微纳光电子复习资料
- 格式:doc
- 大小:273.00 KB
- 文档页数:13
光电子技术复习要点第一篇:光电子技术复习要点第1章1.电磁波的性质:横波、偏振、色散2.光辐射:以电磁波形式或粒子形式传播的能量,它们可以用光学元件反射、成像或色散,这种能量及其传播过程称为光辐射,波长在10nm-1mm,分为可见光(390nm-770nm),紫外辐射(1nm-390nm),红外辐射(0.77-1000um)3.表1-44.光视效能:同一波长下测得的光通量与辐射通量比值。
光视效率是光视效能归一化的结果。
5.光与物质相互作用的三个过程:自发辐射、受激辐射、受激吸收。
图1-7自发辐射:处在高能级的原子,没有任何外界激励,自发地跃迁到低能级,并发射光子。
受激辐射:处在高能级的原子,受到外来光子的激励,跃迁到低能级并发射光子。
受激吸收:处在低能级的原子,受到光子的照射时,吸收光子而跃迁到高能级。
6.粒子数的反转,增益系数,增益曲线,损耗系数,激光器的三部分7.典型激光器组成:工作物质、泵浦源、谐振腔。
作用:工作物质:在这种介质中可以实现粒子数反转。
泵浦源(激励源):将粒子从低能级抽运到高能级态的装置。
谐振腔:(1)使激光具有极好的方向性(沿轴线)(2)增强光放大作用(延长了工作物质(3)使激光具有极好的单色性(选频)8.习题1-2Le亮度定义:强度定义:IedIe∆Arcosθr= dΦedΩ可得辐射通量:dΦe=Le∆AscosθsdΩ在给定方向上立体角为:dΩ第1.2题图∆Accosθc 2l0dΦeLe∆Ascosθscosc则在小面源在∆A上辐射照度为:Ee==2dAl0=c第2章1.大气衰减包括四个部分,瑞利散射和米氏散射2.大气湍流效应3.电光效应,相位延迟两种方式,相位差,半波电压,两种方式比较纵向调制器优点: 具有结构简单、工作稳定、不存在自然双折射的影响等。
缺点: 电场方向与通光方向相互平行, 必须使用透明电极, 且半波电压达8600伏,特别在调制频率较高时,功率损耗比较大。
第二章微纳光电子理论基础参考:微光学与系统,杨国光编著,浙大出版社2.1 微纳结构光学理论概述理论涉及领域-微纳光学主要设计尺寸在微米或纳米量级的器件以及尺寸在亚微米量级或纳米量级的表面微纳结构。
-当器件或微结构的尺寸接近入射波长或小于入射波长时,光进入共振区(衍射区)。
常规光学的标量理论已无法设计这类微光学器件,必须采用光共振区的矢量理论进行设计。
-涉及三个理论领域:►标量理论领域——适用于设计结构周期尺寸d>=10λ的微光学器件;►矢量理论领域——适用于设计结构周期尺寸d~λ的微光学器件;►等效折射领域——适用于计算结构周期尺寸d<=λ/10的微光学器件;三个理论领域的光物性变化设计模型●标量模型:二维模型,是复振幅的强度模型。
当微结构尺寸d>>λ时有效,当d~λ时计算精度不够,且不能计算偏振状态。
●矢量模型:三维模型,是严格模型。
计算光栅微结构已较成熟,但计算任意曲面算法上还有困难。
●光线追踪模型:从光的偏折来描述微光学,且只做±1级计算,是实用模型。
●等效折射模型:适用于d<=λ/10,作微结构计算。
微光学分类●从原理上分: 衍射型和折射型●从功能上分:- 非成像微光学阵列——以聚能为主要目的,起提高光能利用率的作用。
- 成像微光学——以多重成像为目的,实现光学系统微型化。
- 光束变换器——利用衍射原理实现传统光学取法实现的功能如光束整形、光束变换、光互连等。
