计算机图形学人机交互绘图技术
- 格式:ppt
- 大小:1.01 MB
- 文档页数:23
计算机科学技术:计算机图形学题库三1、名词解释扫描转换答案:在矢量图形中,多边形用顶点序列来表示,为了在光栅显示器或打印机等设备上显示多边形,必须把它转换为点阵表示。
这种转换称为扫描转换。
2、单选下面对光栅扫描图形显示器描述正确的是()A.荧光粉涂层均匀离散分布;B.是一种点画设备;C.电子束从顶到底扫描;D.通过控制电子束的强弱实现色彩的强弱;答案:A3、填空题计算机图形系统由()系统和软件系统组成。
答案:硬件4、填空题在处理图形时常常涉及的坐标系有模型坐标系(),世界坐标系,观察坐标系,设备坐标系。
答案:局部坐标系5、单选计算机图形学与计算机图象学的关系是()。
A.计算机图形学是基础,计算机图象学是其发展B.不同的学科,研究对象和数学基础都不同,但它们之间也有可转换部分C.同一学科在不同场合的不同称呼而已D.完全不同的学科,两者毫不相干答案:B6、问答题简述中点分割法进行裁剪的过程?答案:中点分割剪取法,主要是对线段不断地进行对分,并排除在区域外的部分,找出线段落在窗口内的部分。
其方法主要是通过求出离线段的一个端点最近并且在区域内的点的方法,来确定线段落在窗口内的端点。
7、问答题局部光照模型和全局光照模型的不同之处是什么?答案:局部光照模型主要是考虑光源发出的光对物体的直接影响。
另外,全局光照模型除了处理光源发出的光之外,还考虑其他辅助光的影响,如光线穿过透明或半透明物体,以及光线从一个物体表面反射到另一个表面等。
8、判断题彩色阴极射线管主要是由红绿蓝三个彩色电子束的亮度不同,进而组合形成各种色彩的。
答案:错9、问答题什么叫做走样?什么叫做反走样?反走样技术包括那些?答案:走样指的是用离散量表示连续量引起的失真。
为了提高图形的显示质量。
需要减少或消除因走样带来的阶梯形或闪烁效果,用于减少或消除这种效果的方法称为反走样。
其方法是①前滤波,以较高的分辨率显示对象;②后滤波,即加权区域取样,在高于显示分辨率的较高分辨率下用点取样方法计算,然后对几个像素的属性进行平均得到较低分辨率下的像素属性。
交互式计算机图形学的发展和应用前景计算机图形学是计算机科学中非常重要的一部分,它涉及到计算机图像、图形处理、三维建模、图形渲染、图形系统等方面。
而交互式计算机图形学是指在计算机图形学中利用人机交互的手段,实现人类对计算机图形的操作、控制和生成。
交互式计算机图形学被广泛应用于计算机游戏、虚拟现实、建筑设计、制造业等领域。
随着计算机技术的不断发展,交互式计算机图形学的应用前景将变得越来越广泛和深入。
交互式计算机图形学的发展交互式计算机图形学的历史可以追溯到20世纪60年代,当时出现了第一个计算机图形学的研究机构,随后又出现了形式化计算机图形学和计算机几何学等研究领域。
然而,由于当时计算机的性能和图形学技术的不足,导致交互式计算机图形学的发展受到很大的限制。
直到20世纪80年代,随着图形学软件、图形卡的出现,交互式计算机图形学得到了快速发展。
在此基础上,OpenGL、DirectX、WebGL等图形编程接口不断推陈出新,使得交互式计算机图形学的应用更加广泛。
交互式计算机图形学的应用前景1. 游戏游戏是交互式计算机图形学最广泛、最深入的应用领域之一。
随着计算机游戏的快速发展,交互式计算机图形学在游戏中的应用也越来越广泛。
从开放式世界的非线性剧情、高精度的人物模型和场景设计到逼真的物理引擎和粒子效果,交互式计算机图形学为游戏提供了更丰富的可玩性和视觉体验,为游戏产业的发展带来了新的动力。
2. 虚拟现实虚拟现实是一种计算机生成的仿真世界,它能够通过交互式计算机图形学实现真实感受,从而提供更加逼真的体验。
目前,虚拟现实已经被应用于火车驾驶模拟、房屋装修、室内设计等领域。
而未来,随着虚拟现实技术的不断完善,交互式计算机图形学在虚拟现实领域的应用将会更加广泛和深入。
