高强韧与响应型高分子水凝胶研究进展
- 格式:doc
- 大小:24.00 KB
- 文档页数:3
乩M址丨MATERIALS AND APPLICATION邀>呼反干|湘禺筋温敏水擬胶的研究进展杨莹,徐军,李芳(西安工程大学,陕西西安710048$摘要:水凝胶是一种具有三维网络结构的亲水性凝胶3温敏水凝胶作为一种智能高分子水凝胶,能够对环境中微小的温度变化而作出响应,是智能水凝胶中研究最为广泛的3本文综述了近年来科研工作者们对于温敏水凝胶的研究,其对于温敏水凝胶的研究主要集中在生物医学、建筑领域、纺织服装等方面,分析了温敏水凝胶的应用范围,以期能够为水凝胶的多领域、全方位应用|供方向3此,对于温敏水凝胶在来的发展方向了3关键词:温敏水凝胶;温敏性;应用;研究进中图分类号:R944文献标识码:A文章编号:1671-1602(2020)17-0032-02Research Progress of Thermosensitive HydrogelsYANG Ying,XU Jun,LI Fang(Xi1an Polytechnic University,Xi^an714048,China)Abstract:Hydrogel is a hydrophilic gel with three-dimensional network structure.Thermosensitive hydrogel,as an intelligent polymer hydrogel, can respond to tiny temperature changes in the environment.It is the most widely studied in intelligent hydrogels.In this paper,the research on thermosensitive hydrogels by researchers in recent years is reviewed.The research on thermosensitive hydrogels mainly focuses on biomedicine, architecture,textile and clothing.The application range of thermosensitive hydrogels is analyzed in order to provide direction for the application of hydrogel in many fields and in all directions.In addition,the future directions of thermosensitive hydrogels are also prospected.Keywords:t hermo-sensitive hydrogel;thermosensitivity;application;research progress1温敏水凝胶智能高分子水凝胶能够针对外界环境微小的变化,自身性能产生改变而具有的一种亲水性的三维网络聚合物叫在水中溶胀而不溶解,可吸水达自身重量的数千倍。
水凝胶的研究进展俊机哥哥07(广西师范学院化学与生命科学学院09高分班)摘要:本文对水凝胶的制备方法、性质及其应用进行了简单的介绍。
关于水凝胶的制备,我们在文章的介绍了三种方法:单体聚合并交联、聚合物交联、载体的接枝共聚。
关键字: 水凝胶制备性质应用生物医学前言水凝胶这个词最早出现于1960年,当时是由捷克的Wicherle和Lim研制的聚强乙基丙烯酸甲酯。
它本身是硬的高聚物,但它吸收水分后就变成具有弹性的凝胶,故称水凝胶。
水凝胶是一类具有三维网络结构的聚合物,在水中能够吸收大量水分而溶胀,并在溶胀之后能够继续保持其原有结构而不被溶解。
水凝胶可由不同的亲水单体和疏水单体聚合而成。
由于其具有三维网络结构,故相对分子质量很高,其交联网络结构主要由化学键、氢键或范德华力等组成。
