LF炉预熔精炼渣的研究与应用
- 格式:pdf
- 大小:426.03 KB
- 文档页数:77
LF炉精炼快速造白渣工艺研究与实践摘要:根据钢厂LF炉精炼造渣工艺的特点,利用炉渣组元CaO、SiO2、Al2O3、CaF2进行分析研究,制定出合理的渣系配比和快速造白渣制度,尽快形成炉内还原性气氛。
通过实践取得了稳定的脱硫、脱氧效果,成分和温度控制精度较高,充分发挥了LF炉精炼的效果。
关键词:LF炉精炼白渣1 前言随着用户对钢材质量的要求越来越高,LF炉精炼作为提升钢材质量的手段得到了迅速的发展。
在LF炉精炼过程中,通过合理快速的造白渣,尽快营造出炉内稳定的还原性气氛,可以达到脱硫、脱氧的目的,可以吸收钢中的夹杂物以及控制夹杂物的形态,可以精确控制成分;通过形成的白泡沫渣,埋弧效果好,热效率高,减少了耐火材料侵蚀。
我厂在原有造渣工艺的基础上,制定出如何快速造白泡沫渣,控制好埋弧、脱硫、脱氧、精确控制成分和温度等主要精炼环节,充分发挥LF炉精炼效果尤为重要。
2 主要设备基本参数钢包运输车:行走速度2~20m/min,最大载重量180t。
加热装置:电极直径Φ400mm,电极最大行程2700mm,电极分布圆直径680mm,升温速度4~6℃/min。
电炉变压器:额定容量18000KVA,一次电压35KV,二次电压335-295-235V,二次额定电流35.23KA。
氩气系统:供气压力 1.2MPa,工作压力0.25~1.0MPa。
冷却水系统:工作压力0.4~0.6MPa,回水压力0.2~0.3MPa,进/回水温度≤32/55℃。
3 精炼快速造白渣工艺制定3.1 转炉渣对精炼造渣的影响3.1.1 渣中碳粒对精炼造渣及钢中碳含量的影响冶炼中、高碳钢时,在转炉出钢合金化的过程中,由于加入增碳剂,有部分碳粒混入钢渣中,且加入顶渣后温降较大,使熔渣变稠甚至硬化结壳。
其结果导致就位成分碳含量不准确,并且熔渣中的碳粒参与脱氧,由于熔渣中的碳粒难以量化,使得造渣过程中脱氧程度难以控制。
为了解决这一问题,采用钢包在线吹氩,增加碳粉的回收率,钢包进入LF位后增加供氩气强度,确保混入熔渣中的碳粒完全熔化。
LF炉精炼渣用于铁水预脱磷技术的研究与应用朱学谨(河钢承钢生产计划部,河北 承德 067000)摘 要:本文主要研究了LF精炼渣用于铁水预脱磷的可行性及工艺参数的优化,实验结果表明LF精炼渣可以用于铁水预脱磷,且效果良好,平均脱磷率由未使用LF精炼渣炉次的45.52%提高至62.18%,增幅达36.6%,效果显著;最佳工艺参数为枪位1650mm,供氧流量16000m3/h,供氧时间370s,加入量2.5t,此时脱磷率达69.23%,增幅达52.09%。
关键词:LF炉精炼渣;铁水预脱磷;脱磷率中图分类号:TF769 文献标志码:A 文章编号:11-5004(2018)05-0162-2P是钢中常见有害元素之一,能够引起偏析,加工使用过程中钢材冷脆,降低钢的强度和韧性[1,2],随着河钢承钢150吨转炉系统生产工艺及设备的不断改进与完善,一些特殊钢种如石油管线、冷轧用钢、硅钢、汽车用钢等相继开始生产,对钢中的[P]含量的要求也越来越严格,部分钢种转炉出钢[P]要求低于0.008%。
但河钢承钢高炉铁水中磷含量波动较大,在0.12-0.19%之间,平均为0.156%,冶炼半钢硅、锰等成渣元素少,初渣成渣慢,化渣时间长且易出现返干现象,过程及终点控制困难。
出钢终点磷含量控制偏高,直接影响到后道工序的处理甚至会出现废品。
炼钢车间结构紧凑,不宜增加脱磷设备,因此研究如何在此情况下铁水预脱磷工艺显得极为重要。