●从设计与加工原理上分:- 折射型微透镜: 可获得大的数值孔径和短焦距 - 二元型微透镜: 平面型- 混合型微透镜 : 具有消色差高像质功能 2.2 标量衍射理论基础●标量衍射模型)()()(0P A P U P U i ∙=问题: 已知使用要求U0(P),如何确定微结构的P点的复振幅A(P)? 设微结构的轮廓高度为h(P), 基底S 的折射率为n(λ),则此微结构引入的光程差OPD 为:[])(1)()(P h n P OPD -=λλ故有: )(2)()(P O PD j P j e e P A λλπϕλ==光程差或相位分布一般可用多项式来拟合: ∑∑==-=n i ij jji j i n y x A y x 10,),(ϕ标量衍射系统空间模型●典型衍射系统:- I 为光波入射空间:平面或球面简谐波均匀波;- 衍射光学元件II 为光透射空间:入射光波振幅或相位受到微结构调制,波前改变;- III 为衍射空间: 透射光波传播形成光强起伏的衍射图样,非均匀波。
1、从三维到零维的态密度态密度推导:三维:为「概括ii 抻侧鳗分布状况.引人定义为正常 中能V E 附近刺位能址间隔内的电予志散.假设在能址E-E-dE 向无限小的能量间隔内有田、个电子忘.*M «(E >为A *号体片侑底成偷带顶附近.尊能■近位为球形.*i 电子志 4 4空间的分布职均与的.密度为V (2X )1. M 中V 隹品体体机. 代此。
能址E - E + dE 何的电干杰散为(分割以导带底或价借KI 为能ttTA >=盘1_牛二1 —三二 ‘(2K F A •2 A,我'(会)"'盹 即只白有效质量为"I •的导带电F 或价带空穴在刺但体枳内的急密度<(£)为邮> =!(芸广即 ⑷⑶式《413)盘明移价宙m 成铮带成附近.能右*度陆能址注携变 It."带边£ = 0处杰密度也为0.Quantum Well 半#体#带和价带中的电干建缴洋常浦集, 彬成用连技分布.Bulk Quantum Wire Quantum Dot二维(量子阱):6, 6, Q 2、/7 + + TT 叭% V ,z) + /(x, y, z\f(x,y,z) = E 叭x, y, z) dy Qz ) tl f —y/(z)+ E 此)2m dz叭 x, y)=A exp{ik x x + ik Y y) E =——―—• ZmU y/(x,^) = i//(x + L,y + L )= A expz^^ + L )+k y (y + £))=J (exp i(k x x + Ze v y)exp i{k x L + 如1))= “(x, j ,)exp ,(kxl+ k y L ) v £2 mEN =——— 1 dN _ 1 d (L 2mE yU~dE~lF~dE\ltl^ t 一维(纳米。
以 tt fn 站构中.电子在1和y 方向上的运命受胃限制.只 厦沿匚方向n 由近功.h 2 2in dx m 7t Tr P (E )二 2 m Ti 2成为市一维体系.殳八、方向上的幼阱均为无阳株方们阱.阱童分割为“、b.明它的整5以、岐1°且1,1<¥V(r)= < (4-24))g |1|>品・或lyl>¥根8■胃到体事的It函敷民/(r)= r‘ 二:心工L:,,〈中..J e 。
微纳光电子系统第二章微纳光电器件简介内容z VO2薄膜材料及其应用z 微透镜与红外CCD 集成技术z 微小型光学扫描器及其应用zMEMS 红外气体传感器1. VOx 薄膜材料及其应用z1959年美国贝尔实验室Morin发现钒的金属氧化物具有电阻温度相变特性;目前该材料的相变机理至今仍然未完全掌握。
z 该材料在相变过程中,许多物理参数,如电阻率,光学折射率都发生了突变,具有非常广泛的器件应用前景。
z金属钒的诸多氧化物相中,二氧化钒(VO 2)最引人注目: (1)VO 2材料的相变温度在68℃附近,最接近室温;当温度低于68℃时,VO 2呈现半导体相,材料电阻率为10 Ω·cm 量级;当温度高于68℃时,VO 2呈现金属相,电阻率下降至10-3Ω·cm左右。
在很小的温度范围内(0.1℃),电阻率变化了4-5个数量级。
