第二章 耕作与土壤的物理力学性质
- 格式:ppt
- 大小:128.50 KB
- 文档页数:8
土壤物理性质(四)(五)土壤力学性质与耕性土壤受外力作用(如耕作)时,显示出一系列动力学特性.统称土壤力学性质(又称物理机械性)。
主要包括黏结性、黏着性和塑性等。
耕性是上壤在耕作时所表现的综合性状,如耕作的难易,耕作质量的好坏,宜耕期的长短等。
土壤耕性是土壤力学性质的综合反映。
1.土壤黏结性和黏着性 (1)概念土壤黏结性是土粒与土粒之间因为分子引力而互相黏结在一起的性质。
这种性质使土壤具有反抗外力破裂的能力,是耕作阻力产生的主要缘由。
干燥土壤中,黏结性主要由土粒本身的分子引力引起。
而在潮湿时,因为土壤中含有水分,土粒与土粒的黏结经常是通过水膜为媒介的,所以事实上它是土粒-水膜-土粒之间的黏结作用。
同时,粗土粒可以通过细土粒(黏粒和胶粒)为媒介而黏结在一起,甚至通过各种化学胶结剂为媒介而黏结。
土壤黏结性的强弱,可用单位面积上的黏结力(g/cm2)来表示。
土壤的黏结力,包括不同来源和土粒本身的内在力。
有范德华力、库仑力以及水膜的表面张力等物理引力,有氢键的作用,还往往有如化学胶结剂(腐殖质、多糖胶和等)的胶结作用等化学键能的参加。
土壤黏着性是土壤在一定含水量范围内,土粒黏附在外物(农具)上的性质,即土粒-水-外物互相吸引的性能。
上壤黏着力大小仍以g/cm2等表示。
土壤开头展现豁着性时的最小含水量称为黏着点;上壤丧失黏着性时的最大含水量,称为脱黏点。
(2)结性与瓤着性的影响因素土壤赫结性和载着性均发生于土粒表面,同属表面现象,其影响因素相同,主要有土壤比表面大小和含水量凹凸两个方面。
1)土壤比表面及其影响因素土壤质地、黍占粒矿物种类和交换性阳离子组成,以及土壤团圆化程度等。
都是影响土壤黏结性和黏着性离子大小的因素。
土壤质地愈黏重,黏粒含量愈高,尤其是2:1型黏粒矿物含量高,交换性钠在交换性阳离子中占的比例大,而使土粒高度簇拥等,则黏结性与黏着性增加;反之,土粒团圆化降低了彼此间的接触面,所以有团粒结构的土壤就整体来说黏结力与黏着性削弱。
土的物理力学性质及其指标1. 体积重是指土壤单位体积的质量,通常用单位是千克/立方米(kg/m^3)或兆帕(MPa)表示。
体积重是土壤力学性质的重要参数,它直接影响土体的承载能力和稳定性。
体积重的大小与土壤颗粒密度、含水量和孔隙度有关。
2.孔隙比是指土壤中孔隙体积与总体积的比值,即孔隙度。
孔隙比能够反映土壤孔隙结构和孔隙连通性,对土壤的透水性、保水性和通气性等性质有重要影响。
孔隙比的大小与土壤颗粒颗粒的形态、大小和堆积密度等因素有关。
3.毛细吸力是指土壤孔隙中水分上升或下降所受到的作用力。
毛细吸力与土壤含水量、孔隙度、土壤颗粒大小和水表面张力等因素有关。
毛细吸力对土壤水分运移和供水能力有着重要影响,也是评价土壤保水能力和透水性的重要指标。
4.剪切强度是指土壤在剪切应力作用下的抗剪能力。
剪切强度是土体抗剪破坏的重要参数,直接影响土壤的稳定性和承载力。
土壤的剪切强度与土壤颗粒间的内聚力、黏聚力和有效应力等有关。
此外,还有一些与土壤物理力学性质相关的指标,如孔隙水压力、压缩系数、孔隙率等。
5.孔隙水压力是指土壤孔隙中水分所受到的压力。
它与土壤含水量、孔隙度和毛细吸力等因素有关。
孔隙水压力对土壤水分状态和土壤力学性质具有重要影响。
6.压缩系数是指土壤在外力作用下体积变化与应力之间的关系。
