14.3.1《因式分解--提公因式法》教案
- 格式:doc
- 大小:37.00 KB
- 文档页数:3
14.3 因式分解(第1课时)一、内容和内容解析1.内容因式分解的概念,提公因式法.2.内容解析因式分解是对整式的一种变形,是把一个多项式转化成几个整式相乘的形式,它与整式乘法是互逆变形的关系.因式分解是后续学习分式、二次根式、一元二次方程、二次函数等知识的基础,是解决整式恒等变形和简便运算问题的重要工具.提公因式法是因式分解的基本方法.通过逆向运用分配律,将多项式中各项的公因式“提”到括号外边,从而把多项式分解为此公因式与多项式剩余部分所组成的因式的积.其中,公因式可以是单项式,也可以是数或多项式.提公因式法分解因式的关键是找准公因式.基于以上分析,确定本节课的教学重点:运用提公因式法分解因式.二、目标和目标解析1.目标(1)了解因式分解的概念.(2)了解公因式的概念,能用提公因式法进行因式分解.2.目标解析达成目标(1)的标志:学生知道因式分解的概念,知道因式分解与整式乘法是互逆变形的关系,能识别某一式子的变形是否为因式分解.达成目标(2)的标志:学生知道公因式就是多项式各项系数的最大公约数和各项都含有的字母及多项式的最低次幂的积;知道公因式可以是单项式、也可以是数或多项式;知道提公因式法分解因式要经历“找出公因式”“提取公因式”两个步骤,提取公因式就是把公因式提到括号外面,括号内的因式即为多项式除以公因式所得的商式,并能按此步骤对多项式进行因式分解.三、教学问题诊断分析因式分解不同于数的计算,是对整式进行变形,学生第一次接触时在理解上会有一定的困难.在对整式乘法的认识还不够深入的情况下,就遇到与之有互逆关系的新情境,学生有时会出现因式分解后又反转回去做乘法的错误,解决此问题的关键是让学生正确认识因式分解的概念,理解它与整式乘法的互逆变形关系.学生在运用提公因式法分解因式的过程中经常遇到的困难是公因式选取不准确,表现在忽视了某些相同的字母或式子,导致提取公因式后的因式中仍然含有公因式.解决此问题的关键是找出多项式各项系数的最大公约数和各项都含有的字母及多项式的最低次幂的积作为公因式.本节课的教学难点:正确理解因式分解的概念、准确找出公因式.四、教学过程设计1.了解因式分解的概念问题1 上一节我们已经学习了整式的乘法,知道可以将几个整式的乘积化为一个多项式的形式.反过来,在式的变形中,有时需要将一个多项式写成几个整式的乘积的形式.请把下列多项式写成整式的乘积的形式:(1)x2+x=___________;(2)x2-1=___________.追问1:根据整式的乘法,你能猜想出问题(1)(2)的结果吗?追问2:在多项式的变形中,有时需要将一个多项式化成几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式.你认为因式分解与整式乘法有什么关系?师生活动:学生观察并独立思考,尝试着写出答案,在教师给出因式分解的概念之后,学生回答因式分解与整式乘法是互逆变形关系.设计意图:通过具体问题的解决,让学生在观察、思考和操作的过程中,了解因式分解的概念,认识其本质属性——将和差化为乘积的式子变形,同时发现因式分解与整式乘法的互逆变形关系,为后续探索因式分解的具体方法做铺垫.练习下列变形中,属于因式分解的是___________(填序号).(1)a(b+c)=ab+ac;(2)x3+2x2-3=x2(x+2)-3;(3)a2-b2=(a+b)(a-b).设计意图:通过实例辨析,让学生进一步理解因式分解的概念.2.探索因式分解的方法——提公因式法问题2你能试着将多项式pa+pb+pc因式分解吗?(1)这个多项式有什么特点?(2)你能将这个多项式因式分解吗?(3)因式分解的依据是什么?(4)分解后的各因式与原多项式有何关系?师生活动:教师提出问题,学生先独立思考,然后学生代表展示求解过程.在回答(1)后,学生能发现这个多项式的各项都有一个公共的因式,教师指出此因式叫做这个多项式各项的公因式.在得出pa+pb+pc=p(a+b+c)后,学生发现:一般地,如果多项式的各项有公因式,可以把各个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式.教师指出:这种分解因式的方法叫做提公因式法.设计意图:让学生进一步了解因式分解与整式乘法的关系;了解因式分解的理论依据;了解公因式的概念,初步理解提公因式法分解因式.3.初步应用提公因式法例1把8a3b2+12ab3c分解因式.师生活动:师生共同分析,并解答问题.此时教师引导学生明白找8a3b2与12ab3c的公因式的基本程序:先找系数8与12的最大公约数,再找出两项字母部分a3b2与ab3c都含的字母a和b,然后找出都含的字母a和b的最低次数,进而选定8a3b2与12ab3c的公因式4ab2.追问1:如果提出公因式4a,得出8a3b2+12ab3c=4a(2a2b2+3b3c),那么,另一个因式2a2b2+3b3c是否还有公因式呢?追问2:如果提出公因式4b或4ab,那么,另一个因式是否还有公因式?追问3:在利用提公因式法分解因式时应注意什么?师生活动:教师提出问题,学生独立思考,互动交流,最后达成共识:用提公因式法分解因式时,最后一定要满足各因式中再无公因式.设计意图:通过例题的教学,引导学生:(1)了解提公因式法分解因式的基本程序和步骤;(2)积累找公因式的经验——找到公因式的最简单的方法是找出多项式各项系数的最大公约数和各项都含有的字母及多项式的最低次幂的乘积;(3)知道提公因式法就是把多项式分解成两个因式乘积的形式,其中一个因式是各项的公因式,另一个因式是由多项式除以公因式得到的;(4)用提公因式分解因式后,应保证含有多项式的因式中再无公因式.