分式方程工程问题
- 格式:pdf
- 大小:43.23 KB
- 文档页数:2
分式方程的重要题型第一种题型工程问题:1.某市地铁1号线某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作15天,共完成总工程的。
①.求乙队单独完成这项工程需要多少天?②.为了加快工程进度,甲乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?2.某工厂计划在规定的时间内生产24000个零件,若每天此原计划多生产30个零件,则在规定的时间内可以多生产300个零件。
①.求原计划每天生产的零件个数和规定的天数。
②.为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进了5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数。
3.某一公路道路维修工程,准备从甲乙两个工程队中选一个队单独完成,根据两队每天的工程费用和每天完成的工程量可知,若由两队合作此项维修工程,6天可以完成,共需工程费用385200元,若由一队单独完成此项维修工程,甲队比乙队少用5天,甲队每天的工程费用比乙队多4000元,从节省资金的角度考虑,应选择哪个工程队单独完成此项维修工程?4.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年后,城区绿化总面积新增360万平方米,自2013年年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务。
①.问实际每年绿化面积是多少万平方米?②.为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过两年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?5.某校为美化校园,计划对面积为1800㎡的区域进行绿化。
安排甲乙两个工程队完成,已知甲队每天完成绿化的面积是乙队每天完成绿化面积的两倍,并且在单独完成面积为400㎡的区域绿化时,甲队比乙队少用4天。
分式方程是高中数学中的一个重要知识点,它在工程问题和路程问题中有着广泛的应用。
通过分式方程,可以解决诸如管道工程、水利工程、交通运输等方面的实际问题。
本文将从工程问题和路程问题两个方面来探讨分式方程的应用思路。
一、工程问题中的分式方程应用1.1 管道工程在管道工程中,经常会遇到液体或气体在管道中流动的问题。
假设一个长为L的管道中有两个孔,已知从第一个孔流出液体的速度为V1,从第二个孔流出液体的速度为V2,要求求出流出液体的总量。
我们可以建立如下的分式方程来解决这个问题:$\frac{x}{V1} + \frac{L-x}{V2} = T$其中,x表示从第一个孔流出液体的时间,L-x表示从第二个孔流出液体的时间,T表示总时间。
通过解这个分式方程,可以求出流出液体的总量。
1.2 水利工程在水利工程中,经常需要计算水库的注水和排水问题。
假设一个水库的注水管每分钟注入水量为A,排水管每分钟排水量为B,如果注水管和排水管同时开启,求出水库的水位变化规律。
我们可以建立如下的分式方程来解决这个问题:$\frac{dV}{dt} = A - B$其中,dV/dt表示水库水位随时间的变化率。
通过解这个分式方程,可以求出水库水位随时间的变化规律。
1.3 其他工程问题除了管道工程和水利工程,分式方程还可以应用于其他工程问题,如风力发电机组的发电功率问题、地基沉降速度问题等。
在解决这些问题时,我们可以根据实际情况建立相应的分式方程,然后通过求解方程得出问题的答案。
二、路程问题中的分式方程应用2.1 交通运输在交通运输中,经常需要计算车辆的行驶时间和行驶距离。
假设一辆车以速度V1从A地出发到B地,再以速度V2从B地返回A地,已知车辆的往返总时间为T,求出车辆的行驶距离。
我们可以建立如下的分式方程来解决这个问题:$\frac{2x}{V1} + \frac{2(L-x)}{V2} = T$其中,x表示车辆往返的时间,L-x表示车辆返回的时间,T表示总时间。
分式方程应用题—工程问题工程问题:这类问题也涉及三个数量:工作量、工作效率和工作时间。