溶胀时溶液可以扩散进入交联键之间的空间内,交联密度越大,三维网络间的空问就越小,水凝胶在溶胀时吸收的水分也就越少。
由于水凝胶表面不易粘附蛋白质和细胞,故在与血液、体液及人体组织相接触时会表现出良好的生物相容性;另外,水凝胶由于含有大量的水分而非常柔软,并且类似于生物体组织,故作为人体植入物可以减少不良反应。
因此,水凝胶被作为优良的生物医学材料得到广泛应用2。
例如,PVP水凝胶可作为眼科手术中黏弹物质及人工玻璃体材料。
PVA水凝胶可用于关节重建、人工软骨、人工喉及人工玻璃体。
PVA 是第一个被广泛使用在移植方面的水凝胶。
水凝胶已被用做鼻子、面部、缺唇修补、替代耳鼓膜等方面。
水凝胶用做人工软骨、腱以及主动脉接枝不久将被商业化。
另外,水凝胶在日用品,工业用品,农业、土建等领域也有广泛应用。
1 水凝胶的制备1. 1 单体聚合并交联合成水凝胶的单体很多,大致分为中性、酸性、碱性3 种,表1 列出了部分单体及交联剂。
表1 水凝胶制备中常用的单体和交联剂水凝胶可以由一种或多种单体采用电离辐射、紫外照射或化学引发聚合并交联而得。
一般来说,在形成水凝胶过程中需要加入少量的交联剂。
高分子多糖水凝胶功能材料研究与应用进展摘要:与传统高分子水凝胶材料相比,高分子多糖水凝胶因其具有环境友好型、生物相容性、特殊功能性、生物可降解性等优势而倍受重视。
综述了以植物多糖、海洋多糖、微生物多糖及其复合多糖为原料的多糖水凝胶功能材料的制备方法、功能特性和产品表征方法,介绍了多糖水凝胶材料在医药卫生、食品、化妆品、农业和环保等领域的应用情况,分析了多糖水凝胶在生物传感器、生物反应器、人工智能材料和抗菌材料等领域的应用前景,并指出提高材料性能与功能特性、分析凝胶形成机理和功能材料模拟等是未来多糖水凝胶研究的重点。
关键词:高分子多糖;水凝胶;功能材料;研究进展;应用多糖水凝胶是多糖利用的一个重要方面,水凝胶是一类具有三维交联网络结构,能够吸收并保持大量水分,而又不溶于水的功能高分子材料。
水凝胶自身的结构使其同时具备固体和液体的性质,即力学上表现出类固体性质,而在热力学上则表现出类液体行为[1-2]。
水凝胶因其具有低成本、多孔性、较高力学强度、光学透明性、生物可降解性、高溶胀率、生物相容性、刺激响应性等特性,被广泛应用于食品、化妆品、医药卫生、农业、环保等领域。
水凝胶按照制备原料的不同可分为天然高分子水凝胶和合成高分子水凝胶[3]。
用于制备水凝胶的天然高分子包括胶原/明胶、透明质酸、海藻酸盐、纤维素、黄原胶、魔芋葡聚糖、壳聚糖等[4-6]。
用于制备水凝胶的合成高分子包括聚丙烯酸、聚丙烯酰胺、聚乙二醇和聚乙烯醇等。
近年来,高分子多糖如纤维素、半纤维素、壳聚糖、海藻酸钠、黄原胶以及透明质酸等因其优越的生物相容性、天然可降解性以及丰富的来源等特点,越来越多地被用作制备水凝胶的原料,拓宽了多糖的应用领域。
多糖水凝胶材料包括互穿聚合物网络多糖胶、多糖类接枝共聚水凝胶、多糖类大孔冻凝胶和多糖类智能水凝胶。
其中多糖类智能水凝胶,通过在多糖类水凝胶中引入具有刺激响应性的化学基团,从而可以利用大分子链或链段的构象或基团的重排使其内部体积发生突变。
PVA水凝胶的制备与研究关键词:PVA水凝胶制备研究表征应用摘要:简要评述了聚乙烯醇水凝胶的制备方法,评述了PV A水凝胶的研究现状与前景展望,详细介绍了本课题传统PV A水凝胶及温敏性凝胶的制备测试方法,总结了凝胶的应用,并展望了未来PV A水凝胶的发展趋势。
高分子凝胶是基础研究以及技术领域的一种重要材料。
凝胶是指溶胀了的高分子聚合物相互联结,形成三维空间网状结构,又在网状结构的空隙中填充了液体介质的分散体系。
近几年,高分子水性凝胶(又被称为水凝胶)的研究获得了极大的重视。
水凝胶是一种网络结构中含有大量水而不溶于水的高分子聚合物,具有良好的柔软性、弹性、储液能力和生物相容性,在生物医学和生物工程中具有广泛的用途。
常见的水凝胶有聚酰胺水凝胶、聚乙烯醇水凝胶、聚N-异丙基丙烯酰胺温敏性水凝胶等。
