栈和队列(必备)
- 格式:doc
- 大小:23.00 KB
- 文档页数:5
栈和队列数据结构的特点栈和队列是常用的数据结构,它们在程序设计和算法实现中有着重要的作用。
下面将分别介绍栈和队列的特点。
一、栈(Stack)的特点:1.先进后出(FILO):栈是一种只允许在栈顶进行插入和删除操作的线性数据结构。
元素的插入和删除都只能在栈顶进行,最后插入的元素是第一个被删除的元素。
2.后进先出(LIFO):栈中最后一个进栈的元素是第一个出栈的元素。
3.只能在栈顶进行操作:栈的操作局限于栈顶,在栈顶可以执行的操作有入栈和出栈操作,其他位置的元素无法直接访问和操作。
4.压入和弹出操作:在栈中,我们只能在栈的一端(通常是栈顶)进行数据的插入和删除操作,分别称为“压入”和“弹出”。
5.递归的应用:栈的结构特点使得它在递归算法的实现中非常有用。
递归函数调用时,每次进入一层递归都需要保存当前的状态,包括参数、局部变量等信息,在递归返回时再恢复状态。
6.存储空间的限制:栈的存储空间是有限的,当栈的元素数量超过了栈的容量时,就会发生栈溢出错误。
7.实现方式:栈可以使用数组或链表来实现。
栈的典型应用场景包括函数调用、表达式求值、括号匹配、迷宫求解等。
二、队列(Queue)的特点:1.先进先出(FIFO):队列是一种只允许在队尾插入操作,在队头删除操作的线性数据结构。
最先插入的元素是第一个被删除的元素,最后插入的元素是最后被删除的元素。
2.队头和队尾操作:队列的操作局限于队头和队尾,在队头可以执行的操作有删除,称为“出队”操作;在队尾可以执行的操作有插入,称为“入队”操作。
3.可用空间有限:队列的存储空间是有限的,当队列的元素数量超过了队列的容量时,就会无法再插入新的元素,即发生队列溢出错误。
4.实现方式:队列可以使用数组或链表来实现。
若使用链表实现的队列,可实现动态调整队列的大小。
队列的典型应用场景包括多线程任务调度、缓冲队列、消息队列等。
栈和队列都是特殊的线性数据结构,它们各自的特点使它们在不同的应用场景下得到广泛的应用。
数据结构--栈和队列基础知识⼀概述栈和队列,严格意义上来说,也属于线性表,因为它们也都⽤于存储逻辑关系为 "⼀对⼀" 的数据,但由于它们⽐较特殊,因此将其单独作为⼀篇⽂章,做重点讲解。
既然栈和队列都属于线性表,根据线性表分为顺序表和链表的特点,栈也可分为顺序栈和链表,队列也分为顺序队列和链队列,这些内容都会在本章做详细讲解。
使⽤栈结构存储数据,讲究“先进后出”,即最先进栈的数据,最后出栈;使⽤队列存储数据,讲究 "先进先出",即最先进队列的数据,也最先出队列。
⼆栈2.1 栈的基本概念同顺序表和链表⼀样,栈也是⽤来存储逻辑关系为 "⼀对⼀" 数据的线性存储结构,如下图所⽰。
从上图我们看到,栈存储结构与之前所了解的线性存储结构有所差异,这缘于栈对数据 "存" 和 "取" 的过程有特殊的要求:1. 栈只能从表的⼀端存取数据,另⼀端是封闭的;2. 在栈中,⽆论是存数据还是取数据,都必须遵循"先进后出"的原则,即最先进栈的元素最后出栈。
拿图 1 的栈来说,从图中数据的存储状态可判断出,元素 1 是最先进的栈。
因此,当需要从栈中取出元素 1 时,根据"先进后出"的原则,需提前将元素 3 和元素 2 从栈中取出,然后才能成功取出元素 1。
因此,我们可以给栈下⼀个定义,即栈是⼀种只能从表的⼀端存取数据且遵循 "先进后出" 原则的线性存储结构。
通常,栈的开⼝端被称为栈顶;相应地,封⼝端被称为栈底。
因此,栈顶元素指的就是距离栈顶最近的元素,拿下图中的栈顶元素为元素 4;同理,栈底元素指的是位于栈最底部的元素,下中的栈底元素为元素 1。
2.2 进栈和出栈基于栈结构的特点,在实际应⽤中,通常只会对栈执⾏以下两种操作:向栈中添加元素,此过程被称为"进栈"(⼊栈或压栈);从栈中提取出指定元素,此过程被称为"出栈"(或弹栈);2.3 栈的具体实现栈是⼀种 "特殊" 的线性存储结构,因此栈的具体实现有以下两种⽅式:1. 顺序栈:采⽤顺序存储结构可以模拟栈存储数据的特点,从⽽实现栈存储结构。