它们的数量关系是:工作量=工作效率*工作时间。
列分式方程解决实际问题用它的变形公式:工作效率=工作量/工作时间。
特别地,有时工作总量可以看作整体“1”,这时,工作效率=1/工作时间。
【类型一】工作量不统一,时间相同的工程问题,以时间为等量关系: 实际效率实际工作量原计划效率原计划工作量 1.某人现在平均每天比原计划多加工33个零件,已知现在加工3300个零件所需的时间和原计划加工2310个零件的时间相同,问现在平均每天加工多少个零件。
2.某煤矿现在平均每天比原计划多采330吨,已知现在采煤33000吨煤所需的时间和原计划采23100吨煤的时间相同,问现在平均每天采煤多少吨。
3.某化肥厂计划在规定日期内生产化肥120吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨与原计划生产120吨的时间相等,求计划每天生产多少吨化肥?4.A 做90个零件所需要的时间和B 做120个零件所用的时间相同,又知每小时A 、B 两人共做35个机器零件。
求A 、B 每小时各做多少个零件。
【类型二】前后效率不同,时间提前了,以时间为等量关系: 提前的时间实际效率工作量计划效率工作量 - 1、某车间加工1200个零件后,采用新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用10小时,采用新工艺前后每时分别加工多少个零件?2.某市为了进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路,为使工程能提前3个月完成,需要将原定的工作效率提高12%。
问原计划这项工程用多少个月。
3.某空调厂的装配车间,原计划用若干天组装150台空调,厂家为了使空调提前上市,决定每天多组装3台,这样提前3天超额完成了任务,总共比原计划多组装6台,问原计划每天组装多少台?4.某水泵厂在一定天数内生产4000台水泵,工人为支援四化建设,每天比原计划增产%25,可提前10天完成任务,问原计划日产多少台?5.某车间需加工1500个螺丝,改进操作方法后工作效率是原计划的212倍,所以加工完比原计划少用9小时,求原计划和改进操作方法后每小时各加工多少个螺丝?6.打字员甲的工作效率比乙高%25,甲打2000字所用时间比乙打1800字的时间少5分钟,求甲乙二人每分钟各打多少字?7.现要装配30台机器,在装配好6台后,采用了新的技术,每天的工作效率提高了一倍,结果共用了3天完成任务。
分式方程中的工程问题:典例分析:例1、一件工程甲单独做a 小时完成,乙单独做b 小时完成,甲、乙二人合作完成此项工作需要的小时数是( ). A 、b a + B 、b a 11+ C 、b a +1 D 、ba ab + 例2、某项工程预计在规定的日期内完成,如果甲独做刚好能完成,如果乙独做就要超过日期3天,现在甲、乙两人合做2天,剩下的工程由乙独做,刚刚好在规定的日期完成,问规定日期是几天?针对训练1:1、一项工程,甲需x 小时完成,乙需y 小时完成,则两人一起完成这项工程需要______ 小时。
2、某工程需要在规定日期内完成,如果甲工程队独做,恰好如期完成; 如果乙工作队独做,则超过规定日期3天,现在甲、乙两队合作2天,剩下的由乙队独做,恰好在规定日期完成,求规定日期.如果设规定日期为x 天,下面所列方程中错误的是( ) A.213x x x +=+; B.233x x =+; C.1122133x x x x -⎛⎫+⨯+= ⎪++⎝⎭; D.113x x x +=+3、为加快西部大开发的步伐,决定新修一条公路,甲、乙两工程队承包此项工程。
如果甲工程队单独施工,则刚好可以按期完成;如果乙工程队单独施工就要超过6个月才能完成。
现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则也刚好可以按期完成。
问原来规定修好这条公路需多长时间?4、某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共4350元;乙、丙两队合做10天完成,厂家需付乙、丙两队共4750元;甲、丙两队合做5天完成全部工程的32,厂家需付甲、丙两队共2750元。