与此同时,材料的光学特性在相变时也发生了突变,从低温半导体相对红外光的高透射转变为高温金属相对红外光的高反射.z 用途:(1) VOx 薄膜作为微测辐射热计的热敏电阻,制作非致冷红外焦平面;(2) 利用VO2相变特性,制作光开关,激光防护膜,太阳能智能节能窗等(1) VOx微测辐射热计z氧化钒薄膜被用于微测辐射热计热敏电阻主要是由于这种材料在室温附近具有合适的方块电阻、较高的TCR ,小的1/f 噪声系数以及制备工艺与大规模集成电路兼容等特点.z用于微测辐射热计热敏电阻材料的氧化钒薄膜主要有三种:混合相VO x 、准VO 2和亚稳态相VO 2(B)薄膜,分别以美国HTC研究中心、加拿大INO研究所和日本防卫厅&NEC为代表.应用--国防、军事消防医疗医疗SARS工业设备预知性检测及维护--电子工业设备预知性检测及维护--土木、建筑工业设备预知性检测及维护--电气设备1ln dR d RTCR R dT dT==)(00T T e R R −=αα为恒值Ta T T T e R R ss ΔΔ+=氧化钒作为热敏薄膜优点:•高电阻温度系数,TCR>-2%/K •合适的方块电阻, 10~50 k Ω•低的噪声系数•制备工艺与IC 工艺兼容.TCR=-0.0236K R 0(20℃)=13.5 k Ω/方块1/T (K)HTC 研制的VO x 热敏薄膜的电阻-温度关系曲线LnR(Ω)室温电阻约15~20 k Ω,电阻温度系数-2.0%K -1。
各章复习要点第1章 激光原理概论1.光的波粒二相性,光子学说光是由一群以光速 c 运动的光量子(简称光子)所组成 2三种跃迁过程(自发辐射、受激辐射 和受激吸收)• 3.自发辐射和受激辐射的本质区别?• 4.在热平衡状态下,物质的粒子数密度按能级分布规律(正常分布)• 5.激光产生的必要条件:实现粒子数反转分布 • 6.激光产生的阈值条件:增益大于等于损耗 •7.激光的特点?•(1)极好的方向性(θ≈10-3rad)•(2)优越的单色性(Δν=3.8*108Hz,是单色 性最好的普通光源的线宽的105倍.•(3)极好的相干性(频率相同,传播方向同,相位差恒定)•(4)极高的亮度•光亮度:单位面积的光源,在其法向单位立体角内传送的光功率.•8激光器构成及每部分的功能νh E =λνc h c h c E m ///22===1激光工作物质提供形成激光的能级结构体系,是激光产生的内因2.)泵浦源提供形成激光的能量激励,是激光形成的外因3.)光学谐振腔①提供光学正反馈作用②控制腔内振荡光束的特性•9激光产生的基本原理(以红宝石激光器为例)•⑴Cr3+的受激吸收过程.•⑵无辐射跃迁•⑶粒子数反转状态的形成•⑷个别的自发辐射 •⑸受激发射 •⑹激光的形成 •10.模式的概念及分类11.纵模的谐振条件的推导及纵模间隔的计算。
第2章 激光谐振腔技术、选模及稳频技术 • 1.掌握三个评价谐振腔的重要指标•最简单的光学谐振腔是在激活介质两端适当的位置放置两个具有高反射率的反射镜来构成的,与微波相比,采用开腔。
1)平均单程功率损耗率πλπφ222⋅=⋅=∆q nL qnL q 2=λnLcqv q 2=反射损耗:衍射损耗:(圆形平行平面腔)2)谐振腔寿命3)谐振腔Q 值• 2.了解横模选择的两种方法(1)只改变谐振腔的结构和参数,使高阶模具有大的衍射损耗(2)腔内插入附加的选模器件 3两种常用的抑制高阶横模的方法 1.调节反射镜 ✓ 优点:方法简单易行 ✓ 缺点:输出功率显著降低 2.腔内加光阑高阶横模的光束截面比基横模大,减小增益介质的有效孔径,可大大增加高阶横模的衍射损耗• 4.理解三种单纵模输出的方法 •1)短腔法10ln21I I =δ4.12)(207.0aLd λδ=)1(R c Lt c -=dr L L R c L cQ δδλπλδπλπ+==-=1.22)1(.221210010ln 21ln 21ln21r r r r I I I I -===δ•2)法布里-珀罗标准距法•3)复合腔选纵模第5章 光电子显示技术• 1.黑白CRT 的构成及每部分的功能? • 电子枪、偏转系统和荧光屏三部分构成• 2.黑白CRT 的基本工作原理?ndc m 2=∆ν•电子枪发射出电子束,电子枪受阴极或栅极所加的视频信号电压的调制,电子束经过加束极的加速,聚焦极的聚焦,偏转磁场的偏转扫描到屏幕前面的荧光涂层上,产生复合发光,最终形成满足人眼视觉特性要求的光学图像。