数据结构实验三栈和队列的应用数据结构实验三:栈和队列的应用在计算机科学领域中,数据结构是组织和存储数据的重要方式,而栈和队列作为两种常见的数据结构,具有广泛的应用场景。
本次实验旨在深入探讨栈和队列在实际问题中的应用,加深对它们特性和操作的理解。
一、栈的应用栈是一种“后进先出”(Last In First Out,LIFO)的数据结构。
这意味着最后进入栈的元素将首先被取出。
1、表达式求值在算术表达式的求值过程中,栈发挥着重要作用。
例如,对于表达式“2 + 3 4”,我们可以通过将操作数压入栈,操作符按照优先级进行处理,实现表达式的正确求值。
当遇到数字时,将其压入操作数栈;遇到操作符时,从操作数栈中弹出相应数量的操作数进行计算,将结果压回操作数栈。
最终,操作数栈中的唯一值就是表达式的结果。
2、括号匹配在程序代码中,检查括号是否匹配是常见的任务。
可以使用栈来实现。
遍历输入的字符串,当遇到左括号时,将其压入栈;当遇到右括号时,弹出栈顶元素,如果弹出的左括号与当前右括号类型匹配,则继续,否则表示括号不匹配。
3、函数调用和递归在程序执行过程中,函数的调用和递归都依赖于栈。
当调用一个函数时,当前的执行环境(包括局部变量、返回地址等)被压入栈中。
当函数返回时,从栈中弹出之前保存的环境,继续之前的执行。
递归函数的执行也是通过栈来实现的,每次递归调用都会在栈中保存当前的状态,直到递归结束,依次从栈中恢复状态。
二、队列的应用队列是一种“先进先出”(First In First Out,FIFO)的数据结构。
1、排队系统在现实生活中的各种排队场景,如银行排队、餐厅叫号等,可以用队列来模拟。
新到达的顾客加入队列尾部,服务完成的顾客从队列头部离开。
通过这种方式,保证了先来的顾客先得到服务,体现了公平性。
2、广度优先搜索在图的遍历算法中,广度优先搜索(BreadthFirst Search,BFS)常使用队列。
从起始节点开始,将其放入队列。
数据结构中的栈与队列的应用场景栈与队列是数据结构中常见的两种基本数据类型,它们在不同的应用场景中发挥着重要作用。
下面将分别介绍栈和队列的应用场景。
栈的应用场景:1. 编辑器的撤销操作:在编辑器中,撤销(undo)操作是一个常见需求。
撤销操作通常是按照用户操作的反序执行,因此可以使用栈来存储每一次的操作,当用户执行撤销操作时,从栈中弹出最近的操作并执行对应的反操作。
2. 后退按钮的实现:在浏览器中,后退按钮用于返回上一个访问的网页。
通过使用栈来存储用户的访问记录,每当用户访问一个新的页面时,将该页面的地址压入栈中。
当用户点击后退按钮时,从栈中弹出最近访问的页面地址并跳转到该页面。
3. 函数调用与返回:在程序中,函数的调用和返回通常遵循“后进先出”的原则,即后调用的函数先返回。
因此,可以使用栈来实现函数调用与返回的过程。
每当一个函数被调用时,将该函数的执行环境(包括参数、局部变量等)压入栈中;当函数执行完毕后,从栈中弹出该函数的执行环境,恢复上一个函数的执行。
队列的应用场景:1. 消息队列:在分布式系统和异步通信中,消息队列用于解耦发送方和接收方之间的耦合性。
发送方将消息发送到队列的末尾,接收方从队列的头部获取消息进行处理。
消息队列可以实现异步处理、削峰填谷等功能,常见的消息队列系统有RabbitMQ和Kafka等。
2. 操作系统中的进程调度:在操作系统中,进程调度用于控制多个进程的执行顺序。
常见的调度算法中,有使用队列来实现的先来先服务(FCFS)调度算法和轮转调度算法。
进程按照到达时间的顺序加入队列,在CPU空闲时,从队列的头部取出一个进程执行。
3. 打印队列:在打印机等资源共享环境中,通常会使用打印队列来管理多个打印请求。
每当用户提交一个打印请求时,将该请求加入打印队列的末尾,打印机从队列的头部取出请求进行打印。