(1)求甲、乙、丙各队单独完成全部工程各需多少天?(2)若工期要求不超过20天完成全部工程,问可由哪队单独完成此项工程花钱最少?请说明理由。
分式方程的典型应用题用于过关检测一工程问题1.甲、乙两班同学参加“绿化祖国”活动,已知乙班每小时比甲班多种2棵树,甲班种60棵树所用的时间与乙班种66棵树所用的时间相等,求甲乙两班每小时各种多少棵树?2.某市为了缓解交通拥堵现象,决定修建一条市中心到飞机场的轻轨铁路,为使工程提前3个月完成,需要将原定的工作效率提高12℅,问原计划完成这项工程需用多个月?3.某项工程在工程招标时,接到甲、乙两个工程队投标书,施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元,工程领导小组根据甲乙两的投标书预算,有如下方案:(1)甲队单独完成这项工程刚好如期成完成;(2)乙队单独完成这项工程要比规定的日期多用6天;(3)若甲乙两合做3天,余下的的工程由乙队单独做也正好如期完成.那么在不耽误工期的前提下,你觉得那一种施工方案最节省工程款?请说明理由.4.丽园开发工司的960件新产品需要精加工才能投放市场,现有甲乙两个工厂都想加工这批产品,已知甲工厂单独加工这批产品比乙工厂单独加工这批产品多用20天,且甲工厂每天加工的数量是乙工厂每天加工的数量的,公司需付甲工厂加工费用每天80元,乙工厂加工费用每天120元。
(1)甲、乙两工厂每天各能加工多少件新产品?(2)公司制定产品加工方案如下:可以由两个工厂单独完成,也可以由两个工厂合作完成,在加工的过程中,公司派一名工程师每天到厂家进行技术指导,并负担每天5元的午餐补助,请帮公司选择一种即省时又省钱的加工方案。
二行程问题5.八(1)班同学周末乘汽车到游览区游览,游览区距学校120千米,一部分学生乘慢车先行,出发后1小时后,另一部分学生乘快车前往,结果他们同时到达游览区,已知快车的速度是快车的速度的1.5倍,求快车的速度.6.小明7:20分离家上学去,走到距离家500米的商店时,买学习用品用了5分钟从商店出来,小明发现按原来的速度还要30分钟才能到学校,为了8:00之前赶到学校,小明加快了速度每分钟比原来多走25 米,求小明从商店到学校的速度。
列分式方程解决实际问题常见的几种类型一、行程问题例题、小明和小亮进行百米比赛。
当小明到达终点时,小亮距离终点还有5米,如果小明比小亮每秒多跑0.35米,你知道小明百米跑的平均速度是多少吗?解:设小明百米跑的平均速度为xm/s ,那么小亮百米跑的平均速度是(x-0.35)m/s ,根据题意得,10010050.35x x -=- 解这个方程得7x =经检验:7x =是原方程的解。
答:小明百米跑的平均速度是米/秒。
二、工程问题某工程队承建一所希望小学。
在施工过程中,由于改进了工作方法,工作效率提高了20%,因此,比原定工期提高了1个月完工。
问这个工程队原计划用几个月建成这所希望小学?解:设这个工程队原计划用x 个月建成这所希望小学,根据题意得11(120%)1x x +=- 解这个方程得6x =经检验:6x =是原方程的解。
答:这个工程队原计划用6个月建成这所希望小学。
三、数字问题今年父亲的年龄是儿子年龄的3倍,再过5年,父亲与儿子的年龄的比是22:9。
求今年父亲和儿子的年龄。
解:设今年儿子的年龄是x 岁,则父亲的年龄是3x 岁,根据题意得352259x x +=+ 解这个方程得x=13经检验:x=13时原方程的解3x=3×13=39答:今年父亲和儿子的年龄分别是13岁和39岁。
四、利润问题某超市市场销售一种钢笔,每枝售价为11.7元。
后来,钢笔的进价降低了6.4%,从而使超市销售这种钢笔的利润提高了8%。
这种钢笔原来每枝是多少元?解:设这种钢笔原来每枝的进价为x 元,根据题意得11.711.7(1 6.4%)100%8%100%(1 6.4%)x x x x---⨯+=⨯- 解这个方程得x=10经检验:x=10时原方程的解答:这种钢笔原来每枝是10元。
五、几何问题如图所示某村计划开挖一条长1500米的水渠,渠道的横断面为等腰梯形,渠道深0.8米,下底宽1.2米,坡角为45°。
实际开挖时,工作效率是原计划的1.2倍,结果比原计划提前4天完工。
