用相反数的几何意义找原点
- 格式:docx
- 大小:50.85 KB
- 文档页数:4
相反数教案(6篇)相反数篇一教学目标1.了解相反数的意义,会求有理数的相反数;2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力.3.初步认识对立统一的规律。
教学建议一、重点、难点分析本节的重点是了解相反数的意义,理解相反数的代数定义与几何定义的一致性.难点是多重符号的化简.“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。
不能理解为只要符号不同的两个数就互为相反数。
另外,“0的相反数是0”也是相反数定义的一部分。
关于“数a的相反数是-a”,应该明确的是-a不一定是正数,a不一定是正数。
关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。
二、知识结构相反数的定义相反数的性质及其判定相反数的应用三、教法建议这节课教学的主要内容是互为相反数的概念。
由于教材先讲相反数,后讲绝对值,所以相反数的定义只是形式上的描述,主要通过相反数的几何意义理解相反数的概念。
教学中建议,直接给出相反数的几何定义,通过实例了解求一个数的相反数的方法。
按着数轴――相反数――绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。
四、相反数的相关知识1.相反数的意义(1)只有符号不同的两个数叫做互为相反数,如-1999与1999互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。
如5与-5是互为相反数。
(3)0的相反数是0。
也只有0的相反数是它的本身。
(4)相反数是表示两个数的相互关系,不能单独存在。
2.相反数的表示在一个数的前面添上“-”号就成为原数的相反数。
若表示一个有理数,则的相反数表示为-。
在一个数的前面添上“+”号仍与原数相联系同。
例如,+7=7,特别地,+0=0,-0=0。
3.相反数的特性若互为相反数,则,反之若,则互为相反数。
4.多重符号化简(1)相反数的意义是简化多重符号的依据。
相反数以下是关于相反数,希望内容对您有帮助,感谢您得阅读。
教学目标1.了解相反数的意义,会求有理数的相反数;2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力.3.初步认识对立统一的规律。
教学建议一、重点、难点分析本节的重点是了解相反数的意义,理解相反数的代数定义与几何定义的一致性.难点是多重符号的化简.“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。
不能理解为只要符号不同的两个数就互为相反数。
另外,“0的相反数是0”也是相反数定义的一部分。
关于“数a的相反数是-a”,应该明确的是-a不一定是正数,a不一定是正数。
关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。
二、知识结构·相反数的定义相反数的性质及其判定相反数的应用三、教法建议这节课教学的主要内容是互为相反数的概念。
由于教材先讲相反数,后讲绝对值,所以相反数的定义只是形式上的描述,主要通过相反数的几何意义理解相反数的概念。
教学中建议,直接给出相反数的几何定义,通过实例了解求一个数的相反数的方法。
按着数轴——相反数——绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。
四、相反数的相关知识1.相反数的意义(1)只有符号不同的两个数叫做互为相反数,如-1999与1999互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。
如5与-5是互为相反数。
(3)0的相反数是0。
也只有0的相反数是它的本身。
(4)相反数是表示两个数的相互关系,不能单独存在。
2.相反数的表示在一个数的前面添上“-”号就成为原数的相反数。
若表示一个有理数,则的相反数表示为-。
在一个数的前面添上“+”号仍与原数相联系同。
例如,+7=7,特别地,+0=0,·-0=0。
3.相反数的特性若互为相反数,则,反之若,则互为相反数。
相反数(4种题型)【知识梳理】一、相反数1.定义:只有符号不同的两个数互为相反数;0的相反数是0.要点:(1)“只”字是说仅仅是符号不同,其它部分完全相同.(2)“0的相反数是0”是相反数定义的一部分,不能漏掉.(3)相反数是成对出现的,单独一个数不能说是相反数.(4)求一个数的相反数,只要在它的前面添上“-”号即可.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称). (2)互为相反数的两数和为0.二、多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .要点:(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5.(2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.【考点剖析】题型一:相反数的代数意义例1.写出下列各数的相反数:16,-3,0,-12015,m,-n.解析:只需将各数前面的正、负号换一下即可,但要注意0的相反数是0.解:-16,3,0,12015,-m,n.方法总结:求一个数的相反数,只需改变它前面的符号,符号后面的数不变;0的相反数是0.【变式1】相反数不大于它本身的数是( )A .正数B .负数C .非正数D .非负数【答案】D【详解】解:设这个数为a ,根据题意,有-a ≤a ,所以a ≥0.故选D .【变式2】若a ,b 互为相反数,则下列等式不一定成立的是( )A .1a b =−B .=−a bC .=−b aD .0a b +=【答案】A【分析】由题意直接根据相反数的定义和性质,进行分析即可得出答案.【详解】解:A. 1a b =−,注意b ≠0,此选项当选;B. =−a b ,此选项排除;C. =−b a ,此选项排除;D. 0a b +=,此选项排除.故选:A.【变式3】如果m 的相反数是最大的负整数,n 的相反数是它本身,则m n +的值为( )A .1B .0C .2D .-1【答案】A【分析】先根据相反数的定义确定、n 的值,再代入m +n ,计算即可求出其值.【详解】∵m 的相反数是最大的负整数,n 的相反数是它本身,∴m =1,n = 0,∴m +n =1+0=1,故A 选项是正确答案.【变式4】下列说法不正确的是( )A .所有的有理数都有相反数B .正数与负数互为相反数C .