本课题主要针对于PV A水凝胶。
1 PV A水凝胶的制备PV A水凝胶的制备按照交联的方法可分为化学交联和物理交联。
化学交联又分辐射交联和化学试剂交联两大类。
辐射交联主要利用电子束、γ射线、紫外线等直接辐射PV A溶液,使得PV A分子问通过产生自由基而交联在一起。
化学试剂交联则是采用化学交联剂使得PV A分子间发生化学交联而形成凝胶,常用的交联剂有醛类、硼酸、环氧氯丙烷以及可以与PV A通过配位络台形成凝胶的重金属盐等等。
物理交联主要是反复冷冻解冻法。
1.1 物理交联法通过物理交联法制备聚乙烯醇水凝胶,报道中最多的是使用“冷冻-熔融法”和“冻结-部分脱水法”两种方法。
反复冻融法是将一定浓度的PV A水溶液在-10~-40℃冷冻1d左右,再在25℃条件下解冻1~3h,即形成物理交联的PV A水凝胶。
将其反复冷冻、解冻几次后,就可以使其一些物理性能和机械性能等有很大的改善。
冷冻使水溶液中的PV A的分子链在某一时刻的运动状态“冻结”下来,接触着的分子链可以发生相互作用及链缠结,通过范德华力和氢键等的物理作用紧密结合,在某一微区不在分开,成为“缠结点”。
水凝胶的研究进展俊机哥哥0913010407(广西师范学院化学与生命科学学院09高分班)摘要:本文对水凝胶的制备方法、性质及其应用进行了简单的介绍。
关于水凝胶的制备,我们在文章的介绍了三种方法:单体聚合并交联、聚合物交联、载体的接枝共聚。
关键字: 水凝胶制备性质应用生物医学前言水凝胶这个词最早出现于1960年,当时是由捷克的Wicherle和Lim研制的聚强乙基丙烯酸甲酯。
它本身是硬的高聚物,但它汲取水分后就变成具有弹性的凝胶,故称水凝胶。
水凝胶是一类具有三维网络结构的聚合物,在水中能够汲取大量水分而溶胀,并在溶胀之后能够继续保持其原有结构而不被溶化。
水凝胶可由不同的亲水单体和疏水单体聚合而成。
由于其具有三维网络结构,故相对分子质量很高,其交联网络结构主要由化学键、氢键或范德华力等组成。
溶胀时溶液可以扩散进入交联键之间的空间内,交联密度越大,三维网络间的空问就越小,水凝胶在溶胀时汲取的水分也就越少。
由于水凝胶外表不易粘附蛋白质和细胞,故在与血液、体液及人体组织相接触时会表现出良好的生物相容性;其它,水凝胶由于含有大量的水分而非常柔软,并且类似于生物体组织,故作为人体植入物可以减少不良反响。
因此,水凝胶被作为优良的生物医学材料得到广泛应用2。
例如,PVP水凝胶可作为眼科手术中黏弹物质及人工玻璃体材料。
PVA水凝胶可用于关节重建、人工软骨、人工喉及人工玻璃体。
PVA 是第一个被广泛使用在移植方面的水凝胶。
水凝胶已被用做鼻子、面部、缺唇修补、替代耳鼓膜等方面。
水凝胶用做人工软骨、腱以及主动脉接枝不久将被商业化。
其它,水凝胶在日用品,工业用品,农业、土建等领域也有广泛应用。
1 水凝胶的制备1. 1 单体聚合并交联合成水凝胶的单体很多,大致分为中性、酸性、碱性3 种,表1 列出了局部单体及交联剂。
表1水凝胶制备中常用的单体和交联剂水凝胶可以由一种或多种单体采纳电离辐射、紫外照耀或化学引发聚合并交联而得。
一般来说,在形成水凝胶过程中需要参加少量的交联剂。
光响应高分子水凝胶随着科技的不断发展,高分子材料的应用越来越广泛。
其中,光响应高分子水凝胶作为一种新型材料,具有独特的光学特性和多功能性,受到了广泛关注和研究。
光响应高分子水凝胶是一种由高分子材料构成的水凝胶,其特点是在受到外界光照的刺激下,能够发生可逆的体积变化和形状变化。
这种材料的响应性质使其在光学、光电子学、生物医学和传感器等领域具有广泛的应用前景。
光响应高分子水凝胶的光学特性是其独特之处。
通过改变材料的光学性质,可以实现对光的吸收、散射和透射的控制。
这使得光响应高分子水凝胶在光学器件和光学传感器的制备中具有重要的应用价值。
例如,利用光响应高分子水凝胶制备的光学器件可以根据外界光照的强弱实现光的开关和调制,从而实现光信号的控制和传输。