例2 把2a(b+c)-3(b+c)分解因式.师生活动:学生独立完成,一名学生板书,师生共同交流.设计意图:此例题的公因式是多项式(b+c),通过此例题的教学,提高学生对“公因式”的认识——可以是单项式,也可以是多项式,增强对提公因式法分解因式的本质的认识.4.巩固应用提公因式法练习1把下列各式分解因式:(1)ax+ay;(2)3mx-6my;(3)8m2+2mn;(4)12xyz-9x2 y2;(5)2a(y-z)-3b(z-y);(6)p(a2+b2)-q(a2+b2).师生活动:三名学生板书,其他学生在练习本上完成,然后学生互动交流.设计意图:通过具有一定典型性、代表性和层次性的练习题,让学生进一步巩固因式分解的基本方法——提公因式法,积累解题经验.前4题的公因式为单项式,后两道题的公因式为多项式.在前4题中,公因式有的只是一个字母构成的单项式,有的是有两个字母及系数构成的单项式.在后两道题中,一个为直接提公因式,一个需要变形后再提公因式.练习2 先分解因式,再求值:4a2(x+7)-3(x+7),其中a=-5,x=3.师生活动:一名学生板书,其他学生在练习本上完成,然后小组交流解题经验,解题过程由学生进行评价.设计意图:使学生进一步巩固因式分解的基本方法——提公因式法,提高对公因式的认识,公因式可以是单项式、也可以是数或多项式,感受因式分解给计算带来的便捷,体会此方法的数学价值.5.归纳小结教师与学生一起回顾本节课所学的主要内容,并请学生回答以下问题:(1)本节课学习了哪些主要内容?(2)因式分解的目的是什么?因式分解与整式乘法有什么区别和联系?(3)提公因式法的一般步骤是什么?应用提公因式法分解因式时要注意什么?设计意图:通过小结,使学生梳理本节课所学内容,使学生进一步理解因式分解、公因式的概念,总结应用提公因式法分解因式的步骤,建立知识之间的联系,促进学生数学思维品质的优化.6.布置作业教科书习题14.3第1题,第4题(1).五、目标检测设计1.下列变形中是因式分解的是( ).A.x(x+1)=x2+x B.x2+2x+1=(x+1)2C.x2+xy-3=x(x+y)-3D.x2+6x+4=x(x+3)2-5设计意图:考查学生对因式分解概念的理解.2.分解因式:(1)14 a3b-21a2b2c;(2)2m(m+n)+6 n(m+n).设计意图:考查学生运用提公因式法进行因式分解的掌握.3.已知x-y=3,x+y=7,求x(x-y)-y(y-x)的值.设计意图:考查学生运用提公因式法进行因式分解,并进行代数运算的掌握情况.。
第十四章整式的乘法与因式分解14.3因式分解14.3.1提公因式法一、教学目标1.通过因式分解与整式乘法的互逆关系,让学生掌握因式分解的意义.2.让学生理解公因式的概念,会用提公因式法分解因式,渗透化归的思想方法.二、教学重点及难点重点:提公因式法分解因式,难点:理解因式分解的意义,找准公因式能正确分解因式.三、教学用具电脑、多媒体、课件四、相关资源微课、动画、图片五、教学过程(一)情景导入请同学们完成下列计算,看谁算得又准又快.(1)220(3)60(3)⨯-+⨯-;(2)2210199-;(3)22572574343+⨯⨯+. 解:(1)220(3)60(3)⨯-+⨯-=20×9+60×(-3)=180-180=0;或220(3)60(3)⨯-+⨯-=220(3)203(3)⨯-+⨯⨯-=20×(-3)×(-3+3)=-60×0=0;(2)2210199-=(101+99)×(101-99)=200×2=400;(3)22572574343+⨯⨯+=2(5743)+=2100=10 000.在上述运算中,大家或将数字分解成两个数的乘积,或者逆用乘法公式使运算变得简单易算,类似地,在代数式的变形中,有时也需要将一个多项式写成几个整式的乘积形式,这就是我们从今天开始要探究的内容——因式分解.注意:学生对于第(1)小题第二种算法逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(2)(3)小题的逆向利用平方差公式和完全平方公式的运算则有一定的困难,引导学生在运算与交流中积累解题经验,复习乘法公式.设计意图:让学生通过回顾用简便方法计算,使学生通过类比很自然地过渡到正确理解因式分解的概念上,从而为因式分解的掌握扫清障碍.(二)探究新知1.把下列多项式写成整式的乘积的形式.(1)2________________x x +=;(2)21________________x -=;(3)am +bm +cm = .根据整式乘法和逆向思维原理,可以做如下计算:(1)2x x +=x (x +1);(2)21x -=(x +1)(x -1);(3)am +bm +cm =m (a +b +c ).像这种把一个多项式化成几个整式的积的形式的式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式.可以看出因式分解与整式乘法是方向相反的变形,所以需要逆向思维.例:说说下列等式的变形中哪些是因式分解,哪些不是,说明理由?332221262(3)ab a b ab b a -=-() 522323()3x x y x x y ++=++()23(2)(2)4x x x +-=-() 24()1(1)(1)m n m n m n --=---+()答案:(1)(4)是,因为把一个多项式分成两个因式乘积的形式.(2)不是,是部分分解,不是几个因式乘积形式.