分式方程应用题的常见类型题型1 工程问题1、政府计划对运动公园进行改造,这项工程先由甲工程队施工10天,完成了公园工程的1/4,为了加快工程进度,乙工程队也加入了施工,甲乙两工程队合作完成了剩下的工程,求乙工程队单独完成这项工程需要几天?解:设乙工程队单独完成需要x 天1114110420x x +=-= 经检验20x =是原方程的根所以乙工程队单独完成这项工程需要20天。
2、某工程队修建一条1 200 m 的道路,采用新的施工方式,工效提高了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前两天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?解:(1)设这个工程队原计划每天修建道路x 米,得1 200x = 1 200(1+50%)x +4,解得x =100.经检验,x =100是原方程的解.答:这个工程队原计划每天修建100 m .(2)设实际平均每天修建道路的工效比原计划增加y%,可得1 200100= 1 200100+100y%,解得y =20.经检验,y=20是原方程的解.答:实际平均每天修建道路的工效比原计划增加百分之二十.3、一项工程,甲、乙两公司合做,12天可以完成,共需付施工费102 000元;如果甲、乙两公司单独完成此项工程,乙公司所用的时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1 500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得1 x+11.5x=112,解得x=20,经检验,x=20是方程的解且符合题意.1.5x=30.答:甲公司单独完成此项工程需20天,乙公司需30天.(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y-1 500)元,根据题意,得12(y+y-1 500)=102 000,解得y=5 000.甲公司单独完成此项工程所需的施工费为20×5 000=100 000(元);乙公司单独完成此项工程所需的施工费为30×(5 000-1 500)=105 000(元).∴甲公司的施工费较少.类型2 行程问题1、甲、乙两同学与学校的距离均为3 000米,甲同学先步行600米然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行的速度是乙骑自行车速度的12,公交车速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度.(2)当甲到达学校时,乙同学离学校还有多远?解:(1)设乙骑自行车的速度为x 米/分钟,则甲步行速度是12x 米/分钟,公交车的速度是2x 米/分钟,根据题意,得60012x+3 000-6002x=3 000x -2, 解得x =300.经检验,x =300是方程的解.答:乙骑自行车的速度为300米/分钟.(2)300×2=600(米).答:当甲到达学校时,乙同学离学校还有600米.2、从贵阳到广州,乘特快列车的行程约为1 800 km ,高铁开通后,高铁列车的行程约为860 km ,运行时间比特快列车所用的时间减少了16 h .若高铁列车的平均速度是特快列车平均速度的2.5倍,求特快列车的平均速度.解:设特快列车的平均速度为x km/h,根据题意可列出方程为1 800 x=8602.5x+16,解得x=91.检验:当x=91时,2.5x≠0.所以x=91是方程的解.答:特快列车的平均速度为91 km/h.类型3销售问题1、某学校后勤人员到一家文具店给九年级的同学购买考试用的文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1 936元;若多买88个,就可享受8折优惠,同样只需付款1 936元.请问该学校九年级学生有多少人?解:设九年级学生有x人,根据题意,得1 936x×0.8=1 936x+88,整理得0.8(x+88)=x,解得x=352.经检验,x=352是方程的解.答:这个学校九年级学生有352人.2、华昌中学开学初在金利源商场购进A、B两种品牌足球,购买A品牌足球花费了2 500元,购买B品牌足球花费了2 000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A 品牌足球多花30元.