除了光学特性外,光响应高分子水凝胶还具有多功能性。
通过改变材料的化学组成和结构,可以实现材料的多种功能。
例如,将具有特定功能的分子或纳米材料引入光响应高分子水凝胶中,可以实现材料的光控释放、光控传感和光控反应等功能。
这使得光响应高分子水凝胶在生物医学和传感器领域有着广泛的应用前景。
光响应高分子水凝胶的制备方法多种多样,常见的方法包括自组装法、原位聚合法和交联法等。
其中,自组装法是一种简单有效的制备方法,通过在水溶液中加入适量的高分子材料和交联剂,经过适当的条件调控,可以得到具有一定结构和形状的光响应高分子水凝胶。
这种方法具有操作简单、成本较低的优点,适用于大规模生产和应用。
除了制备方法外,光响应高分子水凝胶的性能调控也是研究的重要方向之一。
通过改变高分子材料的交联程度、交联剂的类型和添加剂的种类等因素,可以调控材料的光学特性和响应性能。
这为实现材料的具体应用提供了可能。
在实际应用中,光响应高分子水凝胶还面临一些挑战和问题。
例如,材料的稳定性、光响应速度和光学性能的一致性等问题需要进一步研究和解决。
此外,材料的可重复性和可控性也是研究的重点之一。
光响应高分子水凝胶作为一种新型材料,在光学、光电子学、生物医学和传感器等领域具有广泛的应用前景。
⽔凝胶最新研究进展合集近期,在Adv Mater,Adv Funct Mater,ACS Appl. Mater. Interfaces上报道了多篇⽔凝胶相关的⼯作,有些⼯作⾮常有意思,限于篇幅和⼩编知识⾯,这⾥只能选取部分⾼强度⽔凝胶⽅⾯的⼯作和⼤家分享。
(在公众号中输⼊“⽔凝胶”查看更多内容)1.应变响应的⾼度可拉伸⽔凝胶光纤哈佛医学院的Seok-Hyun Yun课题组最近报道了⼀种⾼拉伸的、应变响应的⽔凝胶光纤,这种⽔凝胶光纤是由海藻酸/聚丙烯酰胺杂化凝胶为主要成份形成的核壳结构⽔凝胶纤维,该纤维的⽹络结构和制备⽅法如图所⽰。
所制备的⽔凝胶纤维具有良好的强度、形变能⼒和弹性,将这种核壳⽔凝胶纤维与普通的硅光纤结合,利⽤光在核和壳的折光指数的不同,就可以把它⽤于光传导,研究发现传播损耗只有0.45 dB/cm。
另外,当⽔凝胶纤维经过染料染⾊,拉伸的时候光的衰减就会随着拉伸程度的增加⽽增加。
因此,这种⽔凝胶纤维还可以作为应变传感器。
参考⽂献:Guo J J, Liu X Y, Jiang N, Yetisen A K, Yuk H, Yang C X, Khademhosseini A, Zhao X H, Yun S H*, Highly Stretchable, Strain Sensing Hydrogel Optical Fibers, Adv Mater, 2016, DOI:10.1002/adma.201603160.2.基于超分⼦⽔凝胶的仿软⾻双⽹络⽔凝胶南京⼤学物理学院的曹毅、蒋青和王炜教授合作报道了⼀种新型结构的杂化双⽹络⽔凝胶(PS-DN凝胶),这种⽔凝胶以短肽形成的超分⼦凝胶为第⼀重⽹络、以化学交联聚丙烯酰胺(PAAm)为第⼆重⽹络。
短肽通过⾃组装形成纤维状的结构,进⼀步形成超分⼦凝胶,这种结构与软⾻中胶原的结构⾮常类似。
PS-DN凝胶表现出良好的强度(0.32-0.57 MPa)、形变能⼒(66-90%)和韧性(300-2670 J/m2),并且具有快速的恢复能⼒和耐疲劳性能。
PVA水凝胶的制备与研究关键词:PVA水凝胶制备研究表征应用摘要:简要评述了聚乙烯醇水凝胶的制备方法,评述了PV A水凝胶的研究现状与前景展望,详细介绍了本课题传统PV A水凝胶及温敏性凝胶的制备测试方法,总结了凝胶的应用,并展望了未来PV A水凝胶的发展趋势。
高分子凝胶是基础研究以及技术领域的一种重要材料。
凝胶是指溶胀了的高分子聚合物相互联结,形成三维空间网状结构,又在网状结构的空隙中填充了液体介质的分散体系。
近几年,高分子水性凝胶(又被称为水凝胶)的研究获得了极大的重视。
水凝胶是一种网络结构中含有大量水而不溶于水的高分子聚合物,具有良好的柔软性、弹性、储液能力和生物相容性,在生物医学和生物工程中具有广泛的用途。