(3)不是,是整式的乘法形式.2.再观察上面的第(1)题和第(3)题,你能发现什么特点.发现(1)中各项都有一个公共的因式x ,(3)中各项都有一个公共因式m ,我们就把这些公共因式叫做多项式的公因式.说出下列各项中的公因式:354216 3 12m n m n mn -(),,. 2532()()()a b a b a b +++(), , .答案:(1)3mn . (2)2() a b +.因为ma +mb +mc =m (a +b +c ),于是就把ma +mb +mc 分解成两个因式乘积的形式,其中一个因式是各项的公因式m ,另一个因式a +b +c 是ma +mb +mc 除以m 所得的商.一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法.设计意图:类比数的因式分解,根据整式乘法和逆向思维原理,通过计算得出因式分解的概念,公因式的概念和提公因式法.(三)例题解析【例1】把323812a b ab c +分解因式.让学生利用提公因式法的定义尝试独立完成,然后与同伴交流解题心得,教师深入到学生中去发现问题,并对有困难的学生进行适时的引导和启发,最后师生共同评析、总结.分析:先找出328a b 与312ab c 的公因式,再提出公因式.我们看这两项的系数8与12,它们的最大公约数是4,两项的字母部分32a b 与3ab c 都含有字母a 和b .其中a 的最低次数是1,b 的最低次数是2.我们选定24ab 为要提出的公因式.提出公因式24ab 后,另一个因式223a bc +就不再有公因式了.解:323812a b ab c + 2224243ab a ab bc =⋅+⋅224(23)ab a bc =+.总结:提取公因式后,要满足另一个因式不再有公因式才行,即括号里面要分到“底”.【例2】把2a (b +c )-3(b +c )分解因式.分析:(b +c )是这两个式子的公因式,可以直接提出.这就是说,公因式可以是单项式,也可以是多项式,是多项式时应整体考虑直接提出.解:2a (b +c )-3(b +c )=(b +c )(2a -3).思考:如何检验因式分解是否正确呢?学生思考得出检验方法:在分解因式完成后,按照整式乘法把因式再乘回去,看结果是否与原式相等,如果相等就说明没有错,否则就错了.设计意图:通过例题解析,使学生明确找公因式是提公因式法分解因式的关键,并掌握找公因式的方法(找多项式中各项系数的最大公约数和各项都含有的字母及多项式的最低次幂的积作为公因式),并知道提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式.(四)课堂练习1.把236x xy x -+分解因式.2.把3241618a a a -+-分解因式.3.把6(x -2)+x (2-x )分解因式.学生先独立完成后小组交流合作,总结归纳提公因式法分解因式的经验方法和技巧. 答案:1.解:236x xy x -+=x ·3x -x ·6y +x ·1=x (3x -6y +1).注意:x (3x -6y +1)=236x xy x -+,而x (3x -6y )=236x xy -,所以原多项式因式分解为x (3x -6xy +1)而不是x (3x -6y ).这就是说,1作为项的系数,通常可以省略,但如果单独成一项时,它在因式分解时不能漏掉,可以概括为:某项提出莫漏1.2.解:3241618a a a -+- 32(41618)a a a =--+22(289)a a a =--+.注意:如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.在提出“-”号时,多项式的各项都要变号.可以用一句话概括:首项有负常提负.3.分析:先找6(x -2)与x (2-x )的公因式,再提取公因式.因为2-x =-(x -2),所以x -2即公因式.解:6(x -2)+x (2-x )=6(x -2)-x (x -2)=(x -2)(6-x ).有时候多项式的各项从表面上看没有公因式,但将其中的一些项变形后,就可以发现公因式了,然后再提取公因式.设计意图:进一步巩固用提公因式法分解因式,并在解题的过程中总结用提公因式法分解因式的方法和技巧.六、课堂小结1.因式分解的定义,就是把一个多项式分解成几个整式乘积的形式.2.提公因式法分解因式的一般形式,如:ma+mb+mc=m(a+b+c).这里的公因式m可以是一个单项式,也可以是一个数或多项式.3.提公因式法分解因式的关键在于观察并准确找出多项式的公因式.4.找公因式的一般方法:找多项式中各项系数的最大公约数和各项都含有的字母及多项式的最低次幂的积作为公因式.5.找公因式的一般方法和技巧各项有“公”先提“公”;首项有负常提负;某项提出莫漏1;括号里面分到“底”.6.初学提公因式法分解因式,最好先在各项中将公因式分解出来,如果这项就是公因式,也要将它写成乘1的形式,这样可以防范错误,即漏项的错误发生.7.公因式相差符号的,如(x-2)与(2-x)要先统一公因式,同时要防止出现符号问题.设计意图:通过小结,使学生梳理本节所学内容,理解因式分解的概念、公因式的概念和用提公因式法分解因式,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比思想的理解.本图片资源介绍了因式分解的概念及注意事项,适用于因式分解的教学.若需使用,请插入图片【知识点解析】因式分解.本图片资源介绍了公因式的概念及如何确定公因式,适用于因式分解的教学.若需使用,请插入图片【知识点解析】公因式的确定.本图片资源介绍了提公因式法的概念及步骤,适用于因式分解的教学.若需使用,请插入图片【知识点解析】用提公因式法分解因式.七、板书设计14.3因式分解第1课时因式分解:把一个多项式化成几个整式的积的形式的式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式.公因式:多项式中各项共有的因式叫做这个多项式的公因式.提公因式法:如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法.。