在一个数的前面添上“-”,就得到它的相反数.D .在数轴上到原点距离相等的两个点所表示的数是互为相反数【答案】B【详解】解:A . 所有的有理数都有相反数,正确;B . 只有符号不同的两个数互为相反数,故B 错误;C . 在一个数的前面添上“-”,就得到它的相反数,正确;D.在数轴上到原点距离相等的两个点所表示的数是互为相反数,正确.故选B.【变式5】已知+(﹣73)的相反数是x,﹣(+3)的相反数是y,z的相反数是z,求x+y+z的相反数.【答案】16 3−【分析】根据相反数的概念求出x,y,z的值,代入x+y+z即可得到结果.【详解】解:∵+(73−)的相反数是x,-(+3)的相反数是y,z相反数是z,∴x=73,y=3,z=0,∴x+y+z=73+3+0=163,∴x+y+z的相反数是163−.【变式6】5x+与–7互为相反数,求x的值.【答案】2.试题分析:根据相反数的意义得出(x+5)+(-7)=0,求出x即可.试题解析:解:∵x+5与-7互为相反数,∴(x+5)+(-7)=0,解得:x=2.题型二:相反数的几何意义例2. (1)数轴上离原点3个单位长度的点所表示的数是________,它们的关系为____________.(2)在数轴上,若点A和点B A在点B的左侧,并且这两个数的距离是12.8,则A=______,B=______.解析:(1)左边距离原点3个单位长度的点是-3;右边距离原点3个单位长度的点是3,∴距离原点3个单位长度的点所表示的数是3或-3.它们互为相反数;(2)∵点A和点B分别表示互为相反数的两个数,∴原点到点A与点B的距离相等,∵A、B两点间的距离是12.8,∴原点到点A和点B的距离都等于6.4.∵点A 在点B的左侧,∴这两点所表示的数分别是-6.4,6.4.方法总结:本题考查了相反数的几何意义,解题时应从相反数的意义入手,明确互为相反数的两数到原点距离相等,这种“利用概念解题,回到定义中去”是一种常用的解题技巧.【变式1】互为相反数的两数在数轴上的两点间的距离为11,这两个数为________ .【答案】5.5与-5.5【详解】解:设一个正数为x,则x-(-x)=11,解得,x=5.5,∴-x=-5.5,故答案为5.5和-5.5.题型三:相反数与数轴相结合的问题例3.如图,图中数轴(缺原点)的单位长度为1,点A、B表示的两数互为相反数,则点C所表示的数为( )A.2 B.-4 C.-1 D.0解析:由题意如图,数轴向右为正方向,数轴(缺原点)的单位长度为1,∴点C所表示的数为-1,故应选C.方法总结:先在数轴上找到原点,从而确定点C所表示的数,同时牢记互为相反数的两个点到原点的距离相等.【变式1】结合数轴思考:0的相反数是_____.一个正数的相反数是一个___.一个负数的相反数是一个___.一个数的相反数是它本身的数是 ______.【答案】0 负数正数 0【变式2】如图,已知A,B,C,D四个点在数轴上.(1)若点A和点C表示的数互为相反数,则原点在点_____的位置;(2)若点B和点D表示的数互为相反数,则原点在点_____的位置;(3)若点B和点C表示的数互为相反数,请在数轴上表示出原点的位置.【答案】(1)B;(2)C;(3)见解析.【分析】(1)根据相反数的定义可求原点;(2)根据相反数的定义可求原点;(3)根据相反数的定义可求原点,再在数轴上表示出原点O的位置即可.【详解】(1)若点A和点C表示的数互为相反数,则原点为B;(2)若点B和点D表示的数互为相反数,则原点为C;(3)如图所示:题型四:化简多重符号例4.化简下列各数.(1)-(-8)=________; (2)-(+1518)=________; (3)-[-(+6)]=________; (4)+(+35)=________. 解:(1)-(-8)=8;(2)-(+1518)=-1518; (3)-[-(+6)]=-(-6)=6;(4)+(+35)=35. 【变式1】﹣(﹣6)的相反数是( )A .15B .13C .﹣6D .6【答案】C 【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.﹣(﹣6)=6,故﹣(﹣6)的相反数是﹣6.故选:C .【变式2】化简下列各数:③ -(-82) = ________ ②-|-5| = _______③()100−+−⎡⎤⎣⎦ = ________ ④135⎡⎤⎛⎫−−− ⎪⎢⎥⎝⎭⎣⎦= ___________. 【答案】82 -5 100 135− 【分析】分别根据相反数的定义进行化简即可.【详解】解:①-(-82)=82,②-|-5|=-5,③()100−+−⎡⎤⎣⎦=100, ④135⎡⎤⎛⎫−−− ⎪⎢⎥⎝⎭⎣⎦=135−.故答案为:82,-5,100,135−.【过关检测】一、单选题 1.(2023·陕西榆林·统考二模)下列各数中,相反数是它本身的数是( )A .2−B .1−C .0D .1 【答案】C【分析】根据相反数的意义,只有符号不同的数为相反数.【详解】解:相反数等于本身的数是0.故选:C .【点睛】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0. 2.(2023秋·山东滨州·七年级统考期末)若不为0的有理数a 与b 互为相反数,同学们化简a b +后得出了下列不同的结果:①2b −;②2a −;③2a ;④0.其中结果错误的个数为( )A .1B .2C .3D .4 【答案】C【分析】根据互为相反的两个数的和是0即可得到正确选项.【详解】解:∵不为0的有理数a 与b 互为相反数,∴0a b +=,∴①②③错误,④正确;故选C .【点睛】本题考查了相反数的定义和性质,熟记相反数的性质以及定义是解题的关键.3.(2023·河北唐山·统考二模)()3−+=( )A .3−B .3C .2−D .1 【答案】A【分析】根据相反数的定义解答即可.【详解】解:()33−+=−,故选:A .【点睛】本题考查了相反数的定义,知道“只有符号不同的两个数叫做互为相反数”是解题的关键. 4.(2023·浙江·七年级假期作业)如图,数轴上的单位长度为1,有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .2−B .0C .1D .4【答案】C【分析】首先确定原点位置,进而可得C 点对应的数.【详解】解:点A 、B 表示的数互为相反数, ∴原点在线段AB 的中点处,∴点C 对应的数是1.故选:C .【点睛】此题主要考查了数轴,关键是正确确定原点位置.5.(2023秋·江苏无锡·七年级统考期末)在()2.5−+,()2.5−−,()2.5+−,()2.5++中,正数的个数是( )A .1B .2C .3D .4 【答案】B【分析】根据多重符号化简原则逐一进行判断即可得到答案.