检测技术的基本知识
- 格式:ppt
- 大小:438.50 KB
- 文档页数:1
第一章 检测技术的基本概念 考核知识点和考核要求:1、领会:测量的基本概念及测量方法,测量结果的数据统计及处理2、掌握:测量误差及分类,传感器及其基本特性3、熟练掌握:绝对误差和相对误差的计算,仪表的精度等级 第一节 测量的基本概念与方法 1)根据测量是否随时间变化:静态测量。
例如:激光干涉仪对建筑物的缓慢沉降做长期监测是静态测量 动态测量。
例如:光导纤维陀螺仪测量火箭飞行速度、方向是动态测量 2)根据测量的手段不同:直接测量:直接读取被测量的测量结果。
例如:磁电式仪表测量电流电压、离子敏MOS 场效应管晶体测量PH 值和甜度间接测量:对与被测量有确定函数关系的量进行直接测量,再代入函数关系式计算测量量。
例如:测量物体密度3)根据测量结果的显示方式:模拟式测量和数字式测量(其中:数字式测量比模拟式测量精度要高) 4)根据是否是在生产过程中或流水线上测量:在线测量。
例如:自动化机床边加工边测量,在实际中大多采用在线测量方式 离线测量5)根据测量的具体手段:偏位式测量:被测量作用于仪表内部的比较装置,使该比较装置产生偏移量,直接以仪表的偏移量表示被测量的测量方式(直接用偏移量的大小表示测量量)。
例如:弹簧秤测量物体质量,高斯计测量磁场强度。
特点:简单迅速但精度低。
易产生灵敏度漂移和零点漂移零位式测量:被测量与仪表内部的标准量比较,当系统达到平衡时,用已知标准量的值决定被测量的值(标准量的值为测量量的值)。
例如:天平测量物体质量,平衡式电桥测量电阻值。
特点:精度高但平衡复杂。
微差式测量:预先使被测量与测量装置内部的标准量取得平衡,当被测量有微小变化时,测量装置失去平衡,偏位式仪表指示出变化部分的数值(先平衡再有微量变化时)。
例如:天平测量化学药品,钢板厚度测量。
特点:上述两者的综合 第二节 测量误差及分类1.真值:是指在一定条件下被测量客观存在的实际值。
分类:1)理论真值(例:三角形的内角之和为180°)2)约定真值(例:标准条件下,水的三相点为273.16K ,金的凝固点为1064.18℃)3)相对真值(例:凡精度高一级或几级的仪表的误差是精度低的仪表误差的1/3以下时,则精度高的仪表的测量值可认为是相对真值)2.测量误差:测量值与真值之间的差值 根据其特征不同:1)绝对误差:是指测量值A x 与真实值A 0之间的差值,即Δ=A x -A0 2)相对误差:反应测量值偏离真值程度的大小实际相对误差A γ:绝对误差Δ与被测量的真值A0的百分比, %1000⨯∆=A Aγ示值(标称)相对误差x γ:绝对误差∆与被测量A x 的百分比,%100⨯∆=xxA γ满度(引用)相对误差m γ:绝对误差∆与仪器满度值A m 的百分比,%100m⨯∆=A mγ3. 准确度等级S :当∆ 取仪表的最大绝对误差值∆m 时,满度相对误差常被用来确定仪表的准确度等级,100mm⨯=A ΔS 注意:仪表的准确度在工程中也常称为“精度”,准确度等级习惯上称为精度等级。
1、检测技术:完成检测过程所采取的技术措施。
2、检测的含义:对各种参数或物理量进行检查和测量,从而获得必要的信息。
3、检测技术的作用:①检测技术是产品检验和质量控制的重要手段②检测技术在大型设备安全经济运行检测中得到广泛应用③检测技术和装置是自动化系统中不可缺少的组成部分④检测技术的完善和发展推动着现代科学技术的进步4、检测系统的组成:①传感器②测量电路③现实记录装置5、非电学亮点测量的特点:①能够连续、自动对被测量进行测量和记录②电子装置精度高、频率响应好,不仅能适用与静态测量,选用适当的传感器和记录装置还可以进行动态测量甚至瞬态测量③电信号可以远距离传输,便于实现远距离测量和集中控制④电子测量装置能方便地改变量程,因此测量的范围广⑤可以方便地与计算机相连,进行数据的自动运算、分析和处理。
