高等数学教程 第四章无穷级数4-0 常数项级数的概念、性质、收敛性
- 格式:ppt
- 大小:520.00 KB
- 文档页数:27
无穷级数的概念与性质无穷级数(Infinite series)是数学中一个非常重要的概念,它是由无限多个数相加或相减得到的数列。
在数学中,我们经常会遇到各种各样的无穷级数,它们具有丰富的性质和应用。
本文将介绍无穷级数的基本概念,并探讨其性质及应用。
一、无穷级数的概念无穷级数指的是无限多个数按照一定的规律连加(或连减)得到的数列。
一般可以表示为下面的形式:S = a₁ + a₂ + a₃ + ...其中,a₁、a₂、a₃是无穷级数的通项,S是无穷级数的和。
无穷级数的和并不一定存在,它可能是一个有限数值,也可能是无穷大或不存在。
二、常见的无穷级数1.等差数列等差数列是最简单的无穷级数之一。
它的通项公式为:aₙ = a₁ + (n-1)d其中,a₁是首项,d是公差,n表示项数。
等差数列的无穷级数可以通过求和公式来计算:S = a₁ + (a₁+d) + (a₁+2d) + ...通过对等差数列求和,我们可以得到如下公式:S = (a₁ + aₙ) * n / 22.等比数列等比数列也是常见的无穷级数之一,它的通项公式为:aₙ = a₁ * q^(n-1)其中,a₁为首项,q为公比,n表示项数。
等比数列的无穷级数可以通过求和公式来计算:S = a₁ / (1-q)其中,当0<q<1时,S存在且为有限值,当q≥1时,S不存在。
3.调和级数调和级数是指无穷级数的通项是倒数的情况,它的通项公式为:aₙ = 1/n调和级数可以表示为:S = 1/1 + 1/2 + 1/3 + ...调和级数是一个特殊的无穷级数,它的和可以无限增大。
例如,前n项和可以表示为:Sₙ = 1/1 + 1/2 + ... + 1/n当n趋向于无穷大时,Sₙ趋向于无穷大。
三、无穷级数的性质1.收敛与发散无穷级数的和可能是有限的,也可能是无穷大,也有可能不存在。
如果一个无穷级数的和存在并且有限,我们称该级数是收敛的;反之,如果一个无穷级数的和不存在或者无穷大,我们称该级数是发散的。
无穷级数的概念与性质无穷级数是高等数学中的一个重要概念,它指的是无数项的和数。
无穷级数的数学公式一般写成∑n=1∞an,其中an表示每一项的系数。
无穷级数在物理、经济等领域应用广泛,是数学研究的重点。
一、收敛与发散在分步分析无穷级数性质前,我们必须先了解收敛与发散的概念。
在无穷级数中,若该级数的部分和Sn满足:Sn趋于某一固定的唯一数L,即limSn=L,则称该无穷级数收敛于L(或收敛于∞,收敛于-∞)。
反之,如果Sn的值不趋于任何一个常数,则称该无穷级数发散。
例如:1+1/2+1/4+···+1/2n+···,其中每一项的系数an=1/2n,这个级数收敛于2。
而1+2+4+···+2n+···,这个级数则是发散的。
二、正项级数正项级数指的是每一项的系数an均为非负数。
对于正项级数,一般用单个符号∑an表示,而不是∑n=1∞an。
正项级数的充分必要条件是部分和单调不降及有界或有上界。
即如果存在一个B使得Sn≤B,那么称该级数有上界,如果B不存在,则称该级数发散。
三、级数收敛判定法在判定一个级数的收敛或发散时,需要掌握一些常用的级数收敛判定法。
(一)比值判别法比值判别法即通过求出级数的相邻两项之比的极限值来判断级数的收敛性。
如果该极限值小于1,则该级数收敛;如果大于1,则该级数发散;如果等于1,则该级数不能判定。
例如:an=(n+1)/(2n+1) 则有limn→∞an+1/an=1/2 < 1,所以此级数收敛。
(二)根值判别法根值判别法实际上是比值判别法的特例,即通过求出级数的每一项的n次方根的极限值来判断级数的收敛性。
如果该极限小于1,则该级数收敛;如果大于1,则该级数发散;如果等于1,则该级数不能判定。
例如:an=1/n^2,则有limn→∞an^1/n=1,所以此级数收敛。