02云雾降水的物理基础
- 格式:ppt
- 大小:1.84 MB
- 文档页数:6
云降水物理知识点1. 学科性质和含义、学科划分、云降水物理过程中主要矛盾、感性认识、理性认识、人为干扰、研究对象、主要内容。
2. 湿空气达到饱和的主要途径、绝热上升膨胀冷却、干绝热递减率、抬升凝结高度、绝热含水量、水平混合降温、垂直混合降温、辐射降温、相变降温、夹卷降温。
3. 全球云和降水的分布特征、云雾的总体特征、微观特征、云的分类、云内相对湿度、积状云的特征(外形特征和空间尺度、垂直速度、时间尺度、温度等)、热泡的形成(热泡理论)、热气柱的形成、雷暴形成的几个阶段及其特征、层状云特点及与积状云的异同、亮带、卷云的特征、雾的定义、分类及形成过程。
4. 空中水凝物的相态分布、云滴谱、微物理特征量的计算和推导、云雾滴的尺度、CCN的尺度、雨滴的尺度、云的胶性稳定性、不同云雾中滴谱的差异、雨滴的轴比、降水强度、雨滴谱、液滴下落末速度、冰雪晶的形状和尺度谱分布、雪花尺度与温度的关系、冰雪晶的下落末速度、霰、稀凇附、密凇附、雹、冻雨、冰雹的分层结构、雹胚的分类及其影响因子、冰雹的尺度谱分布。
5. 核化、同质核化的含义及分类、异质核化的含义及分类、同质冻结与同质凝华的差异、中值冻结温度、寇拉方程、Kelvin方程、拉乌尔定律、云凝结核、巨凝结核、冰核、自然冰核的过冷却谱、冰核起核化作用的条件。
6. 云雾滴凝结增长的六个方程、质量扩散方程的推导、热扩散与能量平衡方程、通风因子对水滴凝结增长的影响、云滴尺度随高度的变化、云滴群凝结增长中过饱和度和微物理量的变化、起伏增长理论、冰晶的凝华增大、蒸凝现象、冰晶效应、冰雪晶的形状及影响因子。
7. 云雨滴和云凝结核的大小、碰撞效率及云滴半径对碰撞效率的影响、并合效率、碰并效率、碰并增长方程的推导、碰并增长与凝结增长对比、随机碰并增长、凝结与随机碰并结合的作用、雨滴繁生、降水效率。
8. 凇附、冰晶与云滴的碰撞效率、聚并(碰连)、雪花的形成、冰粒的形成、冰晶的繁生。
9. 冰雹的形状、尺度、相态、分层结构、雹胚、干增长、湿增长、临界含水量、冰雹云结构、冰雹增长过程、累积带理论。
第二章云雾降水形成的物理基础1云雾形成的一般宏微观机制1.1 云雾的组成云雾:三相水与空气的整体云是由水滴、冰晶、水汽和空气共同构成的统一体。
水汽(先决条件)—云雾滴(维持的保证)空气(存在环境)水的密度:1;冰的密度:9/10;空气密度:1/800下落—空气阻曳力-> 飘浮组成云体的单个云滴或冰晶通过凝结等过程产生,通过蒸发或降水等过程而消失,存在时间很短。
云体或云系的持续存在是由新的云粒子的不断生成维持的。
这一过程向着新粒子生成的区域传播,就是说新粒子生成的方向不一定沿着风向。
单个云滴、冰晶或降水粒子运动速度是由环境空气流速和其自身的下落速度相加而得到的速度和决定的。
1.2 未饱和湿空气达到饱和的主要途径—相对湿度变化方程1.2.1复习:Clausius-Clapeyron方程盛裴轩等编著,2003:《大气物理学》,北京大学出版社,p127周文贤、章澄昌译,1983:《云物理简明教程》,气象出版社,P14沈春康编著,1983:《大气热力学》,气象出版社,p111相对湿度f >100%→凝结、凝华→水滴、冰晶。
1.2.2 相对湿度变化方程:/f e E =取对数微分:ln ln ln f e E =-df de dE f e E=- 平水面饱和水汽压与温度的关系,可以用Clausius-Clapeyron 方程表示(王李1.7式;Rogers&Yau2.10式):2v v L E dE dT R T=或2v v L dT dE E R T = 其中,E 为饱和水汽压,T 为绝对温度,L v 为水汽相变潜热(0℃:2.50×106 J/Kg ),R v 为水汽比气体常数,其值为461.5 J/Kg.K 。
可得:2v v L dT df de f e R T=- 可见,增大相对温度有两个途径:增加水汽(de>0)和降温(dT<0)。
一般说来,大气中形成自然云雾,主要通过空气上升运动绝热膨胀降温,另外夜间辐射冷却也可形成局地云雾,当然局地增加水汽含量的作用也不能忽略,尤其是维持某地区上空的连续降水,必须有水汽汇流不断输入补充。