【详解】解:()2.5 2.5−+=−Q ,()2.5 2.25−−=,()2.5 2.5+−=−,()2.5 2.5++=,∴正数的个数是2个,故选B .【点睛】本题考查了多重符号化简,解题关键是掌握多重符号化简的原则:若一个数前有多重符号,则看该数前面的符号中,符号“−”的个数来决定,即奇数个符号则该数为负数,偶数个符号,则该数为正数.【答案】C【分析】根据只有符号不同的两个数互为相反数,0的相反数是0;即可解答.【详解】解:A 、0与0互为相反数,不符合题意;B 、12与0.5−互为相反数,不符合题意;C 、6与16互为倒数,不是相反数,符合题意;D 、a 与 –a 互为相反数,不符合题意;故选C .【点睛】本题考查了相反数,解决本题的关键是熟记相反数的定义. 7.(2023·浙江·七年级假期作业)下列说法中正确的个数为( )①符号不相同的两个数互为相反数;②一个数的相反数一定是负数;③两个相反数的和等于0;④若两个数互为相反数,则这两个数一定一正一负.A .1个B .2个C .3个D .4个【答案】A 【分析】根据相反数的定义和性质,逐一判断,即可.【详解】∵只有符合不同的两个数叫做相反数∴2+,1−不是相反数∴①错误;∵1−的相反数是1,∴②一个数的相反数一定是负数,错误;∵互为相反数的两个数,相加等于0,∴③两个相反数的和等于0,正确;∵0的相反数是0,∴④错误;∴正确的只有③.故选:A .【点睛】本题考查相反数的知识,解题的关键是掌握相反数的定义和性质.8.(2022秋·江苏南通·七年级校联考期末)有理数a b ,在数轴上的位置如图所示,则数a b a b −−,,,的大小关系为()A .a b b a −<−<<B .a b a b −<<<−C .a b b a −<<−<D .a b a b −<−<<【答案】C【分析】先根据相反数的意义把a −,b −在数轴上表示出来,然后根据数轴上右边的数比左边的数大即得答案. 【详解】解:由题意可得a b a b −−,,,在数轴上的位置如图所示:则a b a b −−,,,的大小关系为a b b a −<<−<, 故选:C【点睛】本题考查了相反数的意义、数轴以及有理数的大小比较,属于基础题型,掌握解答的方法是关键.【分析】根据0a b +=,结合数轴,即可求解.【详解】解:∵点A 、B 分别表示数a 、b ,且0a b +=,A 、B 两点间的距离为6,∴26b a a a a −=−−=−=∴3a =−,故选:C .【点睛】本题考查了求数轴上两点距离,相反数的意义,数形结合是解题的关键.10.(2022秋·云南红河·七年级校考阶段练习)如图,数轴上点A 、B 、C 、D 表示的数中,表示互为相反数的两个点是( )A .点B 和点C B .点A 和点C C .点B 和点D D .点A 和点D【答案】D【分析】一对相反数在数轴上的位置特点:分别在原点的左右两旁,并且到原点的距离相等.【详解】解:点A 和点D 分别在原点的左右两旁,到原点的距离相等,∴它们表示的两个数互为相反数.故选D .【点睛】本题主要考查一对相反数在数轴上的位置特点,灵活运用所学知识求解是解决本题的关键.二、填空题11.(2022秋·广东广州·七年级校考阶段练习)如果2a −=−,那么=a ________.【答案】2【分析】根据相反数的定义:只有符号不同的两个数叫做互为相反数化简即可.【详解】解:∵2a −=−,∴2a =,故答案为:2.【点睛】本题考查了相反数,解题的关键是掌握相反数的定义.【答案】1【分析】根据题意求得a 与b 的关系,c ,d 的值,代入代数式求值.【详解】∵a ,b 互为相反数,∴0a b +=,∵c 是最小的非负数,∴0c =,∵d 是最小的正整数,∴1d =.∴()0101a b d d c ++−=+−=.【点睛】本题主要考查互为相反数的定义,掌握相反数的定义是解题的关键.13.(2023·浙江·七年级假期作业)化简下列各数的符号:()1.3−−=______,()3−+−=⎡⎤⎣⎦______.【答案】 1.3 3【分析】根据相反数的性质,即可求解.【详解】解:()1.3 1.3−−=; ()()333−+−=−−=⎡⎤⎣⎦. 故答案为:1.3,3【点睛】本题考查了相反数,熟练掌握在一个数的前面加上负号就是这个数的相反数,在一个数的前面加上正号是原数是解题的关键. 14.(2023秋·福建泉州·七年级统考期末)已知有理数a 在数轴上的位置如图所示,则a−___________3.(填“>”、“<”或“=”)【答案】<【分析】结合数轴得出a 的符号,再根据相反数的定义即可得到a −的值.【详解】解:由数轴可知,1a −-2<< ,∴12a −<<,∴3a −<故答案:<.【点睛】本题主要考查相反数和数轴,根据数轴得到数的正负和比较大小是解题的关键.15.(2023·全国·七年级假期作业)如果4a −和2−互为相反数,那么=a ___________.【答案】6【分析】根据相反数的定义求解即可.【详解】∵4a −和2−互为相反数∴42a −=解得6a =故答案为6.【点睛】本题主要考查了相反数的定义,熟知只有符号不同的两个数互为相反数是解题的关键.16.(2023·浙江·七年级假期作业)如图,数轴上点A 所表示的数的相反数是_________.【答案】3【分析】根据数轴得出A 点表示的数,根据相反数的定义即可求解.【详解】解:∵A 点表示的数为3−,∴数轴上点A 所表示的数的相反数是3,故答案为:3.【点睛】本题考查了相反数的定义,在数轴上表示有理数,数形结合是解题的关键.17.(2023·浙江·七年级假期作业)已知23x +与5−互为相反数,则x 等于______.【答案】1【分析】根据互为相反数的两个数的和为0列式计算即可.【详解】∵23x +与5−互为相反数,∴()2350x ++−=解得1x =.故答案为:1.0是解题的关键.【答案】 a b −− 12−/32−【分析】根据相反数的定义即可求解.【详解】解:a b +的相反数是()a b a b −+=−−,112⎛⎫−− ⎪⎝⎭的相反数是111122⎡⎤⎛⎫−−−=− ⎪⎢⎥⎝⎭⎣⎦, 故答案为:①a b −−,②112−.【点睛】本题考查求一个数的相反数,掌握相反数的定义是解题的关键.三、解答题【答案】(1)68(2)0.75−(3)35(4)3.6【分析】(1)先去括号,然后根据负号的个数为偶数个,即可化简求值;(2)先去括号,然后根据负号的个数为奇数个,即可化简求值;(3)先去括号,然后根据负号的个数为偶数个,即可化简求值;(4)先去括号,然后根据负号的个数为偶数个,即可化简求值.【详解】(1)解:()6868−−=; (2)解:()0.750.75−+=−; (3)解:3355⎛⎫−−=⎪⎝⎭;(4)解:()3.6 3.6⎡⎤−+−=⎣⎦. 