3. 建筑设计交互式计算机图形学在建筑设计领域的应用也备受瞩目。
通过使用计算机软件和图形接口,建筑师可以轻松地创建和修改建筑设计。
同时,通过交互式计算机图形学还可以实现3D建筑模型的交互式漫游,让客户更加直观地了解设计方案和效果。
计算机图形学的应用与未来发展趋势随着计算机技术的飞速发展,计算机图形学逐渐在各个领域中得到了广泛的应用。
作为一门涉及到图像、绘制技术、图形模型、光线追踪等内容的学科,计算机图形学早已不再局限于传统的图像处理、动画制作等领域,而是涉及到了更多的层面,不断探索着新的应用领域。
本文将从应用和未来发展趋势两个方面来探讨计算机图形学的现状和未来。
一、计算机图形学的应用1、游戏制作游戏制作是计算机图形学的重要应用领域之一。
随着游戏的日益普及,游戏制作的需求量也越来越大。
如今的游戏作品已经不再是简单的2D图像展示,而是追求更加真实的3D场景模拟、精细的效果制作和逼真的物理引擎模拟,这也要求计算机图形学能够提供更加强大、精细、稳定的技术支持。
2、虚拟现实虚拟现实的出现,让人们的体验从传统的观看、听取等模式转变成为了完全身临其境的感受。
虚拟现实所涉及到的图像处理、图形建模等技术正是计算机图形学的核心领域,只有这些技术不断得到更新和提升,才能给人们带来更加深入、逼真、丰富的体验。
3、工业设计工业设计也是计算机图形学的应用领域之一。
通过计算机图形学提供一套完整、高效、准确的图像处理、渲染、建模等技术,可以为工业设计带来更加便捷的操作、更高的效率、更加准确的设计结果。
4、医学影像分析随着医学影像系统的不断发展,医学影像分析也成为了计算机图形学的一大应用领域。
在医学领域,计算机图形学可以用于影像处理、3D建模、立体显示等方面,提供准确、细致、高精度的技术支持。
二、计算机图形学的未来发展趋势1、多模态技术多模态技术是计算机图形学的未来发展方向之一。
通过多模态技术,可以实现物体的多维度、多角度的显示与处理,更加逼真、全面地呈现出物体的真实特征。
2、虚拟现实和增强现实虚拟现实和增强现实是计算机图形学发展的热门方向。
虚拟现实的发展,将重新定义我们对于世界的认知方式,增强现实则可以在现实场景下展现虚拟物体,为人们的视觉体验提供更加多样、丰富的选择。
《人机交互技术》课程实验指导书山东大学计算机科学技术学院软件学院《人机交互技术》课程实验教学大纲课程名称:人机交互技术英文名称:Human-computer Interaction Technology课程编号:课程负责人:王璐大纲主撰人:王璐课程总学时:32 实验学时: 16课程总学分:3适用专业及年级: 计算机科学与技术/软件工程系/数字媒体,三年级本科生一.实验教学的目的通过《人机交互技术》实验课程的实践,使学生了解《人机交互技术》与计算机图形、程序设计、认知心理学以及计算机硬件的发展等领域密切相关,并加深学生对人机交互知识的理解,增强学生的实际运用能力和开发高可用性的交互界面的能力。
二.实验教学的任务通过案例学习,让学生了解不同的人机交互模型设计类型,以及成功与失败案例所带来的启示。
通过原型设计使学生了解原型的作用,并了解用户需求对设计一个良好人机交互界面的重要性。
通过原型和界面评估,使学生掌握针对交互系统的评估方法。
三.具体实验题目名称和学时分配、适用专业及实验性质(设计性、综合性、验证性)一个具有语音提示功能的界面,要求设计交互模型,根据实际应用情况来确定是否要用语音。
技术/软件工程SpeechSDK,在公共PC机房,要求配有语音卡、耳麦、扬声器等多媒体设备2 人机交互系统的评估4计算机科学技术/软件工程/数字媒体综合性选开提交所评估的系统评估报告3 (1)基于三维运动捕捉设备的人体骨架信息的获得与处理(2)基于三维运动捕捉设备采集三维运动数据4 数字媒体演示性必开数字媒体专业实验室4 基于Web3D的虚拟漫游交互学习系统:利用Web3D构建一个如图所示的虚拟场景,结合某个主题创建一个知识学习体系,丰富场景中多媒体展示形式,支持多用户漫6计算机科学技术/软件工程/数字媒体综合性必开在普通PC机房进行,要求环游和虚拟环境中的人人交互、人物交互等。
