑩混合型规律:由以上基本规律组合而成,可以是二级、三级的基本规律,也可能是两个规律的数列交叉组合成一个数列。
二、经典题型分类练习:1.等差数列例1:1, 4, 7, 10, 13,( )A.14B.15C.16D.172.等差数列的变式例1:3, 4, 6, 9,( ),18A.11B.12C.13D.143.“两项之和等于第三项”型例1:34, 35, 69, 104, ( )A.138B.139C.173D.179例2:…101102203305508( )1321…A.812B.814C.813D. 8114.等比数列例1:3, 9, 27, 81, ( )A.433B.342C.243D.1355.等比数列的变式例1:8, 12, 24, 60, ( )A.90B.120C.180D.240例2:8, 14, 26, 50, ( )A.104B.100C. 98D. 76例3:1/2, 1, 7/5, 13/9, ( )A. 17/13B. 19/15C. 21/17D. 23/196.平方型及其变式例1:1, 4, 9, ( ), 25, 36A.10B.14C.16D.20例2:1/2, 1, 5/7, ( ), 9/32A. 5/11B.7/11C.7/16D.9/167.利用“凑整法”求解例1:52+136+38+64的值为:A. 300B. 292C. 290D. 280例2:12.5×0.25×0.5×32的值为:( )A. 50.25B. 100C. 50D. 258.利用“尾数估算法”求解例1:425+683+544+828的值是:A. 2484B. 2482C. 2480D. 2478例2:1997+1998+1999+2000+2001A. 9993B. 9994C. 9995D. 9996。
数字推理的十大规律数字推理是通过对数字、数字关系、数字规律等进行分析、推理来解决问题的一种思维方式。
数字推理可以应用于数学、逻辑、信息处理、统计学等领域。
在数字推理中,存在着一些常见的规律,通过了解这些规律,我们可以更好地进行数字推理。
下面是数字推理中的十大常见规律:1. 自然数规律自然数规律是最基本的数字规律之一。
自然数由1开始依次递增,其中包含了所有整数。
我们可以通过对自然数序列的观察,进一步推导出一些数学规律。
例如,自然数序列的平方数规律:1, 4, 9, 16, 25, ...,可以看出平方数是自然数序列的某种特殊规律。
2. 等差数列规律等差数列是一种特殊的数字序列,其中相邻的数字之间的差值是相等的。
等差数列常用于数学题目、数列的求和问题等。
例如,2, 5, 8, 11, 14, ...,可以看出每个数字都比前一个数字增加了3。
3. 等比数列规律等比数列是一种特殊的数字序列,其中相邻的数字之间的比值是相等的。
等比数列常用于数学问题中,比如指数增长、连续复利等。
例如,2, 6, 18, 54, ...,可以看出每个数字都是前一个数字乘以3。
4. 斐波那契数列规律斐波那契数列是一个非常特殊的数列,其中每个数字都是前两个数字之和。
斐波那契数列在自然界中广泛存在,如植物的叶子排列、兔子繁殖等。
例如,1, 1, 2, 3, 5, 8, 13, ...,可以看出每个数字都是前两个数字之和。
5. 奇偶数规律奇偶数规律是数字推理中的一种常见规律。
奇数是整数中不能被2整除的数,偶数则是能被2整除的数。
例如,1, 3, 5, 7, 9, ...是奇数序列;2, 4, 6, 8, 10, ...是偶数序列。
6. 质数规律质数是只能被1和自身整除的自然数。
质数规律在密码学、因数分解等领域有重要应用。
例如,2, 3, 5, 7, 11, ...,可以看出每个数字都是质数。
7. 素数规律素数是指除了1和本身外没有其他除数的数,素数可以是质数或者合数。
图形推理最新十大规律技巧大全!(国考必备)图形推理的两大灵魂是数量关系和图形转动。
牢牢把握住这两大灵魂就基本把握了图形推理题目。
在这两大灵魂统帅下的十大基本规律,是每个想要在公考中取得优异成绩的考生必须系统熟练把握的。
下面小考啦来为大家举例说明。
例1:解析:B方法一:从图形旋转的角度来分析这个题目。
顺时针方向看,会发现黑色小方框在作顺时针旋转。
具体的说,第一行三个图形中,黑色小方框在作顺时针旋转;然后从第三列往下看,发现黑色小方框仍然在作顺时针旋转。
整个观察顺序是:第一行,从左向右,到了第三个图形,从上往下;到了右下角的图形,从右往左,到了左下角,再从下往上。
如果选择逆时针方向分析,会发现黑色小方框在作逆时针旋转。
最后同样得到答案B。
方法二:从图形的数量关系来分析这个题目。
图中含有黑色小方框的图形是成对出现的。
因此答案为B。
例2:解析:A第一列,从下往上,三个图形中,图形外的线段数量分别是1,3,5。
第二列,从上往下,三个图形中,图形外的线段数量分别是7,9,11。
第三列,从下往上,三个图形中,图形外的线段数量分别是13,15,17。
从列的角度来考察的。
分析这类题目的时候,如果从行的角度去考察,难以发现规律,不妨改变一下角度,从列的角度去考察。
本题每个图形出头线段数目如下图:例3:解析:D这个题目看从什么角度来分析。
如果把第一行三个小图形放在一起分析,然后把第二行三个图形放在一起分析,就很难找到正确的答案来。
如果把第一列的三个图形放在一起分析,把第二列的三个图形放在一起分析,就比较容易找出答案来。
整个题目的规律是:从列方向上来看,第一个图形的直线边数等于下面两个图形的边数之和。
以前考试的题目和参考书上的练习题目大多是从行的方向来考察的,这次考题换了一个角度。
根据前面几道题的特点来看,从列方向的角度来设计题目,应该是命题者的真实意图例4:解析:A第一行的三个图形,封闭部分的数量分别是 3,2,3和3 2 3=8;第二行的三个图形,封闭部分的数量分别是1,3,4和1 3 4=8;按照这个规律,第三行三个图形封闭部分数量之和应该是8。