6、测量过程包括:比较示差平衡读数7、测量方法;①按照测量手续可以将测量方法分为直接测量和间接测量。
②按照获得测量值得方式可以分为偏差式测量,零位式测量和微差式测量,③根据传感器是否与被测对象直接接触,可区分为接触式测量和非接触式测量8、模拟仪表分辨率= 最小刻度值风格值的一半数字仪表的分辨率=最后一位数字为1所代表的值九、灵敏度是指传感器或检测系统在稳态下输出量变化的输入量变化的比值 s=dy/dx 整个灵敏度可谓s=s1s2s3。
十、分辨率是指检测仪表能够精确检测出被测量的最小变化的能力十一、测量误差:在检测过程中,被测对象、检测系统、检测方法和检测人员受到各种变动因素的影响,对被测量的转换,偶尔也会改变被测对象原有的状态,造成了检测结果和被测量的客观值之间存在一定的差别,这个差值称为测量误差。
十二、测量误差的主要来源可以概括为工具误差、环境误差、方法误差和人员误差等十三、误差分类:按照误差的方法可以分为绝对误差和相对误差;按照误差出现的规律,可以分系统误差、随机误差和粗大误差;按照被测量与时间的关系,可以分为静态误差和动态误差。
检测技术应用知识点总结一、检测技术的基本概念1.1 检测技术的定义检测技术是指利用特定的设备、仪器或方法对被测物体的特定物理、化学、生物性质进行测量、探测和判定的技术。
1.2 检测技术的基本要素检测技术的基本要素包括被测物体、检测设备、检测方法和检测结果等。
其中,被测物体是指需要进行检测的物质或物体,检测设备是指进行检测所需要的仪器、设备或工具,检测方法是指对被测物体进行检测的具体步骤和手段,检测结果是指通过检测得到的相关数据或信息。
1.3 检测技术的重要性检测技术在各个行业中都扮演着重要的角色。
它可以帮助人们了解被测物体的特定性质,对于产品质量控制、环境监测、医学诊断、食品安全等方面都具有重要意义。
同时,检测技术还可以为科学研究和技术创新提供重要的数据支持。
二、检测技术的分类2.1 检测技术的分类方式检测技术可以根据其检测对象、检测方法、检测原理等不同特点进行分类。
根据检测对象的不同,可以将检测技术分为物理检测技术、化学检测技术、生物检测技术等;根据检测方法的不同,可以将检测技术分为光学检测技术、声学检测技术、电磁检测技术等;根据检测原理的不同,可以将检测技术分为传感器技术、成像技术、分析技术等。
2.2 检测技术的主要应用领域根据不同的分类方式,检测技术在各个行业中都有不同的应用。
物理检测技术主要应用于工程领域和材料科学中,用于检测物体的形状、结构、物理性质等;化学检测技术主要应用于化工领域和环境保护中,用于检测物质的化学成分和性质;生物检测技术主要应用于医学诊断、食品安全、生物医药领域,用于检测生物体的生理和生化特性。
2.3 检测技术的未来发展方向随着科技的不断进步,检测技术也在不断发展。
未来,检测技术将朝着智能化、精准化、高效化的方向发展。
同时,随着人工智能、大数据、云计算等技术的不断成熟,检测技术还将与这些新兴技术相结合,形成更加强大的检测系统,为各个行业提供更加全面、精准的检测解决方案。
医学检测技术知识点总结一、医学检测技术概述医学检测技术是指用于检测疾病、生理状态和生物体内生化、免疫、细胞学等方面的技术。
近年来,医学检测技术在医学诊断、预防、治疗和健康管理中发挥着越来越重要的作用,已成为现代医学不可或缺的重要组成部分。