常见的水凝胶有聚酰胺水凝胶、聚乙烯醇水凝胶、聚N-异丙基丙烯酰胺温敏性水凝胶等。
本课题主要针对于PV A水凝胶。
1 PV A水凝胶的制备PV A水凝胶的制备按照交联的方法可分为化学交联和物理交联。
化学交联又分辐射交联和化学试剂交联两大类。
辐射交联主要利用电子束、γ射线、紫外线等直接辐射PV A溶液,使得PV A分子问通过产生自由基而交联在一起。
化学试剂交联则是采用化学交联剂使得PV A分子间发生化学交联而形成凝胶,常用的交联剂有醛类、硼酸、环氧氯丙烷以及可以与PV A通过配位络台形成凝胶的重金属盐等等。
物理交联主要是反复冷冻解冻法。
1.1 物理交联法通过物理交联法制备聚乙烯醇水凝胶,报道中最多的是使用“冷冻-熔融法”和“冻结-部分脱水法”两种方法。
反复冻融法是将一定浓度的PV A水溶液在-10~-40℃冷冻1d左右,再在25℃条件下解冻1~3h,即形成物理交联的PV A水凝胶。
将其反复冷冻、解冻几次后,就可以使其一些物理性能和机械性能等有很大的改善。
冷冻使水溶液中的PV A的分子链在某一时刻的运动状态“冻结”下来,接触着的分子链可以发生相互作用及链缠结,通过范德华力和氢键等的物理作用紧密结合,在某一微区不在分开,成为“缠结点”。
水凝胶应用现状及研究进展作者:杨家杰来源:《西部论丛》2018年第12期摘要:水凝胶(Hydrogel)是以水为分散介质的凝胶。
具有网状交联结构的水溶性高分子中引入一部分疏水基团和亲水残基,亲水残基与水分子结合,将水分子连接在网状内部,而疏水残基遇水膨胀的交联聚合物。
是一种高分子网络体系,性质柔软,能保持一定的形状,能吸收大量的水。
本文主要叙述了水凝胶的研究历史、形成原理、分类、制法,简要介绍了其应用现状,并对展望其研究进展。
关键词:水凝胶高分子材料研究应用一、研究历史1、美国约翰·霍普金斯大学医学院报告称,他们开发出一种新型水凝胶生物材料,在软骨修复手术中将其注入骨骼小洞,能帮助刺激病人骨髓产生干细胞,长出新的软骨。
在临床试验中,新生软骨覆盖率达到86%,术后疼痛也大大减轻。
论文发表在2013年1月9日出版的《科学·转化医学》上。
2、埃里希还说,研究小组正在开发下一代移植材料,水凝胶和黏合剂就是其中之一,二者将被整合为一种材料。
此外,她们还在研究关节润滑和减少发炎的技术。
3、加拿大最新的研究显示,水凝胶(Hydrogel)不仅有利于干细胞(Stem cell)移植,也可加速眼睛与神经损伤的修复。
研究团队指出,像果冻般的水凝胶是干细胞移植的理想介质,可以帮助干细胞在体内存活,修复损伤组织。
4、中国科学院兰州化学物理所研究员周峰课题组利用分子工程,设计制备出一种具有双交联网络的超高强度水凝胶,大大提高了水凝胶的机械性能。
相关研究已发表于《先进材料》。
5、据国外媒体报道,美国加州大学圣迭戈分校的纳米科学工程师日前研发出了一种凝胶,这种凝胶中含有能够吸附细菌毒素的纳米海绵。
这种凝胶有望用于治疗抗药性金黄色葡萄球菌(methicillin-resistant Staphylococcus aureus,MRSA。
这种细菌产生了对所有青霉素的抗药性,常常被称作“超级细菌”)导致的皮肤和伤口上的感染。
高强韧与响应型高分子水凝胶研究进展
作为一种新型的高分子材料,在工业生产中高分子水凝胶逐渐取得了广泛的应用。
高分子水凝胶的结构和性能与生物组织较为类似,它具有较高的安全性和生物相容性,因此被广泛的应用在医药工程、组织工程、创伤修复的领域,发展前景十分乐观。
因此,人们要对于高分子水凝胶进行进一步的改进,研发具有高强韧性能和响应功能的水凝胶。
本文查阅的各种资料,总结了在高分子水凝胶方面的一些重要研究结论,并根据它的合成方法与原理,介绍了几种典型的高分子水凝胶增强强韧性和响应性的方法,对于解决关键的科学问题有一定的帮助作用。
标签:高强韧性;高响应型;高分子水凝胶;组织工程
0 引言
高分子水凝胶是现阶段被广泛应用的一种高分子材料,具有强韧性和高响应性。