可编辑修改精选全文完整版
说课:14.3.1因式分解---提公因式法
一、 教材分析
提公因式法是人教版教材八年级上册第14章第3节第一部分的内容,它是既整式乘法和整式除法后的又一重要的内容,这也是整式乘法的延续,与前面的知识联系十分紧密,也是学生以后学习化简,一元一次运算的重要基础,学习好此节内容会使学生以后运算更加简单。
二、 学情分析
初二年级两个班均为普通班,多数学生基础较差,他们自我学习能力很弱,上课只能以课本基础的知识为主,来激发更多的学生参与学习。
而在知识基础上,学生们已经学过整式的乘法,而且他们在小学已经接触了公因数的概念和乘法分配率,因此学习本节内容稍显容易,但在分解过程中的常规易错点问题,必需让学生反复训练,才能达预期目的。
三、 教学目标
1、理解因式分解的概念,能够准确的判断什么是因式分解。
2、明白公因式的概念,熟练运用提公因式法分解因式。
3、经历探索提公因式法分解因式的过程,学会逆向思考和整体看待的数学思想。
重点: 理解因式分解的定义及运用提取公因式法分解因式
难点: 理解因式分解与整式乘法的关系,熟练运用提取公因式法分解因式
四、 教学方法与教学手段
运用类比,演绎归纳的方法引导学生自主学习,自主归纳。
五、 教学流程图。
课题:14.3.1因式分解(第1课时)——提公因式法一、教学目标1.知识与能力目标:(1)了解因式分解的概念(2)了解公因式的概念,能用提公因式法进行因式分解2.过程与方法目标:(1)学生通过观察类比体会因式分解的概念,提高知识迁移的能力,渗透类比的思想(2)学生通过探究找公因式的步骤,培养探究能力,通过总结锻炼语言表达能力3.情感态度与价值观目标本节课从学生已知的内容出发展开新的概念,学生在活动中提高数学学习的兴趣,并在自主探究过程中获得成功的体验,增强数学学习的自信心。
在学习的过程中渗透对数学类比的思想方法的理解。
二、教学重、难点重点:运用提公因式法分解因式难点:正确理解因式分解的概念,准确找出公因式三、教法设计类比与探究式的教学方法四、学法设计自主探究与合作交流五、教学过程教学过程教学内容师生互动设计意图活动一温故知新迁移类比问题1:(1)你能用简便方法计算下列算式吗?14.31714.36214.321⨯+⨯+⨯你的依据是什么?(2)能将mmm176221++写成乘积的形式吗?(3)那cmbmam++呢?(4)能将以下多项式写成乘积的形式吗?______2⨯=+xx______12⨯=-x你的依据是什么?教师提问后,学生迅速演算,举手回答问题。
学生回答乘法分配律(逆运算),教师给予补充学生根据整式乘法中的运算经验将题中的多项式转化成两个式子乘积的形式。
学生回答依据:整式乘法的逆运算从学生比较熟悉的结构但又不能一眼看出答案的算式出发,让学生迅速参与到课堂中来。
由数字算式拓展到多项式,学生由前面的解题经验迁移类比,将多项式化成乘积形式。
八年级上册第十四章《整式的乘法与因式分解》14.3.1《因式分解——提公因式法》课标分析一、课标要求本节课在课标中第三学段(一)数与式的第四个部分“整式与分式”中表述为:“能用提公因式法、公式法(直接利用公式不超过两次)进行因式分解(指数是正整数)”。
二、课标解读(摘自《数学课程标准(2011年版)解读》)本课知识属于代数式的运算的内容,它与代数式的化简与求值,整式的加法、减法、乘法运算等一样本质都是恒等变形,从式的一种形态变为另一种形态的恒等变形绝非一种字母的游戏,他是研究数学的有力杠杆之一,对于数感和符号意识的形成具有重要作用,也是提高运算能力的重要载体和必经之路,是第三学段数与代数的主干内容和教学重点。
因式分解是整式的一种恒等变形,将整式变换成乘积的形式,对今后研究整式方程是一种重要的理论根据和求解的有效方法。
提取公因式法和公式法是实施因式分解的基本方法,是通法;十字相乘法也是一种方法,但不是通法。
三、课标应用《课程标准(2011年版)》指出:“学生掌握数学知识,不能依赖死记硬背,而应以理解为基础,并在知识的应用中不断巩固和深化”。
因此在教学本节课中应注重让学生“理解和掌握”。
学生对于本节课知识的掌握,应该尽量达到扎实的程度,为此,应注重利用模仿和记忆等行之有效的学习方式,但是要在理解的基础上模仿和记忆,而不是机械地模仿,也不是死记硬背。
我在本节课的设计上利用多种方式让学生经历“因式分解”定义产生的过程,在观察理解中逐渐掌握相关知识。
八年级上册第十四章《整式的乘法与因式分解》14.3.1《因式分解——提公因式法》学情分析一、思维分析八年级学生的思维以形象思维为主,抽象思维能力较弱,对于因式分解这种抽象概念的理解有一定难度。
因此在本节课的设计上,目标设定从简到易,遵循学生的认知规律。
1、初步了解什么叫因式分解?2、了解整式乘法与因式分解的关系。
3、理解什么是公因式?知道如何找公因式。
4、初步掌握提公因式法分解因式。