这样可以保证每个用户的打印请求按照提交的顺序进行处理。
综上所述,栈和队列在不同的应用场景中发挥着重要作用。
栈和队列是信息学竞赛中经常涉及的数据结构,它们在算法和程序设计中有着广泛的应用。
掌握栈和队列的基本原理和操作方法,对于参加信息学竞赛的同学来说是非常重要的。
本文将深入探讨栈和队列的相关知识点,帮助大家更好地理解和掌握这两种数据结构。
一、栈的定义与特点栈是一种先进后出(LIFO)的数据结构,它的特点是只允许在栈顶进行插入和删除操作。
栈可以用数组或链表来实现,常见的操作包括压栈(push)、出栈(pop)、获取栈顶元素(top)等。
栈的应用非常广泛,比如在计算机程序中,函数的调用和返回值的存储就是通过栈来实现的。
二、栈的基本操作1. 压栈(push):将元素压入栈顶2. 出栈(pop):将栈顶元素弹出3. 获取栈顶元素(top):返回栈顶元素的值,但不把它从栈中移除4. 判空:判断栈是否为空5. 获取栈的大小:返回栈中元素的个数三、栈的应用1. 括号匹配:利用栈来检查表达式中的括号是否匹配2. 表达式求值:利用栈来实现中缀表达式转换为后缀表达式,并进行求值3. 迷宫求解:利用栈来实现迷宫的路径搜索4. 回溯算法:在深度优先搜索和递归算法中,通常会用到栈来保存状态信息四、队列的定义与特点队列是一种先进先出(FIFO)的数据结构,它的特点是只允许在队尾进行插入操作,在队首进行删除操作。
队列同样可以用数组或链表来实现,常见的操作包括入队(enqueue)、出队(dequeue)、获取队首元素(front)、获取队尾元素(rear)等。
队列在计算机领域也有着广泛的应用,比如线程池、消息队列等都可以用队列来实现。
五、队列的基本操作1. 入队(enqueue):将元素插入到队列的末尾2. 出队(dequeue):从队列的头部删除一个元素3. 获取队首元素(front):返回队列的头部元素的值4. 获取队尾元素(rear):返回队列的尾部元素的值5. 判空:判断队列是否为空6. 获取队列的大小:返回队列中元素的个数六、队列的应用1. 广度优先搜索算法(BFS):在图的搜索中,通常会用队列来实现BFS算法2. 线程池:利用队列来实现任务的调度3. 消息队列:在分布式系统中,常常会用队列来进行消息的传递4. 最近最少使用(LRU)缓存算法:利用队列实现LRU缓存淘汰在信息学竞赛中,栈和队列的相关题目经常出现,并且有一定的难度。
栈和队列的应用栈和队列是计算机科学中非常重要的数据结构,它们在各种应用中被广泛使用。
本文将探讨栈和队列的应用,并讨论它们在不同场景下的具体用途。
一、栈的应用1. 浏览器的前进后退功能在使用浏览器时,我们可以通过点击前进按钮或后退按钮来切换网页。
这种功能实际上是由一个栈来实现的。
当我们访问新的网页时,当前页面被推入栈中,当我们点击后退按钮时,栈顶的页面被弹出并显示在浏览器中。
2. 函数调用栈在编写程序时,函数的调用和返回也是通过栈来管理的。
每当一个函数被调用时,相关的信息(例如参数、返回地址等)会被推入栈中,当函数执行完毕后,这些信息会从栈中弹出,程序会回到函数调用的地方继续执行。
3. 括号匹配在编写编译器或表达式计算器时,需要检查括号是否正确匹配。
这个问题可以使用栈来解决。
遍历表达式时,遇到左括号将其推入栈中,遇到右括号时,若栈顶元素是对应的左括号,则将栈顶元素弹出,继续处理下一个字符;若栈为空或栈顶元素不是对应的左括号,则括号不匹配。
二、队列的应用1. 消息队列消息队列是一种在分布式系统中实现异步通信的机制。
它常用于解耦系统中的组件,例如,一个组件将消息发送到队列中,而另一个组件则从队列中接收消息并处理。
这种方式可以提高系统的可伸缩性和可靠性。
2. 打印队列在打印机系统中,多个任务需要按照先后顺序进行打印。
这时可以使用队列来管理打印任务的顺序。
每当一个任务到达时,将其加入到队列的末尾,打印机从队列的头部取出任务进行打印,直到队列为空。