如表1、表2所示:表1 转炉主要工艺参数序号名称参数单位序号名称参数单位1转炉公称容量(T)150t6炉容比(V/T)0.97m3/t2转炉平均出钢量(T)172t7新熔池深度(h池)1478mm3转炉最大出钢量(T)180t8炉口直径(d口)3000mm4炉壳总高(H)9330mm9转炉倾动速度0.1-1.0r/min5炉壳外径(D)7300mm----钢水经LF处理,至钢水浇注完毕,钢包内剩余炉渣化学成分如下:表2 LF精炼渣成分终渣成分FeO MnO CaO MgO Al2O3SiO2平均含量%0.770.2755.928.1120.199.021 实验方案根据目前脱磷转炉枪位控制在1600-2000mm,设定本实验脱磷枪位1600mm、1650mm、1700mm,供氧流量14000m3/h,15000m3/h,16000m3/h,LF炉处理钢包浇余渣控制在2.5吨,供氧时间控制370s,设计正交实验9组,即枪位1600mm,供氧流量14000 m3/h,枪位1600mm,供氧流量15000m3/h,枪位1600mm,供氧流量16000m3/h;枪位1650mm,供氧流量14000m3/h,枪位1650mm,供氧流量15000m3/h,枪位1650mm,供氧流量16000m3/h,枪位1700mm,供氧流量14000m3/h,枪位1700mm,供氧流量15000m3/h,枪位1700mm,供氧流量16000m3/h,依次编号为1~9。
120吨转炉回收利用LF固态精炼渣的工艺实践石枚梅(新疆工程学院,中国新疆乌鲁木齐,830022)摘要:LF固态精炼炉弃渣在结晶凝固过程中形成不同的矿物组织、将其中的有益部分用于炼钢生产,是规模化利用LF精炼炉弃渣潜在价值的有效途径,本文简述了新疆八一钢铁股份公司第二炼钢厂在此领域的工业化试验结果。
关键词:LF弃渣、钢包精炼炉、利用The technology and practice of recycling solid state refining slag from LF in a 120t BOFShimeimei(Xinjiang Institute of Engineering,Urumchi 830023,china)Abstract: LF solid abandon slag refining furnace in the crystals formed in the solidification process of different mineral group, will be one of the useful part used for steelmaking production, is the large-scale use of LF refining furnace abandon slag is an effective means of potential value, this paper describes the second steel plant xinjiang bayi iron & steel co., LTD in this field industrial test results.Keywords:LF slag ; LF;recycled前言:宝钢集团新疆八一钢铁股份有限公司第二炼钢厂(以下简称该厂)板坯生产线配置有2座公称容量为120吨的LF炉,在冶炼过程中产生精炼炉弃渣的量为9~15kg/吨钢,其中硅镇静钢为9~12kg/吨钢;铝镇静钢为12~15kg/吨钢。
LF精炼工艺和效果的研究摘要:炉外精炼技术能使传统炼钢法难以生产的许多高质量钢种、各种特殊用途钢都可以以非常经济的方法大量生产, 并使钢内气体含量、夹杂物含量与形态、成分偏差等影响质量的因素均达到前所未有的水平, 进而大大改善了钢的化学与机械性能, 取得巨大的经济效益, 发展极为迅速。