(1)求购买一个A品牌、一个B品牌的足球各需多少元;(2)华昌中学为响应习总书记“足球进校园”的号召,决定再次购进A 、B 两种品牌足球共50个.恰逢金利源商场对两种品牌足球的售价进行调整,A 品牌足球售价比第一次购买时提高了8%,B 品牌足球按第一次购买时售价的9折出售.如果这所中学此次购买A 、B 两种品牌足球的总费用不超过3 260元,那么华昌中学此次最多可购买多少个B 品牌足球?解:(1)设购买一个A 品牌足球需x 元,则购买一个B 品牌足球需(x +30)元,根据题意,得2 500x =2 000x +30×2,解得x =50.经检验,x =50是原方程的解.则x +30=80.答:购买一个A 品牌足球需50元,购买一个B 品牌足球需80元.(2)设本次购买a 个B 品牌足球,则购进A 品牌足球(50-a)个,根据题意,得50×(1+8%)(50-a)+80×0.9a ≤3 260,解得a ≤3119.∵a 取正整数,∴a 最大值为31.答:此次华昌中学最多可购买31个B 品牌足球.3、(常德中考)某服装店用4 500元购进一批衬衫,很快售完.服装店老板又用2 100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1 985元,则第二批衬衫每件至少要售多少元?解:(1)设第二次购进衬衫x 件,则第一次购进衬衫2x 件,根据题意,得4 5002x -2 100x =10,解得x =15.经检验,x =15是此方程的解,则2x =30.答:第一次购进衬衫30件,第二次购进衬衫15件.(2)设第二批衬衫每件售价为y 元,根据题意,得30×(200-4 50030)+15(y -2 10015)≥1 985,解得y ≥17213.答:第二批衬衫每件至少要售17213元.。
分式方程工程问题20道及答案一.对角相乘4x=x+33x=3x=1分式方程要检验经检验,x=1是方程的解x/(x+1)=2x/(3x+3)+1两边乘3(x+1)3x=2x+(3x+3)3x=5x+32x=-3x=-3/2分式方程要检验经检验,x=-3/2是方程的解2/x-1=4/x^2-1两边乘(x+1)(x-1)2(x+1)=42x+2=42x=2x=1分式方程要检验经检验,x=1使分母为0,是增根,舍去所以原方程无解5/x^2+x - 1/x^2-x=0两边乘x(x+1)(x-1)5(x-1)-(x+1)=05x-5-x-1=04x=6x=3/2分式方程要检验经检验,x=3/2是方程的解5x/(3x-4)=1/(4-3x)-2乘3x-45x=-1-2(3x-4)=-1-6x+811x=7x=7/11分式方程要检验经检验x=7/11是方程的解1/(x+2) + 1/(x+7) = 1/(x+3) + 1/(x+6)通分(x+7+x+2)/(x+2)(x+7)=(x+6+x+3)/(x+3)(x+6) (2x+9)/(x^2-9x+14)-(2x+9)/(x^2+9x+18)=0(2x+9)[1/(x^2-9x+14)-1/(x^2+9x+18)]=0因为x^2-9x+14不等于x^2+9x+18所以1/(x^2-9x+14)-1/(x^2+9x+18)不等于0所以2x+9=0x=-9/2分式方程要检验经检验x=-9/2是方程的解7/(x^2+x)+1/(x^2-x)=6/(x^2-1)两边同乘x(x+1)(x-1)7(x-1)+(x+1)=6x8x-6=6x2x=6x=3分式方程要检验经检验,x=3是方程的解化简求值.[X-1-(8/X+1)]/[X+3/X+1] 其中X=3-根号2 [X-1-(8/X+1)]/[(X+3)/(X+1)]={[(X-1)(X+1)-8]/(X+1)}/[(X+3)/(X+1)]=(X^2-9)/(X+3)=(X+3)(X-3)/(X+3)=X-38/(4x^2-1)+(2x+3)/(1-2x)=18/(4x^2-1)-(2x+3)/(2x-1)=18/(4x^2-1)-(2x+3)(2x+1)/(2x-1)(2x+1)=1[8-(2x+3)(2x+1)]/(4x^2-1)=18-(4x^2+8x+3)=(4x^2-1)8x^2+8x-6=04x^2+4x-3=0(2x+3)(2x-1)=0x1=-3/2x2=1/2代入检验,x=1/2使得分母1-2x和4x^2-1=0.