14.3.1 提公因式法一、教材内容分析本节是八年级上册第14章第3节第1课时的内容,在小学里学习因数分解.因为通分和约分要直接应用质因数分解.在前一节已经学习了乘法分配律,整式乘法,乘法公式,整式除法的基础上.这节学习因式分解.因为因式分解内容不仅在分式的通分和约分里有,还在解一元二次方程及各种式子的恒等变形等的学习奠定了基础,起到承上启下的作用.二、学习者特征分析八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,通过类比加快知识的学习.教学时应加强直观性和趣味性来增加感官刺激,激发学生的学习兴趣.三、教学目标(知识技能,数学思考,问题解决,情感态度)知识技能:理解因式分解的概念,正确运用提取公因式法分解因式.数学思考:经历探索多项式各项公因式的过程,并在具体问题中,能确定多项式各项的公因式;会用提公因式法把多项式分解因式;进一步了解分解因式的意义,并渗透化归的思想方法.问题解决:运用因式分解的方法解决实际问题,增强学生的应用能力和实践能力.情感态度:培养学生积极主动参与的意识,使学生形成自主学习、合作学习,向学生渗透对比、类比的数学思想方法.四、重点与难点重点:因式分解的概念及用提公因式法提公因式难点:正确找出多项式的公因式及公因式提取后,另一个因式的确定五、教学策略选择与设计《课标》中强调,动手实践,自主探索与合作交流是学生进行有效地数学学习活动的重要方式,教学中,应注重学生的活动,要鼓励每个学生亲自实践,积极思考,体会活动的乐趣,在乐学的氛围中培养学生的空间观念,动手能力.虑到学生的认知水平,本节以探究法为主,结合讲练结合法等展开教学.为让学生理解因式分解的概念和公因式的确定,我采用对比、类比教学.六、教学环境及资源准备教学环境:多媒体教学网络教室资源准备:PPT课件七、教学过程1.温故知新整式的乘法计算下列各式:x(x+1)=_____________.(x+1)(x-1)=___________.(a+b)2= .2.知识讲解:因式分解的概念2.1试一试请把下列多项式写成整式的乘积的形式:(1)x2+x =__________;(2)x 2–1=__________.2.2因式分解概念上面我们把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式. 思考:整式的乘法与因式分解有什么关系?2.3练一练判断下列各式哪些是整式乘法?哪些是因式分解?(1) x 2-4y 2=(x+2y)(x -2y);()()1112-+=-x x x 上面我们把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这个多项式 ,也叫做把这个多项式 。
14.3.1提公因式法课时目标1.了解因式分解的意义,以及它与整式乘法的关系,掌握因式分解的概念,体会数学知识的内在含义与价值.2.能确定多项式各项的公因式,会用提公因式法把多项式分解因式,培养学生有条理的思考和运算能力.3.会利用因式分解进行简便计算,体会因式分解的价值,培养学生的创新意识.学习重点运用提公因式法分解因式.学习难点正确理解因式分解的概念,准确找出公因式.课时活动设计回顾引入1.回顾整式乘法完成填空:(1)m(a+b+c)=ma+mb+mc.(2)(x+1)(x-1)=x2-1.(3)(a+b)2=a2+2ab+b2.2.根据等式性质填空:(1)ma+mb+mc=m(a+b+c).(2)x2-1=(x+1)(x-1).(3)a2+2ab+b2=(a+b)2.设计意图:引导学生回顾旧知识,激活学生已有的知识体系,为学习新知识打下基础.探究新知探究1因式分解问题:回顾引入中第2组式子有什么共同特点?学生回答:将一个多项式化成多个整式相乘.教师引导并给出因式分解的概念:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式.p(a+b+c)pa+pb+pc通过观察,你发现因式分解和整式乘法有什么关系?学生发现:因式分解与整式乘法的互逆性.探究2提公因式法问题1:观察下列多项式有哪些相同因式?学生观察发现前者的相同因式为p,后者的相同因式为x.总结如下:多项式中各项都含有的相同因式,叫做这个多项式的公因式.师生活动:教师板书:pa+pb+pc=p(a+b+c).引导学生用文字进行总结:一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法.问题2:找出3x2-6xy的公因式,并思考如何确定一个多项式的公因式?师生活动:学生先独立思考,然后小组交流得出结论:公因式为3x.教师引导学生用文字总结如何确定一个多项式的公因式:1.定字母:字母取多项式各项中都含有的相同的字母;2.定系数:公因式的系数是多项式各项系数的最大公约数;3.定指数:相同字母的指数取各项中最小的一个,即字母的最低次数.设计意图:通过具体问题的解决,让学生在观察、思考和操作的过程中,了解因式分解的概念,培养学生类比的思想方法和运算能力;学生从系数、字母、指数多个角度思考问题,培养学生思维的全面性和开阔性,养成积极思考的学习态度和创新意识.典例精讲例1把下列各式分解因式:(1)8a3b2+12ab3c;(2)2a(b+c)-3(b+c);(3)(a+b)(a-b)-a-b.解:(1)8a3b2+12ab3c=4ab2·2a2+4ab2·3bc=4ab2(2a2+3bc).(2)2a(b+c)-3(b+c)=(b+c)(2a-3).(3)(a+b)(a-b)-a-b=(a+b)(a-b)-(a+b)=(a+b)(a-b-1).技巧:1.整体思想找公因式;2.整项被提取后,1不能丢;3.可以用整式乘法验证.例2以下因式分解是否正确?