导数与零点专题(一)PPT课件
- 格式:pptx
- 大小:1.56 MB
- 文档页数:32
汇报人:日期:•导数概念•导数与函数零点•导数在几何中的应用目•导数在物理中的应用•导数的实际应用录导数概念函数f在x=x0点的导数是指当h趋近于0时,f(x0+h)与f(x0)之差与h的商的极限。
函数在某一点的导数描述了函数曲线在该点处的切线斜率。
导数的定义导数的几何意义函数在某一点的导数1 2 3若函数f和g可导,则其和、差、积、商的导数等于各自导数的和、差、积、商。
线性性质若函数f和g可导,则f乘以g的导数为f的导数乘以g加上g的导数乘以f。
乘积法则幂函数的导数是幂函数的系数与自然对数的和。
幂函数的导数导数的运算性质导数与函数零点函数图像与x轴交点的横坐标称为函数的零点。
零点函数的零点实际上就是对应方程的根。
函数的零点与方程的根函数在零点两侧的函数值异号。
零点存在的条件函数零点的定义利用导数找函数零点导数与单调性函数的导数可以判断函数的单调性,如果导数大于0,函数单调递增;如果导数小于0,函数单调递减。
找零点的步骤第一步,求函数的导数;第二步,根据导数判断函数的单调性;第三步,求出函数与x轴的交点,即函数的零点。
定理内容如果函数在区间[a,b]上连续,且在(a,b)上有导数,那么函数在(a,b)上至少有一个零点。
定理证明利用中值定理,当f'(x)在区间[a,b]上连续且在(a,b)上有导数时,存在ξ∈(a,b),使得f'(ξ)=0,从而证明了定理。
函数零点存在性定理导数在几何中的应用导数可以用来表示函数图像在某一点的切线斜率。
当函数在某一点处可导时,函数图像在该点的切线斜率等于该点的导数值。
切线斜率给定曲线上的一个点以及该点的切线斜率,可以得出该点的切线方程。
切线方程在几何上描述了曲线在这一点处的切线。
切线方程切线斜率与曲线在某点的切线方程导数小于0的区间,函数值单调递减;导数大于0的区间,函数值单调递增。
极值点是导数为0的点。
最值在一定区间内,函数值有最大值和最小值。
最值点可能是区间的端点或是极值点。