【点睛】本题考查了多重符号化简,解题关键是掌握若一个数前有多重符号,则由该数前面的符号中“−”的个数来决定,即奇数个“−”符号则该数为负数,偶数个“−”符号,则该数为正数.20.(2021秋·陕西渭南·七年级统考阶段练习)在数轴上,点A 表示的数是23a +,点B 表示的数是4,若点A 、B 位于原点两侧且到原点的距离相等,求a 的值.【答案】2−【分析】根据原点两侧且到原点的距离相等对应的数是相反数,可得234a +=−,求出即可;【详解】解:因为点A 、B 位于原点两侧且到原点的距离相等,所以234a +=−,解得2a =−.【点睛】本题考查数轴上表示相反数的点的特征,位于原点两侧且到原点的距离相等,解题关键是判断出相反数的关系. 21.(2023·浙江·七年级假期作业)在一条不完整的数轴上有A 、B 两点,A 、B 表示的两个数a 、b 是一对相反数.(1)如果A 、B 之间的距离是3,写出a 、b 的值(2)有一点P 从B 向左移动5个单位,到达Q 点,如果Q 点表示的数是2−,写出a 、b 的值【答案】(1) 1.5a =−、 1.5b =;(2)3a =−,3b =【分析】(1)由相反数的定义及两点间的距离公式可得a 、b 的值;(2)求出OB 、OA 的长即可求出a 、b 的值.【详解】(1)∵点A 、B a ,()b a b <,且A 、B 之间的距离为3,∴ 1.5a =−、 1.5b =;(2)∵5BQ =,2O Q =, ∴3OB =,∴3OA =,∴3a =−,3b =【点睛】本题考查了数轴和相反数,关键是掌握只有符号不同的两个数叫做互为相反数.22.(2022秋·辽宁抚顺·七年级校考阶段练习)如图,一个单位长度表示2,解答下列问题:(1)若点B 点D 所表示的数互为相反数求点D 所表示的数;(2)若点A 与点B 所表示的数互为相反数,求点D 所表示的数;(3)若点B 与点F 所表示的数互为相反数,求点D 所表示的数的相反数,【答案】(1)4(2)9(3)2−【分析】(1)“B 与D 所表示的数互为相反数”由B 与D 之间有四个单位长度得点C 所表示的数是原点,由此得点D 表示的数为4.(2)方法同(1)可得点D 表示的数为5.(3)方法同(1)可得点D 表示的数为2,它的相反数为-2.【详解】(1)∵B 与D 所表示的数互为相反数,且B 与D 之间有4个单位长度,一个单位长度表示2, ∴可得点D 所表示的数为4;(2)∵A 与B 所表示的数互为相反数,且它们之间距离为2,则B 表示的数为1,一个单位长度表示2, ∴点D 表示的数为9;(3)∵B 与F 所表示的数互为相反数,B 、F 两点间距离为12,∴C 、D 中间的点为原点,∴D 表示的数为2,它的相反数为2−.【点睛】在答题中要注意数轴的一个单位长度是多少,同时要根据两点之间单位长度来确定点所表示的数字. 23.(2021秋·河南南阳·七年级校考阶段练习)数轴上有三个数A ,B ,C .写出,,,0,,,A B C A B C −−−,7个数的大小关系.【答案】0A C B B C A −−−<<<<<<【分析】如图,利用相反数的含义在数轴上分别描出,,A B C −−−对应的点,再利用数轴比较大小即可.【详解】解:如图,利用相反数的含义在数轴上分别描出,,A B C −−−对应的点,∴0A C B B C A −−−<<<<<<.【点睛】本题考查的是相反数的含义,利用数轴比较有理数的大小,掌握“利用相反数的含义在数轴上分别描出,,A B C −−−对应的点”是解本题的关键.【答案】3或3【分析】根据互为相反数的两数之和为0,互为倒数的两数之积为1,绝对值为2的数为2或2−,得到关系式,代入所求式子中计算即可求出值.【详解】∵a ,b 互为相反数,x ,y 互为倒数,c 的绝对值是2,∴0a b +=,1xy =,2c =或2c =−,当2c =时,121012333a b xy c ++−=+−=, 当2c =−时,125012333a b xy c ++−=++=, ∴代数式123a b xy c ++−的值为:13或53 【点睛】本题考查了代数式求值,相反数,绝对值,以及倒数,熟练掌握相反数、绝对值及倒数定义是解答本题的关键.【答案】(1)4−,2(2)2或10(3)2,6【分析】(1)根据相反数到原点的距离相等,即可得出点B 和点C 表示的数,再根据单位长度为1,即可解答;(2)当点B 为原点,则可得点A 和点D 表示的数,根据点M 到点A 的距离是点M 到点D 的距离的2倍,分为点M 在点A 和点D 之间和点M 在点D 的右边两种情况,进行分类讨论即可;(3)设经过t 秒后相遇,根据题意找出等量关系列出方程求解即可.【详解】(1)解:∵点B ,D 表示的数互为相反数,点B 和点D 距离4个单位长度,∴点B 和点D 距离原点2个单位长度,∴点B 表示2−,点D 表示2,∵点A 在点B 左边两个单位长度,∴点A 表示的数为:224−−=−,故答案为:4−,2.(2)∵点B 为原点,∴点A 表示2−,点D 表示4,①当点M 在点A 和点D 之间时:点M 到点A 的距离为:(2)2M M −−=+,点M 到点D 的距离为:4M −,∴()224M M +=−,解得:2M =,②当点M 在点D 右边时:点M 到点A 的距离为:(2)2M M −−+,点M 到点D 的距离为:4M −,∴()224M M +=−,解得:10M =,故答案为:2或10.(3)由图可知,点B 和点C 距离3个单位长度,设经过t 秒后相遇,∵B 、C 两点分别以2个单位长度/秒和0.5个单位长度/秒同时向右运动,∴()20.53t −=,解得:2t =,此时点P 表示的数为:2226+⨯=,故答案为:2,6.【点睛】本题主要考查了用数轴上的点表示数,解题的关键是掌握有理数和数轴上的点是一一对应的关系,根据题意进行分类讨论.【答案】(1)2−; (2)5;(3)B 点向左平移一个单位;(4)3,3−;(5)A 点移动到B 点右侧.【分析】(1)由图可知,A 点表示的数为1−,B 点表示的数2,所以将A点向左平移12个单位长度后,表示的数是32−; (2)B 点向右平移3个单位长度后,表示的数是5;(3)A 点的相反数是1,故B 点向左平移一个单位后表示的是为1,与A 点表示的数互为相反数;(4)根据两点间的距离公式可求A 和B 的距离,根据数轴的定义可知原点移到B 点,A 点表示的数;(5)根据数轴上右边的数大于左边的数即可得到答案.【详解】(1)解:13122−−=−,即表示的数是32−故答案为:32−; (2)解:235+=,即表示的数是5,故答案为:5;(3)解:A点的相反数是1,B∴点向左平移一个单位后与A点表示的数互为相反数,(4)解:()213−−=,即A点和B点相距3个单位长度,∴将图中数轴的原点移到B点,A点表示的数是3−,故答案为:3,3−;(5)解:A点表示的数永远都大于B点表示的数,即A点移动到B点右侧.【点睛】本题考查了数轴,相反数,熟练掌握数轴的相关知识是解题关键.。