3. 广度优先搜索广度优先搜索(BFS)是一种常用的图搜索算法,它使用队列来辅助实现。
在BFS中,首先将起始节点加入队列中,然后依次将与当前节点相邻且未访问过的节点入队,直到遍历完所有节点。
结论栈和队列作为常用的数据结构,在计算机科学中有着广泛的应用。
本文只介绍了它们部分的应用场景,实际上它们还可以用于解决其他许多问题,如迷宫路径搜索、计算器计算等。
因此,了解和熟练运用栈和队列是程序员和计算机科学家的基本素养之一。
栈和队列的基本操作方法栈和队列是常见的数据结构,它们在计算机科学中有着广泛的应用。
栈和队列都是一种线性数据结构,但它们在插入和删除元素的方式上有所不同。
接下来,将介绍栈和队列的基本操作方法,包括定义、插入、删除和查询等。
一、栈(Stack)的基本操作方法:1. 定义:栈是一种先进后出(Last-In-First-Out,LIFO)的数据结构。
类似于现实生活中的一叠盘子,只能在栈顶进行操作。
2.创建栈:可以使用数组或链表作为栈的底层数据结构。
通过创建一个空数组或链表,称之为栈顶指针或栈顶节点,初始时指向空,表示栈为空。
3. 入栈(Push):将一个元素添加到栈顶。
需要将新增元素放在栈顶指针或栈顶节点之后,更新栈顶指针或栈顶节点的指向。
4. 出栈(Pop):删除栈顶元素,并返回删除的元素值。
需要将栈顶指针或栈顶节点向下移动一个位置,指向下一个元素。
5. 获取栈顶元素(Top):返回栈顶元素的值,但不删除该元素。
只需访问栈顶指针或栈顶节点所指向的元素即可。
6. 判断栈是否为空(isEmpty):通过检查栈顶指针或栈顶节点是否为空来判断栈是否为空。
二、队列(Queue)的基本操作方法:1. 定义:队列是一种先进先出(First-In-First-Out,FIFO)的数据结构。
类似于现实生活中的排队,按照先后顺序依次进入队列,先进入队列的元素首先被删除。
2.创建队列:可以使用数组或链表作为队列的底层数据结构。
通过创建一个空数组或链表,分别设置一个队首指针和一个队尾指针,初始时指向空,表示队列为空。
3. 入队(Enqueue):将一个元素添加到队尾。
需要将新增元素放在队尾指针或队尾节点之后,更新队尾指针或队尾节点的指向。
4. 出队(Dequeue):删除队首元素,并返回删除的元素值。
需要将队首指针或队首节点向下移动一个位置,指向下一个元素。
5. 获取队首元素(Front):返回队首元素的值,但不删除该元素。
栈与队列实现先进先出和后进先出的数据结构数据结构是计算机科学中一门重要的基础课程,其中栈(Stack)和队列(Queue)是常用的数据结构。
栈和队列都具有不同的特点和应用场景,能够满足先进先出(FIFO)和后进先出(LIFO)的要求。
一、栈的实现先进先出栈是一种线性数据结构,具有后进先出(LIFO)的特点。
在栈中,只能在栈的一端进行操作,称为栈顶。
栈的基本操作包括入栈(Push)和出栈(Pop)。
1. 入栈(Push)操作:当要向栈中添加元素时,将新元素放置在栈顶,并将栈顶指针向上移动一位。
该操作保证了后添加的元素会处于栈顶的位置。
2. 出栈(Pop)操作:当要从栈中移除元素时,将栈顶的元素弹出,并将栈顶指针向下移动一位。
该操作保证了最后添加的元素会最先被移除。
栈的实现可以使用数组或链表来存储元素。
使用数组实现时,需要指定栈的最大容量。
使用链表实现时,栈的容量可以动态扩展。
二、队列的实现先进先出队列是一种线性数据结构,具有先进先出(FIFO)的特点。
在队列中,元素从队尾入队,从队头出队。
队列的基本操作包括入队(Enqueue)和出队(Dequeue)。
1. 入队(Enqueue)操作:当要向队列中添加元素时,将新元素放置在队尾,并将队尾指针向后移动一位。
该操作保证了后添加的元素会处于队列的尾部。
2. 出队(Dequeue)操作:当要从队列中移除元素时,将队头的元素弹出,并将队头指针向后移动一位。