医学检测技术的发展主要有以下几个方面的特点:一是新技术的不断涌现,如基因检测技术、蛋白质检测技术、细胞检测技术等,为医学检测提供了更多的手段和手段;二是多种技术的整合应用,如医学影像、生化检验、分子诊断等技术的有机结合,使得医学检测具有更多的信息、更高的准确性和更强的可操作性;三是多学科交叉的融合,如生物学、化学、物理、信息科学等学科的交叉融合,使医学检测成为了一门综合性学科。
医学检测技术主要包括:临床检验技术、医学影像技术、生物信息技术、微生物检测技术、免疫分析技术等。
二、临床检验技术临床检验技术是指通过对生理和生化指标的检测来判断人体健康状况和疾病情况的技术。
目前,临床检验技术主要包括:生化检验、免疫学检验、血液检验、内分泌检验、微生物学检验等。
1. 生化检验生化检验是指通过检测人体血液、尿液、体液等样本中的生化成分来判断人体内部环境的变化,为医学诊断和治疗提供重要的参考。
常见的生化指标包括血糖、血脂、肝功能、肾功能、电解质等。
2. 免疫学检验免疫学检验是一种通过检测人体免疫系统的功能状态来判断疾病情况的技术。
主要包括炎症指标、自身抗体、免疫球蛋白等。
3. 血液检验血液检验是指通过检测人体血液中的各种成分来判断血液系统的健康情况。
常见的血液指标包括血细胞计数、血红蛋白、血小板计数等。
4. 内分泌检验内分泌检验是指通过检测人体内分泌腺体分泌的激素水平来判断内分泌系统的功能状态。
常见的内分泌指标包括甲状腺激素、肾上腺激素、胰岛素等。
5. 微生物学检验微生物学检验是指通过检测人体内微生物的感染情况来判断疾病的病原体。
常见的微生物学指标包括细菌培养、真菌培养、病毒检测等。
医学检验技术必背考点知识1. 标本采集:标本采集技术是医学检验的关键环节,标本的质量直接影响检验结果的准确性。
常见的标本采集包括血液、尿液、粪便、脑脊液、组织等。
2. 常用检验方法:常用的检验方法包括生化检验、免疫学检验、微生物学检验、细胞学检验等。
不同的检验方法适用于不同的疾病诊断和治疗监测。
3. 生化指标分析:生化指标是衡量生命活动状态的关键指标。
常规的生化指标包括血糖、血脂、肝功能、肾功能、电解质等。
4. 免疫学指标分析:免疫学指标是评价免疫功能的重要手段。
常见的免疫学指标包括白细胞计数、淋巴细胞亚群、免疫球蛋白、肿瘤标志物等。
5. 微生物学检验:微生物学检验是诊断感染性疾病的重要手段。
常见的微生物学检验包括细菌培养、真菌培养、病毒检测等。
6. 细胞学检验:细胞学检验是检测细胞形态和功能的重要方法。
常见的细胞学检验包括涂片镜检、细胞计数、流式细胞术等。
7. 质控管理:质控管理是保证检验结果准确性的重要手段。
常见的质控管理包括内部质控、外部质控、参比方法等。
8. 诊断标准:检验结果与诊断标准的匹配度决定了检验的临床意义和价值。
常见的诊断标准包括国家标准、世界卫生组织标准、专家共识等。
9. 技术革新:技术革新带来了检验技术的飞速发展,新技术的不断出现和应用,为疾病诊断和治疗带来了更精确、更高效、更安全的手段。
常见的技术革新包括分子诊断技术、基因检测技术、高通量检测技术等。
10. 安全与伦理:医学检验技术的应用需要遵循伦理原则和安全方针,保护患者和医护人员的生命和健康。
在检验过程中要注意标本传递、设备维护、数据保护等问题,减少误差和风险。
1、检测技术:完成检测过程所采取的技术措施。
2、检测的含义:对各种参数或物理量进行检查和测量,从而获得必要的信息。