境,建模工具Maya,游戏引擎Web3D,游戏开发环境AptanaStudio5 设计人机交互课程PC端及移动设备上的自定制网页界面。
数字媒体技术在虚拟现实领域中的应用虚拟现实(VR)是一种模拟现实情景的技术,数字媒体技术是该领域的关键驱动力之一。
数字媒体技术涵盖了许多技术领域,包括计算机图形学、计算机视觉、信号处理、模式识别和人机交互等。
这些技术可以用来创建逼真的虚拟环境,使用户可以沉浸在其中。
本文将介绍数字媒体技术在虚拟现实领域中的应用。
一、计算机图形学计算机图形学是虚拟现实中最重要的技术领域之一。
这项技术用于创建3D模型、纹理和光线跟踪等视觉效果。
图形学技术可以模拟现实中的几乎任何场景,包括城市、山脉、海洋和云层等。
它还可以用来创建虚拟角色和动画。
计算机图形学技术的发展使得虚拟现实更加逼真。
以前,虚拟现实只能用来创建非常简单的场景,但现在,随着计算机图形学技术的不断进步,我们可以创建复杂的场景,每个细节都非常逼真。
这项技术还可以用来创建互动的虚拟环境,用户可以通过不同的方式与虚拟环境互动。
二、计算机视觉计算机视觉是另一项关键技术,它用于理解虚拟环境中的图像和视频。
计算机视觉技术包括图像识别、运动跟踪和深度感知等。
这些技术可以用来识别虚拟环境中的物体和人物,使虚拟现实更加真实。
例如,计算机视觉可以用于创建虚拟镜子。
虚拟现实中的镜子需要能够反射虚拟环境中的物体并捕捉用户的反应。
计算机视觉技术可以捕捉用户的反应并将其反映在虚拟环境中。
这种互动的虚拟环境可以模拟现实中的交互,使用户更加沉浸。
三、信号处理和模式识别信号处理和模式识别是另两个重要的技术领域。
信号处理可以用于分析虚拟现实中的声音和音乐,使其更加逼真。
模式识别可以用于识别用户的动作和姿势。
例如,信号处理可以用于创建虚拟演唱会。
虚拟现实中的演唱会需要能够模拟真实的音乐环境,包括音乐的音调、节奏和韵律。
信号处理技术可以分析这些音乐元素,并加以呈现。
这将使用户感觉像是在现场观看演唱会一样。
四、人机交互例如,手势控制可以用于创建虚拟游戏。
虚拟游戏中的玩家需要通过手势来控制角色和物体。
虚拟现实技术中的图形学和人机交互虚拟现实技术(Virtual Reality)是一项将计算机技术与人类视觉、听觉等感官融合得极其紧密的前沿技术。
在虚拟现实技术中,图形学和人机交互技术是最为重要的核心技术。
本文将从这两者的角度来探讨虚拟现实技术。
一、图形学虚拟现实技术的核心之一——图形学,旨在模拟真实场景,使得用户可以在三维虚拟空间中与对象进行交互,创造出一种逼真的体验感。
在虚拟现实技术中,图形学实现的目标是模拟真实世界的物理规律,使得用户可以“亲临”到一个逼真的虚拟世界中。
其中最关键的是模拟现实光照、物理运动、材质应答等方面的效果。
针对这些要求,在虚拟现实技术中,图形学的研究方向主要是三维建模、图像处理、可视化,其中的每个研究方向都涉及到了许多复杂的算法和技术。
例如,在三维建模中,需要考虑场景的组成、光照、纹理、物理运动等因素;在图像处理中,需要考虑图像的采集和处理。
而这些复杂的算法和技术都需要基于计算机的强大计算能力和存储能力才能够实现。
在虚拟现实技术的发展历程中,图形学一直保持着一个高速发展的态势。
从最开始简单的三维建模,到后来的真实光照、物理运动模拟,再到现在的虚拟现实交互,图形学在各方面都得到了巨大的发展。
特别是在计算机硬件的不断升级和发展中,图形学也逐步实现了更为逼真的场景。
二、人机交互除了图形学,虚拟现实技术中的另一个核心技术就是人机交互。
这是指通过计算机技术,将用户的动作和看法进行感知和解析,并对其进行控制与响应,使得用户可以在虚拟现实空间中实现与场景中对象交互的体验。
在人机交互技术中,最常见的是虚拟现实头戴式显示设备。
这种设备中,通常会内置一些传感器,来实时感知用户的动作。