炼钢生产过程中,LF 炉精炼后的钢渣具有自由CaO 含量大、碱度高和还原性强的特点,回收LF 炉热态余渣用于脱硫,渣中硫含量会有所升高,说明LF 炉精炼后的热态钢渣硫含量仍可提高,仍具有一定硫容量。
本文分析了LF精炼工艺和效果。
关键词:LF;精炼工艺;效果;LF 炉由于工艺流程简便, 精炼成本相对较低,已成为开发品种、提高质量的主要精炼设备之一。
国内大量厂家采用转炉-LF 炉-连铸的生产工艺路线, 但发挥LF 炉精炼作用的却不多, 仅用其均匀成分和升温。
某钢厂结合自身生产工艺实际, 采用合理控制精炼周期、快速造白渣、精确调整成份等手段, 在较短的时间内使LF 炉充分发挥其精炼效果, 钢材实物质量达到国内先进水平, 有效的实现了转炉-LF 炉-连铸低成本生产优质钢的新生产模式。
一、LF 炉精炼工艺流程及周期控制1.工艺流程。
到精炼站、加第一批渣料、脱氧剂、送电7min 、取样、测温、加第二批渣料、脱氧剂、送电10~15 min 、取样、测温、调整成分、升温至合格温度、氧含量、出站钙处理、连铸。
2.LF 炉处理周期。
LF 炉的处理周期是指钢包进入加热位至精炼完毕钢包离站所用的全部时间。
处理周期不仅受钢水条件的影响, 同时也受上下工序的制约。
LF 炉的处理周期包括处理时间和缓冲时间目前, 国内LF 炉处理周期一般在40~60min 。
我厂由于LF 炉布局问题, 辅助时间较长,且连铸能力远远大于LF 炉, LF 炉周期必须控制在25~35min 以内, 才能使连铸拉速维持在正常水平。
因此, 为保证与连铸匹配和精炼钢水质量,就得采取各种措施来缩短LF处理周期:一是进站钢水的条件稳定, 温度和带渣量符合标准;二是控制好处理时间, 其关键是统筹兼顾、合理安排。
210吨LF精炼炉高效造渣技术的研究与应用LF精炼炉是钢铁冶炼过程中的重要设备,其主要作用是通过精炼处理,使钢液中的杂质得以除去,从而提高钢水的质量。
而造渣技术则是LF精炼炉操作中的重要环节,能够影响到炉内的化学反应和钢液的质量,因此如何提高LF精炼炉的造渣技术,成为了钢铁行业关注的焦点。
近年来,随着我国钢铁行业对钢水质量和生产效率要求的不断提高,LF精炼炉高效造渣技术的研究与应用受到了广泛关注。
本文将就LF精炼炉高效造渣技术的研究与应用进行深入探讨,以期为相关领域的研究与实践提供一定的参考和借鉴。
一、LF精炼炉高效造渣技术的研究现状LF精炼炉高效造渣技术的研究,主要集中在造渣剂的选择、加入方式及作用机理等方面。
造渣剂是LF精炼炉造渣过程中的关键物质,它能够吸附、包裹和还原钢液中的氧化物、硫化物等杂质,从而提高造渣的效果。
当前,常见的造渣剂主要包括生石灰、石灰石粉、石灰石等,它们能够在造渣过程中脱除氧化铁、硫化铁等有害元素,是LF精炼炉造渣的重要辅助材料。
在造渣剂的选择上,研究人员主要关注其吸附性能、还原能力和成本等因素,通过对造渣剂的物理化学性质进行分析,优化其配比比例和加入方式,以期提高LF精炼炉的造渣效果。
还有很多专家学者从理论角度出发,通过建立数学模型和仿真实验,探讨造渣剂的作用机理,进一步指导LF精炼炉的造渣操作。
研究人员还在LF精炼炉高效造渣技术中开展了大量的实验研究和工程应用,在不断积累经验的基础上,总结了一系列适合不同工艺条件的造渣方案,为钢铁企业提高生产效率、降低生产成本提供了重要的技术支持。
LF精炼炉高效造渣技术的研究成果已经得到了广泛的应用。
目前,我国钢铁企业普遍采用了先进的LF精炼炉高效造渣技术,通过合理选择造渣剂、优化造渣操作,不断提高了钢液的质量,提高了钢水的成材率和合格率,降低了钢材的氧化铁含量,改善了钢材的表面质量和力学性能。
在应用中,LF精炼炉高效造渣技术还得到了多个方面的推广。
冶金工业炉外精炼(LF)的应用分析山西通才工贸有限公司山西临汾 043409摘要:钢液精炼是钢铁生产过程中的重要环节,因为它可以降低氧化合金的利用率。