从结构上来看,高分子水凝胶是含有大量水的三维聚合物网络,与生物组织类似,也是一种科学家现阶段重要研究的生物材料。
它的响应原理是基于阴阳离子和两性离子单体的智能响应。
高分子水凝胶的含水量以及其独特的生物相容特征使得其得到了很大程度的发展以及大范围的应用。
与传统的水凝胶相比高分子水凝胶改善了结构不稳定的缺点,同时,避免了化学交联剂分散不均导致的易破碎情况出现。
目前高分子水凝胶是水凝胶中应用最广泛的。
1 高分子水凝胶的设计思路
在当前对于高分子水凝胶的设计过程中,主要有以下几种思路:(1)通过有效改善交联点就可以有效降低由此导致的结构网的破损程度。
(2)在水凝胶的结构中引入牺牲键,通过这个价键的锻炼来吸收能量,从而提高凝胶的强韧性。
(3)纳米颗粒通过物理和化学变化承担巨型交联点的责任作用就可以使得聚合物呈现出三维网络状态。
(4)价键和超分子的非价键作用和自我组装可以形成高分子网络,也就是能够形成高分子水凝胶。
这些年来,科学家将这些想法汇合,进行不断的研究,来研发新型的高分子水凝胶材料,取得了一定的进展。
2 高分子水凝胶研究中存在的问题
(1)不论是人工合成的高分子水凝胶还是利用天然材料得到的高分子水凝胶,都很难达到生物组织原本的精巧的结构,在本质上与其有较大的差别,因此水凝胶的物理性能与生物功能很难达到生物组织的要求,因此在一定程度上限制了凝胶材料的应用。
(2)虽然高分子水凝胶已经在一定程度上改善了传统水凝胶的缺点更将安全性能和生物相容性集于一身,但是仍需要通过对高分子水凝胶进行与时俱进的探索和改进才能不断的满足使用的要求。
但是其中有一个重要的问题,高分子水
凝胶由于是人工合成所以其中含有的化学物质较多,导致一部分高分子水凝胶存在毒性,因此如何改善人工合成高分子水凝胶的技术,使其具有高生物安全性是目前科学家们研究的重点。
(3)大部分的高性能高分子水凝胶融水性十分强,导致高分子水凝胶不容易与其他组织亲和,所以如何有效改善高分子水凝胶的这一特性使之可以调节自身的含水量,选择性地来进行诱导细胞的贴附、生长、分化等过程,也是研究中的一个重点。
3 高强韧性与响应型高分子水凝胶的制作
(1)纳米颗粒对于高分子的强韧性有很强的促进作用。
其中,纳米颗粒在高分子机体中的分散与它的相互作用有很重要的联系。
对于不同的领域,高分子水凝胶对纳米的要求不同,所以,运用纳米时应进行物理吸附,从而散发能量从而提高高分子凝胶的强韧性。
(2)进行双网络水凝胶结构的构建,半互穿或者互穿网络构成的高分子水凝胶的强韧度要明显的优于单网络结构的水凝胶,在双网水凝胶结构中一个高度舒展而另一个处于疏松状态就使得高分子水凝胶具有柔韧性。
这样的结构组织更具有稳定性,不仅能够回避单网络结构存在的问题同时也更加适应现阶段的发展需求。
4 结论
综上所述,我们可以看出当前高分子水凝胶对科研领域研究具有重要的意义。
通过调整各种价键的相互作用,从分子水平或更加微观的水平来构建具有多级结构的亲水网络。
特别是利用非共价作用,来消耗能源,从而提高高分子水凝胶的强韧性。
同时,高分子水凝胶也应该能及時应对突发问题,可以及时有效的进行自我修复。
应该不断地对高分子水凝胶结构进行调整,逐渐改善存在的各种问题让结构和性能达到最佳状态。
与此同时也要注重生物安全性,高分子水凝胶的不断发展会推动该研究领域的积极健康发展。
参考文献:
[1]刘水莲,周洋,陈福花,朱寿进,宿烽,李速明.新型羧甲基壳聚糖水凝胶流变性能,药物释放及细胞相容性研究[J].化学学报,2015,73(01):47-52.
[2]李亚婧,孙晓锋,叶青,刘柏辰,吴耀国.新型半纤维素基磁性水凝胶的制备及性能[J].物理化学学报,2014,30(01):111-120.
[3]高春梅,柳明珠,吕少瑜,陈晨,黄银娟,陈远谋.海藻酸钠水凝胶的制备及其在药物释放中的应用[J].化学进展,2013,25(06):1.
作者简介:康欢欢(1989-),女,河南郑州人,硕士,助理讲师,主要从事
化工方面课程教授。