这样利用传感器可以使得虚拟现实设备以更高的实时性和更快的反应速度对用户的动作进行响应。
而在接收用户的触发后,计算机再通过算法和技术来做出相应的交互反馈,使得用户可以在虚拟世界中获得极致的体验感受。
人机交互技术的应用实际相当广泛,从电子游戏、培训、医学、建筑等各个领域都有重要的应用。
算机图形学复习题1. 像素(Pixel:Picture Cell)是构成屏幕图像的最小元素。
2. 容器坐标系的坐标原点,默认总是在容器的左上角。
3. 当用户执行不符合系统的操作或提出不正确的要求时,系统必须继续执行下去并与用户进行通讯,即具有容错性。
4. 在RGB 函数的颜色值中,255 表示亮度最高。
5. 矩阵[X Y] 通常称为点(X,Y )的矢量,X 和Y 是这个矢量沿坐标轴的分量。
6. 扫描仪最重要的参数是光学精度和扫描精度。
7. 把三维物体变为二维图形表示的过程叫做投影变换。
8. 三维物体在计算机内常用的表示方法有线模型、面模型和立体模型三种。
9. 计算机图形的生成过程一般可分为图形的表示、表示图形的显示和图形的显示。
画擦法是图形动画中最简单的一种方法。
画——即是用指定前景色、执行相应程序、画出基本图形;擦——即是用背景色、执行同样程序、再画一遍。
Gif 格式在网络上被广泛使用,支持动画图像,支持256 色,对真彩图片进行有损压缩。
用多祯可以提高颜色准确度。
10. 3D MAX, MAY A 等等都是很好的计算机动画创作工具。
11. 虚拟现实(Virtual Reality )或称虚拟环境(Virtual Environment)是用计算机技术来生成一个逼真的三维视觉、听觉、触觉或嗅觉等感觉世界。
12. 若把在线模型中棱线包围的部分定义为面,所形成的模型就是面模型,13. 刻画对象的颜色、材质等,构成了图形的非几何要素。
14. 计算机图形系统由硬件系统和软件系统组成。
15. 容器坐标系包括坐标原点、坐标度量单位和坐标轴的长度与方向。
16. Visual Basic 图形程序设计的步骤包括:(0)程序构思(1)窗体设计(2)代码设计(调试运行(4)保存工程。
17. 扫描仪最重要的参数是光学精度和扫描精度。
18. 由于斜投影与正投影是仿射变换关系,故可以先对三维空间物体做错切变换,然后再做正投影变换求出斜投影。
虚拟现实技术应用主要课程
1. 计算机图形学,这门课程主要涉及计算机生成的图像、图形处理、渲染技术等内容,对于虚拟现实技术的图像生成和呈现至关重要。
2. 人机交互,这门课程主要研究人与计算机之间的交互方式和技术,包括虚拟现实设备的用户界面设计、交互技术等内容。
3. 三维建模与动画,这门课程主要教授三维模型的创建、动画制作等技术,是虚拟现实技术开发中必不可少的一部分。
4. 虚拟现实技术原理与应用,这门课程通常涵盖虚拟现实技术的基本原理、发展历史、应用案例等内容,是学习虚拟现实技术的基础课程之一。
5. 传感器技术,虚拟现实技术通常需要借助传感器来获取用户的动作、位置等信息,因此传感器技术的课程对于虚拟现实技术的学习和应用至关重要。
6. 虚拟现实技术开发与编程,这门课程通常包括虚拟现实技术
的开发工具、编程语言、开发环境等内容,是学习如何实际开发虚拟现实应用的重要课程。
除了上述主要课程外,还有许多相关的选修课程和研究课题,如增强现实技术、虚拟现实技术在医疗、教育、游戏等领域的应用等。
总的来说,虚拟现实技术的学习涉及多个学科领域,需要学习者具备扎实的计算机科学、图形学、感知心理学等方面的知识和技能。
希望以上回答能够全面地解答你的问题。
计算机图形学课程教学大纲Final approval draft on November 22, 2020《计算机图形学》课程教学大纲一、课程基本信息课程代码:110053课程名称:计算机图形学英文名称:Computer Graphics课程类别:专业课学时:72学分:3.5适用对象:信息与计算科学专业本科生考核方式:考试(平时成绩占总成绩的30%)先修课程:高级语言程序设计、数据结构、高等代数二、课程简介中文简介:计算机图形学是研究计算机生成、处理和显示图形的学科。
