(优选)第六讲因子分析
- 格式:ppt
- 大小:2.11 MB
- 文档页数:112
第六章 因子分析首先通过主因子分析(factor),得到主成分因子:Factor | Eigenvalue Difference Proportion Cumulative -------------+------------------------------------------------------------Factor1 | 4.75929 3.71841 0.6954 0.6954 Factor2 | 1.04088 0.38315 0.1521 0.8475 Factor3 | 0.65773 0.37761 0.0961 0.9436 Factor4 | 0.28012 0.09188 0.0409 0.9845 Factor5 | 0.18825 0.19040 0.0275 1.0120 Factor6 | -0.00216 0.01548 -0.0003 1.0117 Factor7 | -0.01764 0.04472 -0.0026 1.0091 Factor8 | -0.06236 . -0.0091 1.0000 从上面的分析可以看出,只有两个成分大于1大于的特征值,同时两个成分解释了全部八个变量组合的方差还多。
不重要的第2 到8个主成分在随后的分析中可以放心地省略去。
运行factor 命令后,我们可以接着运行screeplot 命令画出碎石图。
碎石图中特征值等于1处的水平线标示了保留主成分的常用分界点,同时再次强调了本例中的成分3到成分6并不重要。
Variable | Factor1 Factor2 Factor3 Factor4 Factor5 -------------+--------------------------------------------------x1 | 0.9611 0.0193 0.2412 -0.0637 0.0013 x2 | 0.9119 0.3828 -0.1409 0.0380 0.0786 x3 | 0.8626 -0.0724 0.3816 0.0792 -0.2719 x4 | 0.9395 0.3468 -0.0299 -0.0313 0.0137 x5 | 0.7542 -0.0828 -0.2302 0.3307 0.1499E i g e n v a l u e sx6 | -0.3772 0.6987 0.2923 -0.1118 0.1221x7 | -0.6108 0.0367 0.4572 0.3336 0.0883x8 | 0.5416 -0.5217 0.2929 -0.1850 0.2505--------------------------------------------------------------------------------------------Variable | Uniqueness-------------+--------------x1 | 0.0136x2 | -0.0055x3 | 0.0249x4 | -0.0049x5 | 0.2396x6 | 0.2567x7 | 0.2975x8 | 0.2518----------------------------Variable | kmo-------------+---------x1 | 0.7491x2 | 0.5483x3 | 0.4993x4 | 0.5778x5 | 0.8127x6 | 0.2958x7 | 0.5122x8 | 0.4569-------------+---------Overall | 0.5671-----------------------Variable | smc-------------+---------x1 | 0.9726x2 | 0.9965x3 | 0.9662x4 | 0.9972x5 | 0.7447x6 | 0.7280x7 | 0.6925x8 | 0.7463根据kmo and smc,数据反映良好旋转会进一步简化因子结构。
第六章因子分析第六章因子分析§6.1因子分析的基本原理与模型一、因子分析的基本思想基本思想:根据相关性的大小将变量分组,使得同组内变量间的相关性较高,不同组间的相关性较低。
每组变量代表一个基本结构,并用一个不可观测的综合变量形式表示,这个基本结构成为公共因子。
此时的原始变量就可以分解成两部分之和的形式,一部分是少数几个不可测的所谓公共因子的线性函数,另一部分是与公共因子无关的特殊因子。
目的:从一些有错综复杂的问题中找出几个主要因子,每个主要因子代表原始变量间相互依赖的一种作用。
二、因子分析的基本模型常用的因子分析模型:R型因子分析和Q 型因子分析(一)R型因子分析模型R型因子分析是对变量作因子分析。
R型因子分析中的公共因子是不可直接观测但又客观存在的共同影响因素,每一个变量都可以表示成公共因子的线性函数与特殊因子之和,即:其中:称为公共因子,称为的特殊因子矩阵表达式:且满足:(1)(2),即公共因子与特殊因子是不相关的(3),即各公共因子不相关且方差为1(4),即各个特殊因子不相关,方差不要求相等模型中称为因子载荷,是第个变量在第个因子上的负荷,如果把变量看成维空间中的一个点,则表示它在坐标轴上的投影,因此矩阵称为因子载荷矩阵。
(二)Q型因子分析Q型因子分析是对样品作因子分析。
模型同上注:主成分分析与因子分析的区别主成分分析的数学模型本质上是一种线性变换,是将原始坐标变换到变异程度大的方向上去,相当于从空间上转换观看数据的的角度,突出数据变异的方向,归纳重要信息。
因子分析与主成分分析一样都属降低变量维数的方法。
但因子分析的本质是从显在变量去“提炼”潜在因子的过程。
模型中应注意的问题:(1)变量的协方差阵的分解式为即(2)因子载荷不是唯一的。
三、因子载荷阵的统计意义(一)因子载荷的统计意义对于因子模型可知的协方差若对作标准化处理,的标准差为1,且的标准差为1则(相关系数)综上可知:对于标准化后的,是的相关系数,一方面表示的依赖程度,绝对值越大,密切程度越高;另一方面也反映了变量对公共因子的相对重要性。