光电子学复习提纲光电子学是研究光与电子之间相互作用的学科,它涉及到光的产生、传播、探测以及与物质的相互作用等方面。
本文将为您提供一份光电子学复习提纲,帮助您全面复习光电子学的相关知识。
一、光的基本概念和特性1.光的波动性和粒子性:光的波粒二象性以及爱因斯坦对光的解释。
2.光的电磁波性质:光的振荡特性、光的波长、频率、波速等基本概念。
3.光的干涉和衍射现象:干涉和衍射的基本原理以及干涉条纹和衍射图样的特点。
二、光的产生与传播1.光的产生方式:自发辐射、受激辐射和受激吸收等。
2.激光原理和特性:受激辐射的产生、激光的特点和分类、激光的放大和调谐等。
3.光纤通信:光纤的结构和工作原理、光纤传输的优势和应用领域、光纤通信系统的组成和性能。
三、光的探测和测量1.光电二极管:光电二极管的结构和工作原理、灵敏度和响应速度等。
2.光电倍增管:光电倍增管的基本原理、增益特性和应用。
3.光谱仪:光谱仪的工作原理、光栅和衍射光栅的特性、光谱分析的应用等。
四、光与物质的相互作用1.光电效应:光电效应的基本原理、光电效应的实验和测量以及应用。
2.光电导效应:光电导效应的概念和原理、光电导材料的特点和应用。
3.光致发光和光致发色:光致发光的基本原理、光致发光技术的应用。
4.光致变色:光致变色的基本原理、光致变色材料的种类和应用。
五、光电子学的应用1.光电子器件:光电二极管、激光器、光纤传感器等光电子器件的原理和应用。
2.光电子技术在生物和医学领域的应用:光纤光谱仪的生物分析应用、激光在医学中的应用等。
光电子学是一门重要的学科,它在现代科学和技术中有着广泛的应用。
通过对光的产生传播、探测测量以及光与物质的相互作用等方面的研究,我们可以更好地理解光学现象,并将光电子学应用于光通信、光信息处理、生物医学等领域,为人类社会的进步做出贡献。
以上就是光电子学复习提纲的内容,希望能对您的复习有所帮助。
祝您复习顺利!。
一、简答题:1. 套准精度的定义,套准容差的定义。
大约关键尺寸的多少是套准容差.套准精度是测量对准系统把版图套准到硅片上图形的能力。
套准容差描述要形成图形层和前层的最大相对位移。
一般,套准容差大约是关键尺寸的三分之一。
2. 亚波长结构的光学特性。
亚波长结构的光学特性:-- 光波通过亚波长结构时,光的衍射消失,仅产生零级反射和透射,等效为薄膜,可用于抗反射元件和双折射元件;-- 采用空间连续变化的亚波长结构可获得偏振面的衍射,形成新型偏振器件;-- 表面等离子波亚波长光学利用表面等离子体波共振(SPR)原理:波导,小孔增强,局域增强等4. 微电子的发展的摩尔定律是什么?何谓后摩尔定律?集成电路芯片的集成度每三年提高4倍,而加工特征尺寸缩小倍,这就是摩尔定律5. 单晶、多晶和非晶的特点各是什么?单晶:几乎所有的原子都占据着安排良好的规则的位置,即晶格位置;——有源器件的衬底非晶:如SiO2, 原子不具有长程有序,其中的化学键,键长和方向在一定的围变化;多晶:是彼此间随机取向的小单晶的聚集体,在工艺过程中,小单晶的晶胞大小和取向会时常发生变化,有时在电路工作期间也发生变化。
6. 半导体是导电能力介于___导体_____和___绝缘体_____之间的物质;当受外界光和热作用时,半导体的导电能力___明显变化______; _______往纯净的半导体中掺入某些杂质_______可以使半导体的导电能力发生数量级的变化。