它的重要性体现在人们越来越强烈地需要和谐的人机交互环境:图形用户界面已经成为一个软件的重要组成部分,以图形的方式来表示抽象的概念或数据已经成为信息领域的一个重要发展趋势。
通过本课程的学习,使学生掌握计算机图形学的基本原理和基本方法,理解图形绘制的基本算法,学会初步图形程序设计。
英文简介:Computer Graphics is the subject which concerned with how computer builds, processes and shows graphics. Its importance has been shown in people’s more and more intensively need for harmony human-machine interface. Graphics user interface has become an important part of software. It is a significant trend to show abstract conception or data in graphics way. Through the learning of this course, students could master Computer Graphics’basic theories and methods,understand graphics basic algorithms and learn how to design basic graphics program.三、课程性质与教学目的《计算机图形学》是信息与计算科学专业的一门主要专业课。
计算机图形学与人工智能的结合研究在当今科技飞速发展的时代,计算机图形学和人工智能作为两个热门领域,它们的结合正引领着一系列令人瞩目的创新和变革。
计算机图形学主要关注如何生成、处理和显示图像、模型等图形数据。
它在影视特效、游戏设计、虚拟现实、建筑设计等众多领域发挥着关键作用。
而人工智能则致力于让计算机模拟人类的智能行为,包括学习、推理、决策等。
当这两个领域相互融合时,产生的协同效应为许多应用带来了全新的可能性。
首先,让我们来看看在图像生成方面的结合。
传统的计算机图形学方法往往需要大量的人工设计和建模工作,才能创建出逼真的图像。
然而,借助人工智能中的深度学习技术,特别是生成对抗网络(GANs),可以自动学习图像的特征和模式,从而生成极具真实感的图像。
比如,在游戏开发中,通过训练 GANs 模型,可以快速生成各种虚拟场景和角色,大大提高了开发效率,同时也提升了游戏的视觉效果。
在三维模型重建方面,计算机图形学与人工智能的结合也展现出了巨大的潜力。
以往,从二维图像重建三维模型是一个复杂且耗时的过程。
现在,利用深度学习算法,可以自动分析图像中的几何形状和纹理信息,实现更精确和高效的三维重建。
这对于文物保护、医学影像分析等领域具有重要意义。
例如,在医学领域,通过对患者的 CT 或MRI 图像进行三维重建,医生可以更直观地了解病变部位的结构,从而制定更精准的治疗方案。
在虚拟现实和增强现实领域,这种结合更是带来了身临其境的体验。
通过人工智能算法对用户的动作和表情进行实时捕捉和分析,计算机图形学能够相应地调整虚拟环境中的场景和物体,使得交互更加自然和真实。
想象一下,当你戴上虚拟现实头盔,进入一个虚拟的世界,你所看到的场景能够根据你的目光、手势和身体动作实时变化,仿佛你真的置身于那个虚拟的空间之中。
此外,在计算机动画制作中,人工智能可以帮助生成更加自然流畅的动作。
传统的动画制作中,角色的动作往往需要动画师一帧一帧地绘制,工作量巨大。