3、检测技术的作用:①检测技术是产品检验和质量控制的重要手段②检测技术在大型设备安全经济运行检测中得到广泛应用③检测技术和装置是自动化系统中不可缺少的组成部分④检测技术的完善和发展推动着现代科学技术的进步4、检测系统的组成:①传感器②测量电路③现实记录装置5、非电学亮点测量的特点:①能够连续、自动对被测量进行测量和记录②电子装置精度高、频率响应好,不仅能适用与静态测量,选用适当的传感器和记录装置还可以进行动态测量甚至瞬态测量③电信号可以远距离传输,便于实现远距离测量和集中控制④电子测量装置能方便地改变量程,因此测量的范围广⑤可以方便地与计算机相连,进行数据的自动运算、分析和处理。
6、测量过程包括:比较示差平衡读数7、测量方法;①按照测量手续可以将测量方法分为直接测量和间接测量。
②按照获得测量值得方式可以分为偏差式测量,零位式测量和微差式测量,③根据传感器是否与被测对象直接接触,可区分为接触式测量和非接触式测量8、模拟仪表分辨率= 最小刻度值风格值的一半数字仪表的分辨率=最后一位数字为1所代表的值九、灵敏度是指传感器或检测系统在稳态下输出量变化的输入量变化的比值 s=dy/dx 整个灵敏度可谓s=s1s2s3。
十、分辨率是指检测仪表能够精确检测出被测量的最小变化的能力十一、测量误差:在检测过程中,被测对象、检测系统、检测方法和检测人员受到各种变动因素的影响,对被测量的转换,偶尔也会改变被测对象原有的状态,造成了检测结果和被测量的客观值之间存在一定的差别,这个差值称为测量误差。
十二、测量误差的主要来源可以概括为工具误差、环境误差、方法误差和人员误差等十三、误差分类:按照误差的方法可以分为绝对误差和相对误差;按照误差出现的规律,可以分系统误差、随机误差和粗大误差;按照被测量与时间的关系,可以分为静态误差和动态误差。
第一章 检测技术的基础知识1、传感器的组成功用是一感二传,即感受被测信息,并传送出去。
一般由敏感元件、转换元件、转换电路三部分组成。
敏感元件:直接感受被测量,并且输出与被测量成确定关系的某一物理量的元件。
转换元件:敏感元件的输出就是它的输入,它把输入量转换成电参数。
转换电路:上述电路参数接入转换电路,便可转换成电量输出。
2、误差的基本概念及表达方式(1)绝对误差:是示值与被测量真值之间的差值,通常用实际真值代表真值,并采用高一级标准仪器的示值作为实际真值。
(2)相对误差:绝对误差与真值或实际值之比. 相对误差通常用于衡量测量的准确程度,相对误差越小,准确程度越高。
(3)引用误差:是一种实用方便的相对误差,常在多档和连续刻度的仪器仪表中应用。
选用仪表时,一般使其最好能工作在不小于满刻度值三分之二的区域。
3、误差的分类与来源(1)系统误差:在相同的条件下多次测量同一量时,误差的绝对值和符号保持恒定或在条件改变时,与某一个或几个因素成函数关系的有规律的误差,称为系统误差。
它产生的主要原因是仪表制造、安装或使用方法不正确,也可能是测量人员一些不良的读数习惯等。
(2)随机误差:服从统计规律的误差称随机误差,又称偶然误差。
误差产生的原因很复杂,所以不能用修正或采取某种技术措施的办法来消除。
应该指出,在任何一次测量中,系统误差与随机误差一般都是同时存在的,而且两者之间并不存在绝对的界限。
(3)粗大误差:在相同的条件下,多次重复测量同一量时,明显地歪曲了测量结果的误差,称为粗大误差,简称粗差。
粗差是由于疏忽大意,操作不当,或测量条件的超常变化而引起的。
含有粗大误差的测量值称为坏值,所有的坏值都应去除,但不是主观或随便去除,必须科学地舍弃。
正确的实验结果不应该包含有粗大误差。
4、随机误差的特点(1)绝对值相等,符号相反的误差在多次重复测量中出现的可能性相等;(2)在一定测量条件下,随机误差的绝对值不会超出某一限度;(3)绝对值小的随机误差比绝对值大的随机误差在多次重复测量中出现的机会多;(4)随机误差的算术平均值随测量次数的增加而趋于0。