7. 在光滑的金属和空气界面,为什么不能激发表面等离子体波?对于光滑的金属表面,因为表面等离子体波的波矢大于光波的波矢,所以不能激发表面等离子体波。
8. 磁控溅射镀膜工艺中,加磁场的主要目的是什么?将电子约束在靶材料表面附近,延长其在等离子体中运动的轨迹,提高与气体分子碰撞和电离的几率9. 谐衍射光学元件的优点是什么?高衍射效率、优良的色散功能、减小微细加工的难度、独特的光学功能10.描述曝光波长与图像分辨率的关系,提高图像分辨率,有哪些方法?K1 is the system constant 工艺因子:0.6~0.8NA = 2 ro/D, 数值孔径改进分辨率的方法增加NA减小波长减小K111. 什么是等离子体去胶,去胶机的目的是什么?氧气在强电场作用下电离产生的活性氧,使光刻胶氧化而成为可挥发的CO2、H2O 及其他气体而被带走;目的是去除光刻后残留的聚合物12. 硅槽干法刻蚀过程中侧壁是如何被保护而不被横向刻蚀的?通过控制F/C的比例,形成聚合物,在侧壁上生成抗腐蚀膜13. 折衍混合光学的特点是什么?折衍混杂的光学系统能突破传统光学系统的许多局限,在改善系统成像质量减小系统体积和质量等诸多方面表现出传统光学不可比拟的优势14. 刻蚀工艺有哪两种类型?简单描述各类刻蚀工艺。
干法刻蚀:在气态等离子体中,通过发生物理或化学作用进行刻蚀湿法刻蚀:采用液体腐蚀剂,通过溶液和薄膜间得化学反应就能够将暴露得材料腐蚀掉15. 微纳结构光学涉及三个理论领域,其中标量衍射理论适用于设计___d>=10λ___ 的微纳光学器件;矢量衍射理论适用于设计___d~λ__的微纳光学器件;等效介质折射理论适用于设计__d<=λ/10 __的微纳光学器件。
16.在紫外光刻中,正性光刻胶曝光后显影时将被__溶解___,负性光刻胶曝光后显影时将被__保留下来__.17. 光刻中,g 线波长是指_436_nm,i 线是指_365_nm。
18.干法刻蚀中的负载效应是指__刻蚀速率和刻蚀面积成反比_.19. 连续面形浮雕结构的制作方法有:______基于灰阶掩膜的投影法和采用电子束或激光束的束能直写法__.20.在下图中画出曝光后剩余的图形。
并指出曝光中驻波效应产生的原因和解决办法。
正性光刻胶曝光显影时将被溶解,负性光刻胶曝光后显影时将被保留下来在光刻胶曝光的过程中,透射光与反射光(在基底或者表面)之间会发生干涉。
这种相同频率的光波之间的干涉,在光刻胶的曝光区域出现相长相消的条纹。
光刻胶在显影后,在侧壁会产生波浪状的不平整。
解决方案:a、在光刻胶加入染色剂,降低干涉现象;b、在光刻胶的上下表面增加抗反射涂层;c、后烘和硬烘。
21.何谓表面等离子体波,激发表面等离子体波有哪几种方法?为什么说表面等离子体光学可以突破衍射极限?(1)等离子体中粒子的各种集体运动模式(2)棱镜耦合波导结构衍射光栅结构强聚焦光束近场激发(3)垂直方向的传播是倏逝场22. 为什么镀膜时镀膜室要具有一定的真空度?在真空条件下成膜可减少蒸发材料的原子、分子在飞向基板过程中与分子的碰撞,减少气体中的活性分子和蒸发源材料间的化学反应(如氧化等),以及减少成膜过程中气体分子进入薄膜中成为杂质的量,从而提供膜层的致密度、纯度、沉积速率和与基板的附着力。
23. 何为反应溅射镀膜?在溅射镀膜时,引入某些活性反应气体来改变或控制淀积特性,从而对薄膜的成分和性质进行控制24. 制备连续浮雕面型结构有哪些方法?基于灰阶掩膜的投影法采用电子束或激光束的束能直写法25.从微纳结构的光学原理出发解释孔雀的羽毛为什么会呈现不同的颜色。
26. 简述采用BOSCH 工艺制作高深宽比结构的技术原理。
二、论述题:1. 以图解形式描述二元光学原理,并以八台阶为例简述器件的主要制作步骤。
上图为八相位微透镜阵列制作原理图。
制作工艺:先将基片清洗干净并吹干,在特定的位置涂覆光刻胶,将匀胶之后的基片进行曝光,之后再进行显影,反复多次就可以得到所需的透镜阵列。