计算机图形学技术的新发展与应用前景计算机图形学技术的新发展:1.虚拟现实(Virtual Reality,VR):通过计算机技术模拟出的虚拟世界,用户可以与之互动,感受身临其境的体验。
2.增强现实(Augmented Reality,AR):在现实世界中,通过计算机技术增加虚拟元素,用户可以与之互动。
3.3D打印:利用计算机图形学技术,将虚拟模型转化为实体模型,广泛应用于制造业、医疗、建筑等领域。
4.计算机辅助设计(Computer-Aided Design,CAD):利用计算机图形学技术进行产品设计,提高设计效率,降低成本。
5.计算机辅助制造(Computer-Aided Manufacturing,CAM):利用计算机图形学技术,实现制造过程的自动化、智能化。
6.数字图像处理:利用计算机图形学技术对图像进行处理,提高图像质量,实现图像识别、分析等功能。
7.计算机动画:利用计算机图形学技术制作动画,包括二维动画和三维动画。
8.图形用户界面(Graphical User Interface,GUI):利用计算机图形学技术,设计友好的用户界面,提高用户体验。
9.教育:虚拟现实、增强现实等技术在教育领域的应用,可以为学生提供更加生动、直观的学习体验。
10.医疗:计算机图形学技术在医学领域的应用,如三维影像重建、虚拟手术等,可以提高诊断和治疗效果。
11.娱乐:计算机图形学技术在游戏、电影、音乐等娱乐领域的应用,可以提供更加丰富、立体的娱乐体验。
12.制造业:计算机辅助设计、计算机辅助制造等技术在制造业的应用,可以提高生产效率,降低成本。
13.建筑:计算机图形学技术在建筑领域的应用,如三维建模、虚拟现实等,可以提高设计效果,降低建筑成本。
14.交通:计算机图形学技术在交通领域的应用,如智能导航、三维地图等,可以提高出行效率,降低交通事故。
15.环境保护:计算机图形学技术在环保领域的应用,如三维仿真、数据分析等,可以提高环保监测效果。
解读计算机图形学的演进与未来发展趋势计算机图形学是一门研究计算机生成、处理和显示图像的学科。
随着计算机技术的逐步发展,计算机图形学也经历了多个阶段的演进,为我们带来了许多优秀的图像处理和生成技术。
本文将对计算机图形学的演进历程以及未来的发展趋势进行解读。
1. 早期计算机图形学的发展早期的计算机图形学主要关注于图像的显示和输入技术。
在20世纪60年代,计算机硬件条件有限,图像处理能力较弱。
此时图形学主要应用是在计算机辅助设计(CAD)领域,用于辅助工程师进行设计和绘制。
2. 三维图形学的崛起随着计算机硬件性能的提高,20世纪70年代和80年代,三维图形学开始逐步崛起。
此时的图形学主要关注于三维模型的建模、渲染和动画等技术。
三维图形学的发展为现代电影制作和游戏开发等领域提供了强大的支持,让人们可以创造出逼真的虚拟世界。
3. 计算机图形学的应用拓展随着计算机技术的快速发展,计算机图形学的应用范围也得到了进一步拓展。
除了娱乐和设计领域,图形学还被广泛应用于医学图像处理、虚拟现实、计算机辅助医疗等领域。
图形学的应用正在深入到人们的日常生活中,为人们提供更多的便利和乐趣。
4. 计算机图形学的未来发展趋势计算机图形学的未来发展将主要集中在以下几个方面:4.1. 实时渲染技术实时渲染是计算机图形学领域一个重要的研究方向。
随着虚拟现实和增强现实技术的发展,对实时渲染的要求越来越高。
未来的发展将着重于提高实时渲染的性能和质量,使得虚拟世界更加逼真和沉浸式。
4.2. 计算机视觉与图像处理计算机视觉和图像处理是计算机图形学领域的重要分支。
随着深度学习等人工智能技术的进步,计算机视觉和图像处理在智能驾驶、人脸识别、图像检索等领域有着广阔的应用前景。
未来的发展将致力于将计算机视觉和图像处理与图形学相结合,实现更多复杂任务的自动化和智能化。
4.3. 虚拟现实与增强现实虚拟现实和增强现实是计算机图形学领域较为热门的研究方向。
随着移动设备和头戴式显示器的普及,虚拟现实和增强现实正在逐渐走入人们的日常生活。