相反数的意义一、相反数的意义1.定义:只有符号不同的两个数,叫做互为相反数。
如:-2.5与2.5 +1与-1 +3与-3提示:①“只有”指的是除了符号不同外完全相同。
如:只要符号不同的两个数就称为相反数(错)②“两个数”是指相反数一定成对出现如:-8是相反数(错)2.几何意义:在数轴上,表示相反数(除零外)的两个点分别在原3.代数意义:互为相反数的两个数的和为0即:若a与b是互为相反数,则a+b=04.相反数的判定:(1).定义判定:只有符号不同的两个数,它们互为相反数(2).几何判定:在数轴上,若两点位于原点两旁,且到原点的距离相等,则它们互为相反数(3).代数判定:①:若a+b=0,则a、b互为相反数②:若ba=-1,则a、b互为相反数二、求相反数中的有趣发现1.在一个数的前面添上“+”号表示这个数本身,即+a=a。
如:+(-2)=-2;+3=32.在一个数的前面添上“-”号表示这个数的相反数如:-(-4)=4;-(+3)=33.0的相反数就是0,即-(0)=0(老师,我这里是要展开用例子来发现,还是仅仅示范一下就好了呢?)四、例题讲解例1 :下列正确的是(C)A.只要符合不同的两个数就称为相反数B.一个数的相反数一定是负数C.零的相反数是零D.-19是相反数分析:A项没有考虑到除了符号不同,其它要完全相同;B项没有考虑到是负数的情况;D项相反数是要成对出现的;C项零的相反数就是零正确.故选D例2:化简下列各数(1)-(+0 )=0(2)+(-0.15)=-0.15(3)–(- 5)= 5 (4)-[-(+10)]=10(延伸:多重符号的结果由“-”号的个数决定,与“+”号无关,你能发现这样的规律吗?)例3:x+3与5互为相反数,则x=_-8_分析:由相反数的性质可知:x+3+5=0,解得:x=-8例4.如果数轴上点A 表示+10,B,C 两点表示的数互为相反数,且点C 到点A 的距离是2个单位长度,求点B,点C 表示的数。
1。
2。
3 相反数教学设计教学目标(一)知识技能1.了解相反数的概念。
2.能在数轴上表示出两个互为相反数的数,并且发现表示互为相反数的两点在原点的两侧,到原点的距离相等。
3.利用互为相反数符号表示方法化简多重符号。
(二)过程方法1.利用数轴,直观认识互为相反数的位置特点,理解相反数的代数定义和几何定义的一致性。
2.渗透数形结合等思想方法,并注意培养学生的概括能力。
3.会正确求一个数的相反数并知道它们之间的关系.(三)情感态度通过相反数的学习,体会数学符号化和数形结合的思想,进而进一步认识事物之间的联系.教学重点1.相反数的概念及其表示方法,理解相反数的代数定义和几何定义的一致性。
2.能准确写出任意数的相反数,对简化符号能正确应用。
教学难点负数的相反数的表示方法,化简多重符号。
【复习引入】1.在数轴上分别找出表示各数的点。
3与-3,-5与5,-1。
5与1。
5想一想:在数轴上,表示每对数的点有什么相同?有什么不同?2.观察数3与-3,-5与5,-1.5与1.5有何特点?,观察每组数所对应的两个点的位置关系有什么规律?再提思考问題:(1)数轴上与原点的距离是2的点有个?这些点表示的数是.(2)数轴上与原点的距离是5的点有个?这些点表示的数是.学生归纳:每组中的两个数只有符号不同,他们所对应的两点分别在原点的两侧,到原点的距离相等。
【教学过程】1.归纳相反数的定义:像3与-3,-5与5,-1.5与1。
5这样只有符号不同的两个数称互为相反数。
代数概念:只有符号不同的两个数称互为相反数。
0的相反数是0.。
几何意义:在数轴上,表示互为相反数的两个数分别位于原点两侧,且与原点的距离相等。
辩析:(1)符号不同的两个数叫做互为相反数.(2)3.5是相反数,(3)+3和-3是相反数。
说明:(1)相反数是指只有符号不同的两个数。
(2)相反数是成对出现的,不能单独存在,因而不能说“—6是相反数”。
特别强调的是0的相反数为0,因为0既不是正数,也不是负数,它到原点的距离就是0,这是相反数等于本身的唯一的数.因此,求一个数的相反数的方法:根据相反数的定义,只要改变一下这个数的符号,即将正号改变为负号,负号改变为正号.如2的相反数是—2,-5的相反数是5。
相反数教学总结相反数教学总结1今天我上的汇报课是七年级数学《相反数》,本课教学目标是让学生借助数轴理解相反数的概念,会求一个有理数的相反数并会多重符号的化简。
教学重点是借助数轴让学生理解相反数的意义,难点是对相反数的识别及求一个有理数的相反数,理解和掌握多重符号化简的规律。
在教学时我的流程是:我先让学生把6和-6,1.5和-1.5分别在数轴上表示出来,让学生观察,引出相反数的`概念,再从数轴上观察6和-6与原点的关系,进一步理解相反数的几何意义,随后根据相反数的概念进行了求相反数的例题教学与多重符号的化简练习,最后进行了课堂检测,取得了较好的教学效果。
在这节课上,为了让学生主动构建新知识,在教学设计中我分层设置了问题串,课堂上以学生为主体,以培养学生的思维能力为重点,注重学生观察、分类、探究、归纳的能力的培养。
因为这一节课知识比较简单,学生学的很轻松,达到了预期教学效果。
今后我想从以下几个方面加强课堂教学:1.在课堂教学中,给学生留够充足的思考时间,精讲精练,把课堂还给学生,否则学生会有被牵着鼻子走的感觉。
2.注重学法指导,善于作解题后的反思、方法的归类、规律的小结和技巧的揣摩,促进学生能力的提高。
3.认真研究教材,不随意提高教学难度增加学生负担,注重基础教学,培养学生学习数学兴趣,让学生快乐学习,真正提高课堂效率。
相反数教学总结2教学引人以开放的形式创设情境,让学生进行讨论,并培养分类的能力,培养学生的观察与归纳能力。
把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的`理解,体验对称的图形的特点,为相反数在数轴上的特征做准备;问题2能帮助学生准确把握相反数的概念,深化相反数的概念;“零的相反数是零”是相反数定义的一部分;问题3实际上给出了求一个数的相反数的方法。
本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,()自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地。