2. 论述折衍混合光学元件的消色差和消热差原理。
消色差原理:衍射光学元件(DOE)具有负等效Abbe常数的特性,与折射光学元件相反,因此折衍混合可以消除色差。
只需满足消色差方程即可:消热差原理:对于折射光学系统,温度升高,折射率变小,光学系统光焦度变小,焦距变长,温度降低,焦距变小;衍射光学表面微结构对温度不敏感,且具有负热差特性,与折射光学组成折衍混合光学可消热差。
3. 何谓光子晶体?介绍光子晶体特点和应用。
①具有不同介电常数的介质材料随空间呈周期性的变化时,在其中传播的光波的色散曲线将成带状结构,当这种空间有序排列的周期可与光的波长相比位于同一量级,而折射率的变化反差较大时带与带之间有可能会出现类似于半导体禁带的“光子禁带”(photonic band gap) ,这种光子禁带材料就是光子晶体,是一种新型的人工结构功能材料,通过设计可以人为调控经典波的传输。
特点②光子带隙:在一定频率围的光子在光子晶体的某些方向上是严格禁止传播的光子局域:在光子晶体中引入杂质和缺陷时,与缺陷态频率符合的光子会被局限在缺陷位置,而不能向空间传播③光子晶体反射器件,偏振片,发光二极管,滤波器,光纤,非线性开关和放大器,激光器4.试述相移掩膜方法提高光刻分辨率的原理。
示意图:增加一层相移层能够使相邻掩膜移相180°从而实现相移掩膜。
5. 深硅干法刻蚀过程中形成高深宽比的方法。
对于高深宽比窗口,化学刻蚀剂难以进入,反应生产物难以出来。
解决办法:将等离子体定向推进到高深宽比窗口,离子方向性垂直表面。
高密度等离子体。
6. 试述数字微镜器件(DMD)的结构和工作原理。
DMD是二维可控微反射镜阵列。
微镜单元用Si做基底,利用大规模集成电路技术在硅片上制出RAM,每一个存储器上有2条寻址电位,2条连接电极,2个支撑杆上通过扭臂链控制一个微型反射镜形成一个跷跷板的结果。
DMD每个像素都是一个可以绕轴转动的微镜,微镜位置不同,反射光的反射角就不同。
微镜的作用就相当于一个光开关。
7. 试述微测辐射热计器件采用热隔离结构的原因。
(1)机械支撑方面,支撑微辐射热计器件的敏感探测元件。
(2)作为电子学通道,将热成像电子信号传递并读出。
(3)热量传导时,是热量损失的重要通道。
8. 画图解释剥离(Lift-off)工艺。
9. 电子束蒸发镀膜的优缺点。
10. 设计采用两种不同工艺制备周期为500nm,占空比为50%的金属一维光栅的工艺方法。
11. 论述微透镜阵列光学扫描器的原理。
12. 论述微纳结构等效介质模型的主要容。
三、分析计算题:1.采用解析法设计一个主焦距长度为1mm,通光口径为0.3mm 的硅菲涅尔衍射微透镜,采用4 台阶量化方案,并给出掩膜版设计参数。
设计波长为4μ m,硅的折射率为3.42,设成像空间折射率n=1。
2.制作一个如下图的开孔结构,开孔口的宽度为10μ m。
假设采用<100>晶向的硅晶圆片,各向异性腐蚀方法制作。
试决定硅晶圆片背面的窗口尺寸w.3.利用热熔技术制作一个口径为60 微米,空气中焦距为200 微米的胶微透镜,假设胶体材料的加热后的体积收缩率为5%,而口径没有改变,胶体热熔后材料折射率为n=1.4。
试设计热熔前胶体的尺寸(直径和厚度)。
4. 如下图,将折射率为3.5 的无损耗电介质用作为法布里-珀罗干涉仪,(1)计算自由谱围(轴向横间隔)和干涉仪的带宽。
(2)如果环境介质替换成折射率n>1 的介质,自由谱围和干涉带宽该如何变化?(解释)4. 表面积为100100μm2 的平行平板电容器由是4 个悬臂梁支撑,平板材料为多晶硅,厚度T=2μm,平板底端与衬底间的距离d=1μm,每根悬臂梁长度(l)为400μm,宽度(w)为20μm,厚度(t)为0.1μm。
求在1g 加速度时电容的相对变化。
(假设多晶硅的氏模量为150GPa,密度为2330Kg/m3,真空介电常数)。