压缩系数反映土壤的压缩性质,与土壤的固结和液化等问题密切相关。
7.孔隙率是指土壤孔隙体积与总体积的比值,即孔隙系数。
孔隙率能够反映土壤孔隙结构和蓄水性能,也是评价土壤质地和透水性的一项重要指标。
这些物理力学性质和指标是描述土体力学性质和水分运移特性的重要参数,对土壤科学研究、土壤工程设计和农田管理等具有重要的理论和实际意义。
大学土管知识点总结大全第一章:土壤学基础知识1.1 土壤的定义与分类土壤是地球表面最上层由岩石颗粒、有机质、水和空气所组成的,支持生物生长的物质。
土壤根据其形成过程、化学性质、物理性质和生物性质可以分为多种类型,常见的有砂土、壤土、粘土、沙壤土等。
1.2 土壤的物理性质土壤的物理性质主要包括土壤颗粒的大小和形状、土壤的密度、孔隙度等。
这些性质对土壤的渗透性、通气性、保水性等有一定的影响。
1.3 土壤的化学性质土壤的化学性质包括土壤的酸碱度、土壤中的养分含量等。
这些性质对于土壤的肥力、养分供应等有着重要的作用。
1.4 土壤的生物性质土壤的生物性质主要指土壤中的微生物、腐解生物等。
这些微生物能够分解有机物、促进土壤的肥力等,对土壤的生态系统有着重要的作用。
第二章:土壤与植物2.1 土壤对植物的影响土壤中的养分、水分、氧气等对植物的生长有着直接的影响。
不同类型的土壤对植物的影响也有所不同,需要根据具体情况进行合理的土壤处理和管理。
2.2 土壤养分的供给土壤中的养分对于植物的生长发育至关重要。
常见的养分包括氮、磷、钾等,需要通过施肥等方式来进行补充。
2.3 土壤中的微生物土壤中的微生物对于植物的生长发育有着积极的影响。
它们可以分解有机物,促进植物的吸收养分等。
第三章:土壤改良与施肥技术3.1 土壤改良土壤改良是通过改变土壤的物理性质、化学性质、生物性质等,来提高土壤的肥力、改善土壤的透气性、保水性等。
通常采用的方法有耕作、施肥、植被覆盖等。
3.2 施肥技术施肥是为了保证植物充分获得所需的养分而对土壤进行的一种活动。
施肥的方式有化肥施用、有机肥施用等,需要结合实际情况进行选择。
第四章:土壤保护与治理4.1 土壤侵蚀土壤侵蚀是指风、水、人类等因素对土壤进行的剥蚀、冲刷等,导致土壤流失的过程。
土壤侵蚀对于土地的生产力有着严重的影响,需要采取措施加以防治。
4.2 土壤污染土壤污染是指土壤中出现的有毒物质,对土壤环境和人类健康带来危害的情况。
土壤的物理机械性和耕性土壤耕作是土壤管理的主要技术措施之一,耕作的目的是改善土壤孔隙状况,为植物生长创造良好的土壤条件。
若要合理地对土壤进行耕作,就应了解土壤的物理机械性能和耕作性质。
一、土壤的物理机械性当土壤受到外力作用(如耕作)时发生形变,显示出的一系列动力学特性,称为土壤的物理机械性。
这一性能是多项土壤动力学性质的统称,包括黏结性、黏着性、可塑性等。
(一)土壤黏结性和黏着性土壤黏结性(soil cohesiveness)是土粒间通过各种引力而黏结在一起的性质。
这种性质使土壤具有抵抗外力破碎的能力,也是耕作时产生阻力的主要原因之一。
土壤中往往含有水分,土粒之间的黏结常以水膜为媒介。
同时,粗土粒可以通过细土粒(黏粒)而黏结在一起,甚至通过各种化学胶结剂为媒介而黏结在一起。
土壤黏着性(soil adhesiveness)是土壤在一定含水量条件下,土粒黏附在外物(如农具)上的性质。
土壤过湿耕作,土粒黏着农具,增加土粒与金属间的摩擦阻力,使耕作困难。