云降水物理学第一章、云雾形成的物理基础1、掌握水汽达到饱和的条件增加水汽和降温2、了解大气中主要降温过程一、绝热降温(冷却):设一湿空气块,在它达到饱和以前绝热上升100米,温度大约降低0.98℃(干绝热递减率) 露点温度大约降低0.15~0.20℃,比气温降低慢得多。
所以只要空气上升得足够高,空气温度最终会降低到等于其露点温度,这时湿空气达到饱和,这个高度称为抬升凝结高度,再上升冷却就会发生水汽凝结,从而形成云。
由于凝结释放潜热,含云湿空气的温度上升冷却率(湿绝热递减率)就要变小,变小的程度视空气温度和湿度、气压等状态而异。
在空气暖湿的情况下,它大约是干绝热递减率的一半多一些(0.6℃/100米左右)。
在气温很低(水汽很少)的场合,例如在对流层上部或高纬度地区,这两种递减率相差不大。
上升绝热膨胀冷却:(1)热力性:对流抬升:积状云(2)动力性:地形抬升:层状云、上坡雾锋面抬升,多形成层状云重力波(开尔文-赫姆霍兹波):波状云(3)热力+动力:低空辐合:ICTZ热力、动力两者可以互相转化,如热力上升的云可因上空稳定层阻挡而平衍为稳定性云,动力抬升的云可因潜热释放而产生对流。
二、非绝热降温:(1)辐射降温:单纯由辐射冷却形成的云很少在云层形成后,由于云体的长波辐射很强,云顶强烈冷却,可使云层加厚,并在地面长波辐射使云底增暖的联合作用下使云层内形成不稳定层结而使云变形,层状云系中夜间有时会激发对流云活动,一些强对流风暴系统夜间常常加强或猛烈发展与云顶辐射冷却效应有关。
此外,辐射冷却可形成辐射雾、露、霜(2)(等压)水平混合降温:两空气团作水平混合,不会都是降温的其中较暖的一部分空气因混合而降温考虑两个同质量、未饱和的气块,温度分别为-10oC与10oC,混合比分别为 1.6g/kg、7.6g/kg。
混合之后,温度变为0oC,混合比变为4.6g/kg。
0oC时的饱和混合比为3.8g/kg。
因此,两气块混合之后,变为过饱和。
云降水物理学-学习笔记第一章绪论1.宏观云物理学-大气热力学、动力学微观云物理学-水汽的相变热力学和气溶胶力学,所需的知识为热力学原理、扩散理论等2.Benoit Paul Emile Clapeyron 克拉珀龙(1799-1865)饱和水汽压与温度的关系Irying Langmuir 朗缪尔(1881-1957)积状暖云可因连锁繁生过程使雨滴数量增多+第一次开展飞机人工播云实验Hilding Kohler 科勒(1888—1982)吸湿性核凝结理论Kohler 方程Theodor Robert Walter Findeisen 芬德森(1909-1945)降水粒子形成理论+云降水物理学的鼻祖3.云降水物理学的感性认识观测研究方法探测理性认识理化实验:在隔离因子的情况下分析研究理化模拟:在综合因子的情况下分析研究(用实验方法模拟自然机制及过程)数值模拟第二章云雾降水形成的物理基础1.云:水滴、冰晶、水汽和空气共同构成的统一体2.组成云体的单个云滴或冰晶存在时间很短,云体或者云系的持续存在是由新的云粒子的不断生成维持的。
3.含水量比含水量(质量含水量):指每单位质量湿空气中所含固态或液态水的质量,常用单位:g/kg,含水量(体积含水量):指每单位体积湿空气中所含固态或液态水的质量,常用单位:g/m3。
4.Clausius-Clapeyron 克劳修斯-克拉珀龙方程:平水(冰)面饱和水气压和温度的关系温度↑,饱和水汽压↑,饱和水汽压的增大速度↑5.平冰面饱和水汽压<同温度下的过冷却水面的饱和水汽压6.Kohler 科勒/柯拉方程溶液滴的饱和水汽压温度效应:温度↑,饱和水汽压↑曲率效应:半径↑,饱和水汽压↓浓度效应:浓度↑,饱和水汽压↓7.蒸凝现象:指固态或液态物质因升华、蒸发后转变为气态,或自气态因凝华、凝结而转变为固态或液态的现象。
发生条件:当大气中的实际水汽压介于此时共存的两种表面饱和水汽压不相同的液水或冰的饱和水汽压之间贝吉隆过程(冰晶效应):对冰、水共存的系统,当实际水汽压介于二者的饱和水汽压之间时,必有水汽从过冷却水滴向冰晶方向扩散。