这意味着,通过精炼,可以减少废料的产生,同时提高钢材的质量。
在过去,精炼通常在转炉内进行,但是,这种方法存在一些问题,例如回收率不均衡等。
为了解决这些问题,炉外精炼(LF)技术被广泛采用。
这种技术可以显著改善钢液的纯度,从而提高钢材的质量。
除了提高钢材的质量,炉外精炼(LF)技术还可以减少转炉内渣量到5%,这意味着这种技术可以提高炉渣的浮率。
这对于钢铁生产是非常重要的,因为高浮率可以减少废料的产生。
炉外精炼(LF)技术在保证钢材稳定生产方面起着举足轻重的作用。
这种技术可以确保钢铁生产的过程中不会出现问题,从而保证钢材的质量和数量。
关键词:冶金工业炉;外精炼(LF);应用1冶金工业中炉外精炼(LF)的应用意义炉外精炼技术在冶金行业中的应用越来越广泛,它在钢铁生产过程中扮演着至关重要的角色。
炉外精炼可以改进热力条件,降低气体压力,改善真空现象。
这样,就可以保证炼钢过程中的温度、压力和气氛等因素的稳定性,从而提高冶金反应速度,保证炼钢过程的均匀性。
此外,炉外精炼可以提高渣钢的反应面积,加快反应速度。
在炉外精炼的过程中,通过对渣钢进行预处理和加入适当的精炼剂,可以提高渣钢的反应活性,使其与精炼剂充分混合,从而促进反应的进行,提高反应效率和产量。
炉外精炼装置具有加热功能,可以精确控制反应条件,满足各阶段的供热要求,实现精细的配方调整。
这样,就可以根据不同的生产需求,对炉外精炼装置进行精细的调节和控制,从而实现最佳的生产效果。
总的来说,炉外精炼技术的应用,不仅可以提高钢铁生产的效率和产品质量,而且可以降低能源消耗和环境污染,具有非常重要的经济和社会效益。
因此,在未来的钢铁生产中,炉外精炼技术将会得到更加广泛的应用和推广。
2炉外精炼(LF)简介钢铁生产是工业生产中非常重要的一环。
精炼渣【精炼渣系的配比研究与应用】摘。
要本文结合生产实际对lf炉精练工艺炉渣熔点的研究结合生产成本对lf精练炉渣进行了调整,通过提高炉渣中的al2o3含量来调整渣料配比,在此基础上对本厂lf炉渣进行改进,不仅达到了精练目的还大大降低了精练成本。
关键词精炼渣;配比研究中图分类号tn914文献标识码a文章编号1673-9671-(2012)072-0230-02lf炉是上个世纪70年代发展起来的钢水炉外精练设备,其精练设备主要依靠电极加热、造白渣、钢包底吹氩来降低钢水氧,硫等有害元素,均匀成分和温度,满足连铸钢水需要条件。
目前莱钢特钢事业部银前精练车间lf炉渣萤石用量非常大,炉渣渣量流动性差,钢水升温速度较慢,针对此情况我们通过分析炉渣成分以及现场相关数据进行了分析希望找到合理的渣料配比来改善目前的难题。
1现场数据与比较表格1不同渣系下炉渣的熔点(来源于理论相关数据)表格2特钢事业部精炼车间45#,40cr钢种的炉渣渣系(来源于现场数据收集)2图表分析由于化验室条件有限我们的炉渣不知道萤石含量,所以没有把萤石对炉渣的熔点的影响分析进去。
从上表格可以看出45,40cr的炉渣最接近1540℃,但是根据下面的计算公式可以看出45,40cr的炉渣熔点应该高于1550℃也就是说根据中间包正常浇次炉次在软吹时候炉渣已经由液态转变成固态,但是实际上我们的炉渣并没有变成固态那时因为我们用了大量的萤石降低了炉渣的熔点。
从理论折线图上可以看出cao含量越低,al2o3含量越高,炉渣的熔点越低,用al2o3代替cao,能显著地降低炉渣的熔点,同时炉渣的液相线温度还与渣中mgo含量,有一定的关系如下:t液=1208℃+15.5(mgo)%,每增加1%mgo,可使渣的液相线温度提高15.5℃。
因此我们车间的如果要想得到熔点为1500℃以下的炉渣,应该减少石灰用量降低炉渣中cao的含量,保证埋弧效果即可或者是增加预熔渣量来增加炉渣中的al2o3。