土粒与外物的吸引力也是由于土粒表面的水膜和外物接触面产生的分子引力引起的,故黏着性实际上是指土粒—水膜—外物之间相互吸引的性能。
土壤黏结性和黏着性强弱,分别用单位面积上的黏结力(g/cm2)和黏着力(g/cm2)表示。
影响土壤黏结性和黏着性的因素主要有两方面,即土壤活性表面和土壤含水量。
土壤活性表面,一般用土壤比表面来表示。
土壤黏结性和黏着性强弱首先与土壤比表面成正比,比表面越大,黏结力和黏着力越大,黏结性和黏着性越强,反之亦然。
因此,土壤质地、土壤中黏土矿物种类和交换性阳离子组成以及土壤团聚化程度等,都影响其黏结性和黏着性。
土壤质地越黏重,黏粒含量越高,土壤黏结力和黏着力越大;而土壤质地越轻,黏结力和黏着力越小。
另外,土壤中蒙脱石为主,交换性Na+占优势,土壤高度分散,则土壤黏结性和黏着性增强;反之,黏土矿物以高岭石为主,交换性离子以Ga2+占优势,土壤团聚化程度高,则土壤的黏结性和黏着性降低。
第⼆章耕作机械第⼀节概述第⼆节犁的类型第三节铧式犁的构第⼆章耕地机械第⼀节概述⼟壤耕作是对⼟壤进⾏耕翻和疏松。
其⽬的是为农作物的种植和⽣长创造良好基本的环境条件,主要包括:(1)通过翻耕、疏松⼟壤,改善⼟壤中的⽔分、空⽓和⼟粒间的结构状况,增强⼟壤吸⽔及透⽔透⽓的能⼒。
(2)通过翻耕,铲除并覆盖杂草、绿肥、作物残茬及肥料等,增加耕层的腐殖质和肥⼒。
(3)将⼟层下⾯的⾍卵翻⾄地表消灭,防除病⾍害。
耕地机械主要是铧式犁和圆盘犁,尤以铧式犁因其优良的翻⼟和覆盖性能得到最⼴泛的应⽤。
另外,为深松⼟壤,深松犁也⽇益得到⼴泛应⽤。
⼈类应⽤犁已有数千年的历史。
刘仙洲教授在《中国古代农业机械发明史》中认为中国在3200年前已经⽤⽜拉铧式犁进⾏耕作。
虽然犁可算得上是最古⽼的农具之⼀,但对犁的研究在今天仍是令⼈感兴趣的课题。
世界各地的⼤农机公司每年都要推出⼀批新种类的铧式犁供农民选⽤。
世界⼟壤耕作研究组织(IsTRO)则每两年都要组织⼀次⼤型国际会议,探讨耕作中出现的各种问题。
⼀个不了解⼟壤的物理⼒学性质、不懂得犁是如何对⼟壤起作⽤的⼈,可能认为犁是⼀种⾮常简单的⼯具,不需要什么研究。
然⽽事实是,要设计、调整好⼀架符合要求的犁,取得最佳的耕作效果是不容易的,需要考虑许多因素。
典型的铧式犁⼯作过程如图2—1所⽰。
犁通过拖拉机的液压悬挂机构挂接在拖拉机后⾯,其犁体⼯作⾯上的胫刃和底边的铧刃将⼟壤沿左边的垂直⽅向与底⾯的⽔平⽅向切开并翻转、破碎。
农业技术对犁耕质量的要求各地不尽相同,但⼀般可归纳为如下⼏点:(1)良好的翻垡和覆盖性能;旱耕后⼟层松碎,⽔耕后断条长度⼩,⼟垡架空,以利晒垡。
图2-l犁耕作业(2)耕深⼀致、沟底平整。
(3)不漏耕、不重耕、耕后地表平整。
第⼆节犁的类型⼀、普通铧式犁1.⼀般构造普通铧式犁是指具有铧式犁基本⼯作部件,⽤于⼀般⽬的的旱地、⽔⽥犁等。
图2—2为⼀普通铧式犁,具有犁架、圆犁⼑、⼩前铧、主犁体等主要部件。
土壤的力学性质地基土通常被分为土和岩石两类1.土壤土壤是岩石风化作用的产物,包括风化后崩解、破碎的松散物质在各种自然力(重力、水流搬运、冰川作用、生物活动)的作用下在低洼地区或海底沉积而形成的沉积土及未经成岩作用的松散物质(残积土)。
土壤是一种松散物质,松散物质中主要是含有多种矿物成分的土颗粒,颗粒之间是空隙,空隙中有液体和气体(三相)。
土颗粒、水、空气三种基本物质,构成土壤的三要素。
土壤的物理力学性质通常用比重、含水量、容重、孔隙率、饱和度等来量化。