1.2 相反数【目标导航】1.理解相反数的意义,并能在数轴上表示出两个互为相反数的数.2.理解相反数的几何意义和代数意义.3.通过相反数的学习,体会数学符号化和数形结合的思想.【预习引领】1.什么叫数轴?并在数轴上标出下列各数:.1,7,2,0,3,8,3,2,7-+--+2.数轴上与原点的距离是2的点有 个,这些点表示的数是 ;与原点的距离是3的点有 个,这些点表示的数是 .【要点梳理】知识点一:相反数的概念一般地,设a 是一个正数,数轴上与原点的距离为a 的点有两个,它们分别在原点左右两边,表示a 和a -这两个数,我们说表示a 和a -的这两个数关于原点对称(分居原点的两旁,且到原点的距离相等).(1)相反数的几何意义:在数轴上原点的两旁,到原点距离相等的两个点所表示的数叫做互为相反数.⑵相反数的代数意义:只有符号不同的两个数叫做互为相反数.一般地,a 和a -互为相反数,特别地,0的相反数仍是0.例1 写出下列各数的相反数:+8.5,-523,0.35,0,-2,π,10%,100.例2 如果一个数的相反数是负数,那么这个数一定是 ( )A .正数B .负数C .零D .正数、负数、零都有可能知识点二:相反数的表示法及符号的化简在正数的前面添上“-”号,就得到一个正数的相反数.在任意一个数的前面添上“-”号,就得到原数的相反数.例3 化简下列各数:-(-68),-(+0.75),)212(--,-(+3.8).小结:当一个数前面有双重符号时,化简规律为:同号得正,异号得负.例4 化简下列各数:⎥⎦⎤⎢⎣⎡-+-)212(, [])4(+-+, [])5(---,[]{})2(--+-.小结:多重符号的化简规律为:看数字前面的“-”号个数,当“-”号个数为奇数个时,结果为负;当“-”号个数为偶数个时,结果为正.例5 下列说法错误的是 ( )A .如果n m >,那么n m -<-B .如果a -是正数,那么a 是负数C .如果x 是大于1的数,那么x -是小于-1的数D .一个数的相反数不是正数就是负数例6 一个数a 与它的相反数谁大谁小?归纳与小结:此题应用分类讨论思想解题.【课堂操练】1. 的相反数是-0.7,1的相反数 , 0的相反数是 ,-(-3)的相反数是 .2. (2011浙江丽水)下列各组数中,互为相反数的是( )A .2和-2B .-2和12C .-2和12-D .12和2 3.213-在数轴上对应的点与它的相反数对应的点之间的距离为 . 4.互为相反数的两数在数轴上的两点间的距离为11,这两个数为 .5.一个数的相反数大于它本身,这个数是 .6.若2=-x ,则[])(x ---= .7.数a 的相反数是b ,下列结论错误的是( )A .b a -=B .0=+b aC .a 和b 都是正数D .a 和b 可同时为零8. 下列说法正确的是 ( )A .两个数的和为零,则它们互为相反数B .负数的倒数一定比原数大C .π的相反数是-3.14D .原数一定比它的相反数小9. 与b a -互为相反数的是 ( )A .-(b a -)B .a b +C .b a +-D .)(b a +-10.化简下列各数:(1) -(-16); (2)-(+25);(3) +(+3.8); (4))101(--.11.化简下列各数 :(1) [])2(-+-; (2) [])5(---;(3) [])3(+--; (4) [])1(-++;(5) [])7(+-+; (6)⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡--+-)101(.12.a 、b 为有理数,在数轴上的对应点位置如图所示,把a 、b 、a -、b -按从小到大的顺序排列.0ba13.5+x 与–7互为相反数,求x 的值.【课后盘点】1. 5的相反数是 ,53-与 互为相反数,0的的相反数是 ,a -的相反数是 . 2. )21(--的相反数是 , [])1(-+-的相反数是 .3.(2011贵州安顺)-4的倒数的相反数是( )A .-4B .4C .-41D .41 【答案】D 4. 比51-的相反数小51的数是 . 5.如果m =3,则m -= .6.-2与2m 互为相反数,m = .7.2+x 的相反数是 ,x -1的相反数是 .8.若m =216-,那么[])(m ---= , 9.若a -=9-,那么[])(a -+-= .10.若m 的相反数是最大的负整数,n 的相反数是5,则n m += .11.若m 的相反数是532-的倒数,则m = . 12.数a 的相反数是b ,则=+b a ,=+-b a 2102 .13.若1-a 的相反数是-3,则a 的相反数是 .14.若一个数的相反数是最大的负整数,则这个数是 .15.若21x +的相反数是-3,则x -的相反数是 . 16.下列说法不正确的是 ( )A .所有的有理数都有相反数B .正数与负数互为相反数C .在一个数的前面添上“-”,就得到它的相反数.D .在数轴上到原点距离相等的两个点所表示的数是互为相反数17.一个数的相反数为非负数,则这个数是 ( )A .正数B .负数C .零或负数D .零18.下列判断:⑴带有负号的数是负数⑵每个有理数都有它的倒数⑶互为相反数的两个数一定一个正数一个负数⑷有理数中,相反数一定小于它本身其中正确判断的个数 ( )A .0B .1C .2D .319. 若一个数不是负数,则这个数的相反数一定是 ( )A .负数B .0或负数C .正数D .0或正数20. 若0=+b a ,则 a 、b 的取值一定是 ( )A .都是0B .互为相反数C .至少有一个等于0D .a 是正数,b 是正数21. 若a 与b 21互为相反数,且0≠b ,那么a 的倒数是 ( ) A .b 2 B .2b C . b 2- D . b 2-22.如图1是一个正方形纸盒的展开图,若在其中3个面A 、B 、C 内分别填入适当的数,使得它们折成正方体后相对面上的数互为相反数,则填入正方形A 、B 、C 内的三个数依次是 ( ) A .1,–2,0 B .0,–2, 1 C .–2,0,1D .–2,1, 023. 在数轴上表示下列各数和它们的相反数,并把它们从小到大排列. -2.5,0,-(-5),)211(+-.24. 化简下列各数C02-1BA(1) -(-6); (2)-(+2.5);(3) +(+1.8); (4))21(--;(5) [])7(+-+ ; (6) [])1(-+-;(7) [])2(--- ; (8) []{})3(-+- .25. 已知x 与y 互为相反数,且y =-(+2),求代数式y x -3的值.26.若26-x 与84-x 互为相反数,求x 的值.【课外拓展】1.数轴上表示-3的点移动12个单位后到达A点,点A 与点B 关于原点对称,则点B 所表示的数为 .2.数轴上离开原点的距离小于2的整数点的个数为x ,不大于2的整数点的个数为y ,等于2的整数点的个数为z ,求z y x ++的值.No .41.2 相反数【目标导航】1.理解相反数的意义,并能在数轴上表示出两个互为相反数的数.2.理解相反数的几何意义和代数意义.3.通过相反数的学习,体会数学符号化和数形结合的思想.【预习引领】1.什么叫数轴?