云、雾、露、雨、雪的物理形成原因1~在夜间,地面上的草、木、石块等物体由于向外辐射热量,它们的温度要降低,当温度降至露点时,地面物体附近空气中的水蒸气便达到饱和。
若露点高于0摄氏度,水蒸气可在地面物体的表面上凝结成小水滴,这就是露。
若露点低于0摄氏度,水蒸气则要在地面物体的表面上直接凝结成小冰粒,这即是霜。
如果在夜间不仅地面上物体的温度降到了露点以下,而且地面以上稍远处的空气温度也降到了露点,那么空气中的水蒸气将以尘埃为核心凝结成细小的水滴,这便是雾。
当高空中空气的温度降到露点以下,若露点高于0度,空气中的水蒸气在尘埃上凝结成细小的水滴便是云,而凝结成较大的水滴即是雨。
若露点低于0度,则空气中的水蒸气将在尘埃上直接凝结成雪。
由此可知,露、霜和雾都不是从天而降的,而是地面附近空气中的水蒸气达到饱和直接凝结而成的。
只有雪和雨才是从天而降的,即是高空中空气里的水蒸气达到饱和时凝结而成。
2~白炽灯用久了发黑的原因是:白炽灯工作时,由于钨丝中的钨在高温状态下升华(由固体直接变成气体),遇到灯泡的玻璃壁后又凝结成固体金属钨的原因。
3~云是由水汽凝结而成;而云的厚度以及高度通常由云中水汽含量的多寡以及凝结核的数量、云内的温度所决定。
一般来说,云中的水汽胶性状态比较稳定,不易产生降水,而人工增雨就是要破坏这种胶性稳定状态。
通常的人工降雨就是通过一定的手段在云雾厚度比较大的中低云系中播散催化剂(碘化银)从而达到降雨目的。
一是增加云中的凝结核数量,有利水汽粒子的碰并增大;二是改变云中的温度,有利扰动并产生对流。
而云中的扰动及对流的产生,将更加有利于水汽的碰并增大,当空气中的上升气流承受不住水汽粒子的飘浮时,便产生了降雨。
降雨的形成在云块中,随着空气中水汽的不断补充,过饱和的水汽继续不断地在云滴上凝结和凝华,使云滴继续增大,当增大到一定程度,由于重力作用,云滴开始下落,在下落过程中,大的云滴下降速度快,小的云滴下降速度慢,因此大的云滴会赶上小的云滴,合并成更大的云滴,如此下去,云滴就象滚雪球一样越聚越大,最终落向地面,成为雨滴。
云和降水微物理学气象图大气中的水汽凝结而成的云滴很小,半径大约10微米,浓度为每升一万至一百万个,下降的速度约 1厘米/秒,通常比云中上升的气流速度小得多,因而云滴不能落出云底。
即使离开云底而下降,也会在不饱和的空气中迅速蒸发而消失。
只有当云滴通过各种微物理过程,集聚和转化成为降水粒子后,才能降落到地面。
成云致雨要经过一系列复杂的微物理过程:湿空气上升膨胀冷却,其中的水汽达到饱和,并在一些吸湿性强的云凝结核上,凝结而成初始云滴的凝结核化过程;云中的过冷水滴或水汽,在冰核上冻结或凝华以及在-40℃以下,自然冻结成初始冰晶胚胎的冰相生成过程;水汽在略高于饱和的条件下时,在云滴(冰晶)上进一步凝结(凝华),使云滴(冰晶)长大的凝结增长过程(凝华增长过程);云内尺度较大的云滴,在下落过程中与较小的云滴碰并而长大的重力碰并过程;冰晶和过冷水滴同时存在时,因为过冷水滴的饱和水汽压比冰面的大,造成过冷水滴逐渐蒸发,而冰晶则由于水汽的凝华而逐渐长大的冰晶过程。
降水粒子的尺度大约是云滴的一百倍,但其浓度却仅为云滴的百万分之一。
人工降雨云滴由于受表面张力作用,通常呈球形。
球形纯水滴表面的饱和水汽压,高于平水面的饱和水汽压。
以半径为0.01微米的水滴为例,其饱和水汽压超过平水面的12.5%。
在没有任何杂质的纯净空气中,初始的云滴只能靠水汽分子随机碰撞而生成。
靠分子随机碰撞而产生云滴的可能性随着尺度增大而变小。
微小的初始云滴,只有在相对湿度达百分之几百的环境中才不致蒸发。
但实际大气的水汽含量很少能够超过饱和值的1%。
因此,在没有杂质的纯净空气中是难以直接形成云滴的。
事实上,大气中存在着各种凝结核,这为凝结成云滴提供了条件。
云凝结核可分成两类:亲水性物质的大粒子,它不溶于水,但能吸附水汽,在其表面形成一层水膜,相当于一个较大的纯水滴;含有可溶性盐的气溶胶微粒。
它能吸收水汽而成为盐溶液滴,属吸湿性核。
例如海盐的饱和水溶液,只要环境相对湿度高于78%,就可以凝结长大。