2.土壤的工程性质(物理力学性质)土壤大致分成粘性土、砂石类土和岩石三大类。
粘性土可分为粘土、亚粘土、亚砂土三种。
砂石类土可分为砂土和碎石。
砂土又可分为硕砂、粗砂、中砂、细砂、粉砂。
碎石又分为大块碎石、卵石及硕石。
碎石、砂土和粘性土等各类的物理特性可查阅相关资料。
3.碎石、砂土、粘性土、人工填土等的野外鉴别方法⑴碎石的鉴别碎石土指粒径大于2㎜的颗粒超过总质量的50%的土。
碎石的野外鉴别方法如下:1)碎石土根据粒组含量及颗粒形状,分为:漂石、块石、卵石、碎石、圆砾和角砾。
其密实程度可据其可挖性,可钻性等野外鉴别方法确定,分为密实、中密、稍密和松散四种(平均粒径大于50mm,或最大粒径超过100mm)。
2)碎石土的粒径越大,含量越多,承载力越高,骨架颗粒呈圆形充填砂土者比棱角形充填粘土者承载力高。
3)碎石土没有粘性和塑性,强度高、压缩性低、透水性好,可作为良好的天然地基。
⑵人工填土的鉴别由人类活动堆填形成的各类土称为人工填土。
按组成和成因可以分为:素填土、杂填土和冲填土。
1)素填土:由碎石、砂土、粉土、粘性土等组成的填土,称为素填土。
这种人工填土不含杂物,经分层压实者统称为压实填土,可以作为天然地基,但应注意填土年限、密度、均匀性等,以防沉降过大。
2)杂填土含有建筑垃圾、工业废料、生活垃圾等杂物的填土,称为杂填土。
其成份复杂,性质不均匀。
对以生活垃圾和腐蚀性工业废料为主的杂填土,不宜作为建筑物地基。
第一章耕层土壤的力学性质与耕作目录第一节耕层土壤的力学性质 (1)第二节土壤耕作及耕作机具 (11)第一节耕层土壤的力学性质在自然土壤的基础上,经过人类长期的耕作、施肥、灌溉等生产以及自然因素的持续作用形成了农业耕作土壤。
组成耕作土壤固相的主要是矿物质和有机质。
矿物质中包括各种大小不同的矿物质颗粒(砂粒、粉粒、粘粒等);有机质则来源于农作物根茎等残留物、土壤中的动物、微生物残体及人工施用的有机肥等。
土壤物理力学性质大多与土壤中的粘粒及有机质含量、含水量大小及外界环境的影响有关。
由于土壤结构组成的复杂性及土壤内诸因素局部的微观差异,往往使农业土壤物理力学性质的有关测量值呈现出不规则性和随机性。
而这种不规则性和随机性使耕层土壤物理力学性质的变化规律不能作出精确的描述。
因此,这种问题的解决还有待于新的理论与思想体系的引入与提出,其中Mandelbrot提出并建立的分形理论为解决这类问题带来了新的思路和方法。
一、土壤强度土壤强度是某种土壤在特定条件下抵抗外力作用的能力,也可定义为土壤承受变形或应变的能力。
因此土壤强度可以用建立应力应变方程式,或以其屈服点应力来表示。
当耕耘机械加工土壤时,对土壤进行切削、翻转、破碎和平整等导致土壤产生应力应变、结构失效以及被压实等,在此土壤加工过程中,土壤所表现出的种种力学性质主要取决于土壤强度。
土壤强度既受限于土壤本身的特性,如质地和结构,又受限于环境条件,特别是土壤的含水量等。
它的特性不仅关系到加工土壤时能耗的多少、质量的优劣,而且还关系到农机具行走装置的推进力以及各部件的摩擦磨损和整机的工作效率,对植物根系的生长发育也有直接影响。
Micklethwaite是最早把土壤强度与机具联系起来的。
应用土力学中的摩尔一库伦(Mohr--Coulomb)定律,建立了车辆的前进推力或附着力的模型。
(1—1)式中P,——土壤对车辆的最大推力或附着力;F——车轮的接地面积;C——土壤粘结力;G——法向载荷(或法向压力);——土壤间的内摩擦角。