并在数轴上标出下列各数:5,2,3,3,0,2,5,1.+---答案:规定了原点、正方向和单位长度的直线叫数轴.2.数轴上与原点的距离是2的点有 两 个,这些点表示的数是 ±2 ;与原点的距离是3的点有 两 个,这些点表示的数是 ±3 .【要点梳理】知识点一:相反数的概念一般地,设a 是一个正数,数轴上与原点的距离为a 的点有两个,它们分别在原点左右两边,表示a 和a -这两个数,我们说表示a 和a -的这两个数关于原点对称(分居原点的两旁,且到原点的距离相等).(1)相反数的几何意义:在数轴上原点的两旁,到原点距离相等的两个点所表示的数叫做互为相反数.⑵相反数的代数意义:只有符号不同的两个数叫做互为相反数.一般地,a 和a -互为相反数,特别地,0的相反数仍是0.例1 写出下列各数的相反数:+8.5,-523,0.35,0,-2,π,10%,100. 答案:+8.5的相反数是-8.5 -523的相反数是523 0.35的相反数是-0.35,0的相反数是0,-2的相反数是2,π的相反数是-π,10%的相反数是-10%,100的相反数是-100.例2 如果一个数的相反数是负数,那么这个数一定是 ( )A .正数B .负数C .零D .正数、负数、零都有可能答案:A 。
初中数学有理数知识点总复习附答案一、选择题1.下列说法中不正确的是( )A .-3 表示的点到原点的距离是|-3|B .一个有理数的绝对值一定是正数C .一个有理数的绝对值一定不是负数D .互为相反数的两个数的绝对值一定相等【答案】B【解析】【分析】根据绝对值的意义以及相反数的意义逐项进行分析即可得答案.【详解】A 、根据绝对值的意义|-3|表示在数轴上表示-3的点到原点的距离,故A 选项正确,不符合题意;B 、若这个有理数为0,则0的绝对值还是0,故B 选项错误,符合题意;C 、根据绝对值的意义,|a|的绝对值表示在数轴上表示a 的点到原点的距离,故任意有理数的绝对值都为非负数,所以不可能为负数,故C 选项正确,不符合题意;D 、根据相反数的定义可知:只有符号不同的两数互为相反数,可知互为相反数的两数到原点的距离相等,即互为相反数的两个数的绝对值相等,故D 选项正确,不符合题意, 故选B .【点睛】本题考查了绝对值的意义,绝对值的代数意义为:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值还是0;绝对值的几何意义为:|a|表示在数轴上表示a 的这个点到原点的距离,熟练掌握绝对值的意义是解本题的关键.2.如果实数a ,b 在数轴上的对应点的位置如图所示,那么下列结论正确的是( )A .a b <B .a b >-C .2a >-D .b a >【答案】D【解析】【分析】根据数轴可以发现a <b ,且-3<a <-2,1<b <2,由此即可判断以上选项正确与否.【详解】∵-3<a <-2,1<b <2,∴|a|>|b|,∴答案A 错误;∵a <0<b ,且|a|>|b|,∴a+b <0,∴a <-b ,∴答案B 错误;∵-3<a <-2,∴答案C 错误;∵a <0<b ,∴b >a ,∴答案D 正确.故选:D .【点睛】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.3.-6的绝对值是()A.-6 B.6 C.- 16D.16【答案】B【解析】【分析】在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.【详解】负数的绝对值等于它的相反数,所以-6的绝对值是6故选B【点睛】考点:绝对值.4.﹣3的绝对值是()A.﹣3 B.3 C.-13D.13【答案】B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数. 5.如图是张小亮的答卷,他的得分应是()A.40分B.60分C.80分D.100分【答案】A【解析】【分析】根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a与b互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a与b互为相反数,故选A.【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.6.在有理数2,-1,0,-5中,最大的数是()A.2 B.C.0 D.【答案】A【解析】【分析】正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,据此判断即可.【详解】根据有理数比较大小的方法可得:-5<-1<0<2,所以最大数是2.故选A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.7.在数轴上,点A,B在原点O的两侧,分别表示数a和3,将点A向左平移1个单位=,则a的值为().长度,得到点C.若OC OBA.3-B.2-C.1-D.2【答案】B【解析】【分析】先用含a的式子表示出点C,根据CO=BO列出方程,求解即可.【详解】解:由题意知:A点表示的数为a,B点表示的数为3, C点表示的数为a-1.因为CO=BO,所以|a-1| =3, 解得a=-2或4,∵a<0,∴a=-2.故选B.【点睛】本题主要考查了数轴和绝对值方程的解法,用含a的式子表示出点C,是解决本题的关键.8.如果x取任意实数,那么以下式子中一定表示正实数的是( )A.x B.C.D.|3x+2|【答案】C【解析】【分析】利用平方根有意义的条件以及绝对值有意义的条件进而分析求出即可.【详解】A.x可以取全体实数,不符合题意;B.≥0, 不符合题意;C. >0, 符合题意;D. |3x+2|≥0, 不符合题意.故选C.【点睛】本题考查了平方根和绝对值有意义的条件,正确把握平方根和绝对值有意义的条件是解题关键.9.在实数-3、0、5、3中,最小的实数是()A.-3 B.0 C.5 D.3【答案】A【解析】试题分析:本题考查了有理数的大小比较法则的应用,注意:正数都大于0,负数都小于0,正数都大于一切负数,两个负数比较大小,其绝对值大的反而小.根据有理数大小比较的法则比较即可.解:在实数-3、0、5、3中,最小的实数是-3;故选A.考点:有理数的大小比较.10.下面说法正确的是()A.1是最小的自然数;B.正分数、0、负分数统称分数C.绝对值最小的数是0;D.任何有理数都有倒数【答案】C【解析】【分析】0是最小的自然数,属于整数,没有倒数,在解题过程中,需要关注【详解】最小的自然是为0,A 错误;0是整数,B 错误;任何一个数的绝对值都是非负的,故绝对值最小为0,C 正确;0无倒数,D 错误【点睛】本题是有理数概念的考查,主要需要注意0的特殊存在11.