如果错误,请指出原因并改正.(1)把12x2y+18xy2分解因式.解:原式=3xy(4x+6y).解:不正确.正解:原式=6xy(2x+3y).注意:公因式要提尽.(2)把3x2-6xy+x分解因式.解:原式=x(3x-6y).解:不正确.正解:原式=3xx-6yx+1·x=x(3x-6y+1).注意:某项提出莫漏1.(3)把-x2+xy-xz分解因式.解:原式=-x(x+y-z).解:不正确.正解:原式=-(x2-xy+xz)=-x(x-y+z).注意:首项有负常提负.例3计算:(1)39×37-13×91;(2)29×20.16+72×20.16+13×20.16-20.16×14.解:(1)原式=3×13×37-13×91=13×(3×37-91)=13×20=260.(2)原式=20.16×(29+72+13-14)=2 016.例4已知a+b=7,ab=4,求a2b+ab2的值.解:∵a+b=7,ab=4,∴原式=ab(a+b)=4×7=28.设计意图:通过例题,让学生寻求不同的解题方法,体会在计算求值时,若式子各项都含有公因式,用提公因式的方法可使运算简便,感悟学习因式分解的作用,培养学生转化意识、整体思想,进一步训练运算能力.巩固训练1.多项式15m3n2+5m2n-20m2n3的公因式是(C)A.5mnB.5m2n2C.5m2nD.5mn22.把多项式(x+2)(x-2)+(x-2)提取公因式(x-2)后,余下的部分是(D)A.x+1B.2xC.x+2D.x+33.简便计算:2 0132+2 013-2 0142.解:原式=2 013×(2 013+1)-2 0142=2 013×2 014-2 0142=2 014×(2 013-2 014)=-2 014.设计意图:巩固训练共设计3个题目,针对所学知识点对本节所学知识再巩固,检验学生的学习效果,准确地进行教学评价,帮助教师发现问题和进行教学改进.课堂小结1.整式乘法和因式分解的关系是方向相反的变形,因式分解的目的是把一个多项式化成了几个整式的积的形式.2.找公因式的方法三定:定系数;定字母;定指数.3.提公因式的因式分解的步骤第一步找公因式,第二步提公因式.4.提公因式的技巧或注意问题1.要提尽;2.不漏项;3.提负数要注意变号.5.本节用到什么研究问题的方法?设计意图:引导学生从知识内容和学习过程两个方面总结自己的收获,把握本节课的核心,梳理本节课内容,回顾由具体到抽象的过程,总结方法,建立知识体系,体会类比、转化方法在研究数学问题中的重要作用,促进学生数学思维品质的优化.课堂8分钟.1.教材第115页练习第1,2,3题.2.作业.教学反思14.3.2公式法第1课时运用平方差公式因式分解课时目标1.探索并运用平方差公式进行因式分解,体会转化思想和逆向思维.2.能综合运用提公因式法和平方差公式对多项式进行因式分解,培养运算能力和应用意识.3.培养良好的推理能力,体会“化归”与“整体”的思想方法,形成灵活的应用能力.学习重点掌握平方差公式的特点,运用平方差公式进行因式分解.学习难点灵活应用平方差公式因式分解.课时活动设计回顾引入之前学习了平方差公式,今天先回顾一下.计算:(1)(x+2)(x-2);(2)(x-1)(x+1).选两名学生黑板上板书计算过程:解:(1)(x+2)(x-2)=x2-4.(2)(x-1)(x+1)=x2-1.设计意图:从结构上认识本节课所研究的多项式的结构特点,引出课题,培养学生观察问题的能力和模型观念.探究新知问题:多项式a2-b2有什么特点?你能将它分解因式吗?学生观察得出结论:a2-b2=(a+b)(a-b)是a,b两数的平方差的形式.追问1:你能根据符号语言写出文字语言吗?师生活动:教师引导学生结合整式乘法归纳出因式分解平方差公式的文字语言:两个数的平方差,等于这两个数的和与这两个数的差的积.追问2:如图,在边长为a米的正方形上剪掉一个边长为b米的小正方形,将剩余部分拼成一个长方形,根据此图形变换,你能验证刚才的公式吗?师生活动:教师首先引导学生利用面积验证平方差公式,提问两名同学分别列出左右两个图形涂色区域的面积.左:涂色区域的面积=a2-b2;右:涂色区域的面积=(a+b)(a-b).根据左右涂色区域的面积相等得到:a2-b2=(a+b)(a-b).设计意图:通过利用拼图求面积验证平方差公式,培养学生多角度思考问题的习惯和图形语言、符号语言、文字语言的相互转化能力.典例精讲例1分解因式:(1)4x2-9;(2)(x+p)2-(x+q)2.解:(1)原式=(2x)2-32=(2x+3)(2x-3).(2)原式=[(x+p)+(x+q)]·[(x+p)-(x+q)].例2分解因式:(1)x4-y4;(2)a3b-ab.解:(1)原式=(x2)2-(y2)2=(x2+y2)(x2-y2)=(x2+y2)(x+y)(x-y).(2)原式=ab(a2-1)=ab(a+1)(a-1).例3已知x2-y2=-2,x+y=1,求x-y,x,y的值.解:∵x2-y2=(x+y)(x-y)=-2,∵x+y=1,①∴x-y=-2.②联立①②,组成二元一次方程组{x+y=1, x-y=−2,解得{x =−12,y =32. 例4 计算下列各题:(1)1012-992; (2)53.52×4-46.52×4. 解:(1)原式=(101+99)×(101-99)=200×2=400. (2)原式=4×(53.52-46.52) =4×(53.5+46.5)(53.5-46.5) =4×100×7=2 800.例5 求证:当n 为整数时,多项式(2n +1)2-(2n -1)2一定能被8整除. 