该操作保证了最早添加的元素会最先被移除。
队列的实现也可以使用数组或链表。
与栈不同的是,队列的实现更适合使用链表,因为链表可以实现在队头和队尾高效地执行插入和删除操作。
三、使用栈和队列实现先进先出和后进先出为了实现先进先出和后进先出的数据结构,可以使用一种特殊的数据结构:双端队列(Double-ended Queue),也称为双端栈(Deque)。
双端队列具有栈和队列的特点,既可以在队尾插入和删除元素,也可以在队头插入和删除元素。
栈和队列是操作受限的线性表,好像每本讲数据结构的数都是这么说的。
有些书按照这个思路给出了定义和实现;但是很遗憾,这本书没有这样做,所以,原书中的做法是重复建设,这或许可以用不是一个人写的这样的理由来开脱。
顺序表示的栈和队列,必须预先分配空间,并且空间大小受限,使用起来限制比较多。
而且,由于限定存取位置,顺序表示的随机存取的优点就没有了,所以,链式结构应该是首选。
栈的定义和实现
#ifndef Stack_H
#define Stack_H
#include "List.h"
template class Stack : List//栈类定义
{
public:
void Push(Type value)
{
Insert(value);
}
Type Pop()
{
Type p = *GetNext();
RemoveAfter();
return p;
}
Type GetTop()
{
return *GetNext();
}
List ::MakeEmpty;
List ::IsEmpty;
};
#endif
队列的定义和实现
#ifndef Queue_H
#define Queue_H
#include "List.h"
template class Queue : List//队列定义{
public:
void EnQueue(const Type &value) {
LastInsert(value);
}
Type DeQueue()
{
Type p = *GetNext();
RemoveAfter();
IsEmpty();
return p;
}
Type GetFront()
{
return *GetNext();
}
List ::MakeEmpty;
List ::IsEmpty;
};
#endif
测试程序
#ifndef StackTest_H
#define StackTest_H
#include "Stack.h"
void StackTest_int()
{
cout << endl << "整型栈测试" << endl;
cout << endl << "构造一个空栈" << endl; Stack a;
cout << "将1~20入栈,然后再出栈" << endl; for (int i = 1; i <= 20; i++) a.Push(i);
while (!a.IsEmpty()) cout << a.Pop() << ' ';
cout << endl;
}
#endif
#ifndef QueueTest_H
#define QueueTest_H
#include "Queue.h"
void QueueTest_int()
{
cout << endl << "整型队列测试" << endl;
cout << endl << "构造一个空队列" << endl; Queue a;
cout << "将1~20入队,然后再出队" << endl; for (int i = 1; i <= 20; i++) a.EnQueue(i);
while (!a.IsEmpty()) cout << a.DeQueue() << ' ';
cout << endl;
}
#endif
【后记】没什么好说的,你可以清楚的看到,在单链表的基础上,栈和队列的实现是如此的简单,这也是我对于原书重复建设不满的最大原因。