已知a 、b 、c 都是不等于0的数,求a b c abc a b c abc+++的所有可能的值有( )个.A .1B .2C .3D .4【答案】C【解析】【分析】根据a b c 、、的符号分情况讨论,再根据绝对值运算进行化简即可得.【详解】由题意,分以下四种情况:①当a b c 、、全为正数时,原式11114=+++=②当a b c 、、中两个正数、一个负数时,原式11110=+--=③当a b c 、、中一个正数、两个负数时,原式11110=--+=④当a b c 、、全为负数时,原式11114=----=-综上所述,所求式子的所有可能的值有3个故选:C .【点睛】本题考查了绝对值运算,依据题意,正确分情况讨论是解题关键.12.如图,数轴上每相邻两点距离表示1个单位,点A ,B 互为相反数,则点C 表示的数可能是( )A .0B .1C .3D .5【答案】C【解析】【分析】根据相反数的几何意义:在数轴上,一组相反数所表示的点到原点的距离相等,即可确定原点的位置,进而得出点C 表示的数.【详解】∵点A ,B 互为相反数,∴AB 的中点就是这条数轴的原点,∵数轴上每相邻两点距离表示1个单位,且点C 在正半轴距原点3个单位长度, ∴点C 表示的数为3.故选C.【点睛】本题考查了相反数和数轴的知识.利用相反数的几何意义找出这条数轴的原点是解题的关键.13.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】 2a .14.若320,a b -+=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B .考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.15.2-的相反数是( )A .2-B .2C .12D .12- 【答案】B【解析】【分析】 根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .16.实数,a b 在数轴上对应的点位置如图所示,则化简22||a a b b +++的结果是( )A .2a -B .2b -C .2a b +D .2a b -【答案】A【解析】【分析】2,a a = 再根据去绝对值的法则去掉绝对值,合并同类项即可.【详解】解:0,,a b a b Q <<> 0,a b ∴+<22||a a b b a a b b ∴++=+++()a a b b =--++a ab b =---+2.a =-故选A .【点睛】本题考查的是二次根式与绝对值的化简运算,掌握化简的法则是解题关键.17.已知整数01234,,,,,L a a a a a 满足下列条件:01021320,1,2,3==-+=-+=-+L a a a a a a a 以此类推,2019a 的值为( ) A .1007-B .1008-C .1009-D .1010-【答案】D【分析】通过几次的结果,发现并总结规律,根据发现的规律推算出要求的字母表示的数值.【详解】解:00a =,101011a a =-+=-+=-,212121a a =-+=--+=-,323132a a =-+=--+=-,434242a a =-+=--+=-,545253a a =-+=--+=-,656363a a =-+=--+=-,767374a a =-+=--+=-,……由此可以看出,这列数是0,-1,-1,-2,-2,-3,-3,-4,-4,……,(2019+1)÷2=1010,故20191010a =-,故选:D .【点睛】本题考查了绝对值的运算,对于计算规律的发现和总结.18.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;19.不论a 取什么值,下列代数式的值总是正数的是( )A .1a +B .1a +C .2aD .2(1)a +【答案】B【解析】直接利用绝对值的性质以及偶次方的性质分别分析得出答案.【详解】A 、|a+1|≥0,故此选项错误;B 、|a|+1>0,故此选项正确;C 、a 2≥0,故此选项错误;D 、(a+1)2≥0,故此选项错误;故选B .【点睛】此题主要考查了偶次方的性质以及绝对值的性质,正确把握相关定义是解题关键.20.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示. 若0b d +=,则下列结论中正确的是( )A .0b c +>B .1c a> C .ad bc > D .a d >【答案】D【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,可得a <b <0<c <d ,根据有理数的运算,可得答案.【详解】由数轴上的点表示的数右边的总比左边的大,得a <b <0<c <d ,A 、b+d =0,∴b+c <0,故A 不符合题意;B 、c a<0,故B 不符合题意; C 、ad <bc <0,故C 不符合题意;D 、|a|>|b|=|d|,故D 正确;故选D .【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大得出a <b <0<c <d 是解题关键,又利用了有理数的运算.。
用相反数的几何意义找原点
【知识点】
原点的位置在互为相反数的两个数组成的线段的中点。
A和B互为相反数,则线段AB的中点C就是原点。
【练习题】
1.如图所示,点A与点E到原点的距离相等,问原点为______
2.如图所示,已知A、B、C三个点在一条没有标明原点的数轴上。
若点A和点
C表示的数互为相反数,则原点为______
3.如图所示,已知A、B、C、D、E、F六个点在一条没有标明原点的数轴上。
若点A和点E表示的数互为相反数,则原点为______
4.如图所示,已知A、B、C、D四个点在一条没有标明原点的数轴上。
若点A
和点D表示的数互为相反数,则原点为______
5.如图所示,已知A、B、C、D、E、F六个点在一条没有标明原点的数轴上。
(1)若点B和点F表示的数互为相反数,则原点为______;
(2)若点C和点E表示的数互为相反数,则原点为______;
6.如图所示,已知A、B、C、D、E、F、G、H八个点在一条没有标明原点的
数轴上。
(1)若点B和点H表示的数互为相反数,则原点为______;
(2)若点A和点G表示的数互为相反数,则原点为______;
7.如图所示,图中数轴的单位长度为1,如果点D、B表示的数互为相反数,那
么原点在点C的()
A.左侧且距离C点0.5个单位长度
B.右侧且距离C点0.5个单位长度
C.右侧且距离C点1个单位长度
D.左侧且距离C点1个单位长度
答案
1.C
2.B
3.C
4.B
5.D;D
6.E;D
7.A。