证明:原式=(2n +1+2n -1)(2n +1-2n +1)=4n ·2=8n , ∵n 为整数,∴8n 能被8整除.即多项式(2n +1)2-(2n -1)2一定能被8整除.设计意图:进一步通过例题强调平方差公式和因式分解的两种方法的综合应用,让学生体会若用平方差公式分解后的结果中有公因式,一定要再用提公因式法继续分解,分解到不能再分解为止,体会“一提二套三彻底”,培养学生归纳抽象能力和数学思想方法的掌握.巩固训练1.下列多项式中能用平方差公式分解因式的是( D )A.a 2+(-b )2B.5m 2-20mnC.-x 2-y 2D.-x 2+9 2.把下列各式分解因式: (1)16a 2-9b 2= (4a +3b )(4a -3b ) ; (2)(a +b )2-(a -b )2= 4ab ; (3)2x 2-8= 2(x +2)(x -2) ; (4)-a 4+16= (4+a 2)(2+a )(2-a ) .3.如图,在边长为6.8 cm 正方形钢板上,挖去4个边长为1.6 cm 的小正方形,求剩余部分的面积.解:根据题意,得6.82-4×1.62=6.82-(2×1.6)2=6.82-3.22=(6.8+3.2)(6.8-3.2)=10×3.6=36(cm2).答:剩余部分的面积为36 cm2.设计意图:共设计3个题目,针对所学知识点对本节所学知识再巩固,检验学生的学习效果,准确地进行教学评价,帮助教师发现问题和进行教学改进.课堂小结1.因式分解有哪些方法?2.能用平方差公式因式分解的结构特点是什么?3.平方差公式因式分解的步骤及注意问题有什么?4.本节用到什么研究问题的方法?5.根据本节的研究思路思考因式分解还有什么方法?设计意图:以提问的方式引导学生从知识内容和学习过程两个方面总结自己的收获,把握本节课的核心,梳理本节课内容,回顾由具体到抽象的过程,总结方法,建立知识体系,体会类比、转化方法在研究数学问题中的重要作用,促进学生数学思维品质的优化.课堂8分钟.1.教材第119页习题14.3第2,5(4)题.2.作业.教学反思第2课时运用完全平方公式因式分解课时目标1.理解完全平方公式的结构特点,培养模型观念.2.经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.在运用完全平方公式法进行因式分解的同时,培养学生的观察、比较和判断能力以及运算能力.学习重点掌握完全平方公式的结构特点,运用完全平方公式进行因式分解.学习难点理解完全平方公式的结构特征,灵活运用完全平方公式进行因式分解.课时活动设计回顾引入之前学习了完全平方公式,今天先来回顾一下.计算:(1)(x+2)(x+2);(2)(x-1)(x-1).选两名学生黑板上板书计算过程:解:(1)(x+2)(x+2)=x2+4x+4.(2)(x-1)(x-1)=x2-2x+1.设计意图:通过复习旧知,巩固因式分解和整式乘法的关系,为探究新知做准备,回顾完全平方公式,注重知识间的联系和知识体系的渗透,培养知识的迁移能力.探究新知问题1:观察多项式a2+2ab+b2,a2-2ab+b2,并回答下列各题.(1)每个多项式有几项?解:三项.(2)每个多项式的第一项和第三项有什么特征?解:都是一个数的平方.(3)中间项和第一项,第三项有什么关系?解:中间项是正负这两个数的积的2倍.追问:你能用符号语言和文字语言表述完全平方式吗?师生活动:选两名学生在黑板上板书整式乘法的完全平方公式.(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.等号两边互换位置,就得到:a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.教师引导学生用文字表述完全平方式:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.问题2:你能把下面4个图形拼成一个正方形,并根据拼成的图形的面积写出等量关系吗?学生动手操作,通过拼图前后图形面积相等写出等量关系a2+2ab+b2=(a+b)2.设计意图:学生在归纳出完全平方式的结构特征后,尝试用符号语言和文字语言表述完全平方式,最后通过动手操作,以拼图的形式再次验证完全平方式,同时在探究过程中感受到学习数学的乐趣.典例精讲例1分解因式:(1)16x2+24x+9;(2)-x2+4xy-4y2.解:(1)原式=(4x)2+2·4x·3+32=(4x+3)2.(2)原式=-(x2-4xy+4y2)=-(x-2y)2.例2把下列各式分解因式:(1)3ax2+6axy+3ay2;(2)(a2+4)2-16a2.解:(1)原式=3a(x2+2xy+y2)=3a(x+y)2.(2)原式=(a2+4)2-(4a)2=(a2+4+4a)(a2+4-4a)=(a+2)2(a-2)2.例3计算:(1)1002-2×100×99+992;(2)342+34×32+162;(3)7652×17-2352×17.解:(1)原式=(100-99)2=1.(2)原式=(34+16)2=2 500.(3)原式=17×(7652-2352)=17×(765+235)(765-235)=17×1 000×530=9 010 000.例4已知a2+b2+2a-4b+5=0,求2a2+4b-3的值.解:由已知可得(a2+2a+1)+(b2-4b+4)=0,即(a+1)2+(b-2)2=0,解得a=-1,b=2.∴2a2+4b-3=2×(-1)2+4×2-3=7.