舍去所以原方程解:x=-3/2(x+1)/(x+2)+(x+6)/(x+7)=(x+2)/(x+3)+(x+5)/(x+6) 1-1/(x+2)+1-1/(x+7)=1-1/(x+3)+1-1/(x+6)-1/(x+2)-1/(x+7)=-1/(x+3)-1/(x+6)1/(x+2)+1/(x+7)=1/(x+3)+1/(x+6)1/(x+2)-1/(x+3)=1/(x+6)-1/(x+7)(x+3-(x+2))/(x+2)(x+3)=(x+7-(x+6))/(x+6)(x+7)1/(x+2)(x+3)=1/(x+6)(x+7)(x+2)(x+3)=(x+6)(x+7)x^2+5x+6=x^2+13x+42x=-9/2经检验,x=-9/2是方程的根.(2-x)/(x-3)+1/(3-x)=1(2-x)/(x-3)-1/(x-3)=1(2-x-1)/(x-3)=11-x=x-32-x=23-分式方程要检验4-经检验,x=2是方程的根二.1、重量相同的两种商品,分别价值900元和1500元,已知第一种商品每千克的价值比第二种少300元,分别求这两种商品每千克的价值.2、某客车从甲地到乙地走全长480Km的高速公路,从乙地到甲地走全长600Km的普通公路.又知在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从乙地到甲地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间.3、从甲地到乙地的路程是15千米,A骑自行车从甲地到乙地先走,40分钟后,B骑自行车从甲地出发,结果同时到达.已知B的速度是A的速度的3倍,求两车的速度.4、一台甲型拖拉机4天耕完一块地的一半,加一台乙型拖拉机,两台合耕,1天耕完这块地的另一半.乙型拖拉机单独耕这块地需要几天?5、A做90个零件所需要的时间和B做120个零件所用的时间相同,又知每小时A、B两人共做35个机器零件.求A、B每小时各做多少个零件.。
1
甲单独做x天能完成,那么一天完成的量是
x
1、某项工程,甲工程队单独完成任务需要40天,甲先做10天后,剩下由乙工程队再做30天就能完成,问乙工程队单独做需要多少天才能完成任务?
2、某项工程,甲工程队单独完成任务需要40天,若甲工程队先做5天后,剩下的由甲乙两队一起合作20天就恰好完成任务,乙工程队单独做需要多少天才能完成任务?
3、某项工程,甲工程队单独完成任务需要40天,若甲工程队先做5天后,又由甲、乙两队一起合作10天,剩下的由乙工程队做了5天才能完成,乙工程队单独做需要多少天才能完成任务?
4、、我市某县为创建省文明卫生城市,计划将城市道路两旁的人行道进行改造,经调查可知,若该工程由甲工程队单独来做恰好在规定时间内完成;若该工程由乙工程队单独完成,则需要的天数是规定时间的2倍,若甲、乙两工程队合作6天后,余下的工程由甲工程队单独来做还需3天完成.
(1)问该县要求完成这项工程规定的时间是多少天?
(2)已知甲工程队做一天需付给工资5万元,乙工程队做一天需付给工资3万元.现该工程由甲、乙两个工程队合作完成,该县准备了工程工资款65万元.请问该县准备的工程工资款是否够用?
5、某项工程,甲工程队单独完成任务需要40天,若乙工程队先做30天后,甲乙两队一起合作20天就恰好完成任务。
(1)乙工程队单独做需要多少天才能完成任务?
(2)已知甲工程队的每天施工费用为2000元,乙工程队每天的施工费用为1000元,若该项工程,甲、乙工程队各
完成一半,则甲、乙两工程队的施工费用和为多少元?
(3)在(2)的条件下,若该工程由甲、乙两队两部分完成,且要求甲队的施工时间不到15天,乙队的施工时间不
到70天,则完成该项工程,甲、乙两队的施工费用和为多少元?
6、某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天完成
此项工程.
(1)求甲、乙两工程队单独完成此项工程各需要多少天?
(2)若甲工程队独做a天后,再由甲、乙两工程队合作多少天(用含a的代数式表示)可完成此项工程;
(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?。