第六讲因⼦分析第五讲因⼦分析在许多实际问题中,涉及的变量众多,各变量间还存在错综复杂的相关关系,这时最好能从中提取少数综合变量,这些综合变量彼此不相关,⽽且包含原变量提供的⼤部分信息。
因⼦分析就是为解决这⼀问题提供的统计分析⽅法。
以后,如⽆特别说明,都假定总体是⼀个p维变量:它的均值向量,协⽅差矩阵V=(ij)pp都存在。
第⼀节正交因⼦模型1.1 公共因⼦与特殊因⼦从总体中提取的综合变量:F1, F2, … , F m(m于是,我们有:变量X i的信息=公共因⼦可以表达部分公共因⼦不可表达部分这就是所谓因⼦模型。
⽬前,公共因⼦可以表达的部分由公共因⼦的线性组合表⽰。
即上⾯的因⼦模型可以写成以下的形式:1.2 正交因⼦模型设总体,均值向量,协⽅差矩阵。
因⼦模型有形式:其中m如果引⼊以下向量与矩阵:则因⼦模型的矩阵形式为:对于正交的因⼦模型,还要进⼀步要求:z1. 。
即有:公共因⼦是互相不相关的。
z2. 。
即:特殊因⼦和公共因⼦不相关。
1.3 因⼦载荷矩阵1.矩阵A称为因⼦载荷矩阵(component matrix),系数a ij称为变量X i在因⼦F j上的载荷(loading)。
由于特别,如果总体是标准化的,则有Var(X i)=1,从⽽有:于是:即变量X i在公共因⼦F j上的载荷a ij就是X i与F j的相关系数。
2.载荷矩阵的估计:主成分法。
主成分法是估计载荷矩阵的⼀种⽅法,由于其估计结果和变量的主成分仅相差⼀个常数倍,因此就冠以主成分法的名称。
在学到这⾥的时候,不要和主成分分析混为⼀谈。
主成分法是SPSS系统默认的⽅法,在⼀般情况下,这是⽐较好的⽅法。
以数据“应征⼈员”为例,按特征值⼤于1提取公共因⼦。
在⽤不同⽅法获得因⼦载荷时,公共因⼦对总体⽅差的贡献率以主成分法为最⾼:⽅法贡献率 %Principle components 81.476Maximum likelihood74.304Unweighted least squares74.485Principal axis factoring74.462Alpha factoring74.540Image factoring69.365关于主成分法的内容可参看任何⼀本多元统计分析书,例如:《应⽤多元统计分析》,⾼惠璇著,北京⼤学出版社,p301。
因子分析一.因子分析原理因子分析是根据相关性大小把原始变量进行分组,使得同组内的变量之间相关性高,而不同组的变量之间的相关性低。
每组变量代表一个基本结构(即公共因子),并用一个不可观测的综合变量来表示。
对于所研究的某一具体问题,原始变量分解为两部分之和。
一部分是少数几个不可观测的公共因子的线性函数,另一部分是与公共因子无关的特殊因子。
从全部计算过程来看作R 型因子分析与作Q 型因子分析都是一样的,只不过出发点不同,R 型从相关系数矩阵出发,Q 型从相似系数阵出发都是对同一批观测数据,可以根据其所要求的目的决定用哪一类型的因子分析因子模型的性质:模型不受变量量纲的影响;因子载荷不是唯一的。
二.因子分析的数学模型设有p 个指标,则因子分析数学模型为:11111221221122221122p p p pp p p pp p X r Y r Y r Y X r Y r Y r Y X r Y r Y r Y=+++⎧⎪=+++⎪⎨⎪⎪=+++⎩ 其中,12,,,p X X X 是已标准化的可观测的评价指标。
12,,,k F F F 出现在每个指标i X 的表达式中,称为公共因子,公共因子是不可观测的,其含义要根据具体问题来解释。
i ε是各个对应指标i X 所特有的因子,故称为特殊因子,它与公共因子之间彼此独立。
ij r 是指标i X 在公共因子j F 上的系数,称为因子载荷,因子载荷ij r 的统计含义是指标i X 在公共因子j F 上的相关系数,表示i X 与j F 线性相关程度。
用矩阵形式表示为:X AF ε=+其中12(,,,)p X X X X '=,12(,,,)k F F F F '=,12(,,,)p εεεε'=,111212122212m m p p pm r r r r r r A rr r ⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭,A 称为因子载荷矩阵。
其统计含义是:A 中的第i 行元素12,,,i i im r r r 说明了指标i X 依赖于各个公共因子的程度。
因子分析法1.因子分析(Factor Analysis)因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子(之所以称其为因子,是因为它是不可观测的,即不是具体的变量),以较少的几个因子反映原资料的大部分信息。
运用这种研究技术,我们可以方便地找出影响消费者购买、消费以及满意度的主要因素是哪些,以及它们的影响力(权重)运用这种研究技术,我们还可以为市场细分做前期分析。
因子分析法与其他一些多元统计方法的区别:2.主成分分析主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。
主成分分析一般很少单独使用:a,了解数据。
(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。
(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。
1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。
2、主成分分析的重点在于解释各变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。
3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。
因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。
4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子。
5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。