设计意图:通过多种方法的综合应用,感受因式分解给计算带来的便捷,选题层次分明考察各有侧重点,让学生体会“数式同性”,掌握研究方法和知识的迁移性,形成体系,培养数感和运算能力.巩固训练1.下列四个多项式中,能因式分解的是(B)A.a2+1B.a2-6a+9C.x2+5yD.x2-5y2.把多项式4x2y-4xy2-x3分解因式的结果是(B)A.4xy(x-y)-x3B.-x(x-2y)2C.x(4xy-4y2-x2)D.-x(-4xy+4y2+x2)3.把下列多项式因式分解.(1)4(2a+b)2-4(2a+b)+1;(2)y2+2y+1-x2.解:(1)原式=[2(2a+b)]2-2·2(2a+b)·1+12=(4a+2b-1)2.(2)原式=(y+1)2-x2=(y+1+x)(y+1-x).设计意图:共设计3个题目,针对所学内容对本节所学知识再巩固,检验学生的学习效果,准确地进行教学评价,帮助教师发现问题和进行教学改进.课堂小结(1)因式分解有哪些方法?(2)能用完全平方公式因式分解的结构特点是什么?(3)因式分解的步骤及注意问题有什么?(4)本节用到什么研究问题的方法?设计意图:引导学生从知识内容和学习过程两个方面总结自己的收获,把握本节课的核心,梳理本节课内容,回顾由具体到抽象的过程,总结方法,建立知识体系,体会类比、转化方法在研究数学问题中的重要作用,促进学生数学思维品质的优化.课堂8分钟.1.教材第119页练习第1,2题.2.作业.教学反思。
人教版八年级数学上册14.3.1《提公因式法》教学设计一. 教材分析《提公因式法》是人民教育出版社八年级数学上册第14章第3节的内容,本节课主要让学生掌握提公因式法分解因式的技巧,并能灵活运用解决实际问题。
教材通过引入实例,引导学生发现并总结提公因式法的原理,进而运用到因式分解中。
本节课的内容是学生学习因式分解的重要环节,对于提高学生的数学思维能力和解决实际问题能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经掌握了整式的乘法、完全平方公式和平方差公式等基础知识。
但由于提公因式法的抽象性较强,学生可能难以理解其本质和应用。
此外,学生在学习过程中可能存在对公式死记硬背的现象,缺乏对公式的灵活运用能力。
因此,在教学过程中,需要关注学生的认知基础,引导学生发现提公因式法的规律,培养学生的数学思维能力。
三. 教学目标1.知识与技能目标:让学生掌握提公因式法,能够运用提公因式法分解因式。
2.过程与方法目标:通过观察、分析、归纳等方法,引导学生发现提公因式法的原理,培养学生的数学思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:提公因式法的原理和运用。
2.难点:如何引导学生发现提公因式法的规律,以及如何灵活运用提公因式法解决实际问题。
五. 教学方法1.启发式教学:通过设置疑问,引导学生主动思考,发现提公因式法的规律。
2.案例教学:通过分析具体实例,使学生理解并掌握提公因式法的应用。
3.小组合作学习:引导学生分组讨论,培养学生的团队合作精神。
六. 教学准备1.教学课件:制作课件,展示提公因式法的原理和应用。
2.实例:准备一些具有代表性的例子,用于讲解和练习。
3.练习题:准备一些练习题,巩固学生对提公因式法的掌握。
七. 教学过程1.导入(5分钟)利用实例引入提公因式法,引导学生思考如何简化表达式。
例如,给出表达式 (x^2 - 4x + 4),让学生尝试分解。
14.3.1提公因式法教学目标:知识与技能:1.了解因式分解的概念,理解因式分解与整式乘法的关系。
2.了解公因式的概念,理解提公因式法。
3.会用提取公因式法分解因式。
数学思考: 1.理解因式分解的最后结果,每个因式再也不能分解。
2.在探索提公因式法分解因式的过程中学会逆向思维,渗透化归的思想方法。
解决问题:1.通过学习提取公因式法分解因式,把握公因式的找法和提取公因式的方法。
2.通过本节课学习,体会在解决问题的过程中与他人合作的重要性。
情感与态度:1.通过探究利用提公因式分解时的注意事项,让学生获得成功的体验,建立自信心。
2.在学习本节课知识的过程中,敢于发表自己的观点,并尊重与理解他人的见解,能从交流中获益。
教学重点:会用提取公因式法分解因式。
教学难点:因式分解的意义、如何确定公因式以及提出公因式后的另一个因式。
教学过程设计:一、提出问题,创设情境1.x(x+1)2.(x+1)(x-1)3.(a+b)2【答案】1.x2+x 2.x2-1 3.a2+2ab+b2学生独立运算,得出正确答案。
师:把它们反过来,你会算吗?学生很容易得出结论。
从而引出因式分解的定义。
(板书:15.4因式分解)通过观察上述题变形的过程,进而提问:分解因式和整式乘法有何联系?二、得到新知1.总结概念:把一个多项式化为几个最简整式的乘积的形式,叫做把这个多项式因式分解,也叫把这个多项式分解因式2.与整式乘法的关系:是整式乘法的逆运算巩固练习:下列各式从左到右的变形哪些是因式分解?①m2-m=m(m-1) ( 是) ②x(x-y)=x2-xy( 不是)③(a+3)(a-3)=a2-9 ( 不是) ④a2-2a+1=a(a-2)+1 ( 不是)⑤x2-4x+4=(x-2)2( 是)三、因式分解的方法的探究:1.观察多项式ma+mb+mc各项中每个因式的特点,提出公因式的概念。
2.让学生体验:ma+mb+mc=m(a+b+c)从左到右是怎样得到的.3.提公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成几个因式的乘积的形式,这种因式分解的方法叫做提公因式法。