人教版九年级数学上册25.1.2概率摸球实验公开课优质教案
- 格式:doc
- 大小:110.51 KB
- 文档页数:3
人教版数学九年级上册25.1.2《概率》教学设计一. 教材分析人教版数学九年级上册第25.1.2节《概率》是学生在学习了统计学基础知识之后,进一步了解和掌握概率学的基本概念和简单计算方法。
本节内容主要包括概率的定义、条件概率以及独立事件的概率计算。
通过本节课的学习,学生能够理解概率的概念,掌握利用树状图和列表法求解概率的方法,为后续深入学习概率论打下基础。
二. 学情分析学生在学习本节内容之前,已经掌握了统计学的一些基本知识,如平均数、中位数、众数等。
在思维方式上,学生已经具备了一定的逻辑分析能力和抽象概括能力。
但概率概念较为抽象,学生理解起来可能存在一定的困难。
因此,在教学过程中,教师需要运用生动具体的实例,帮助学生直观地理解概率的概念,引导学生运用已有的知识解决新问题。
三. 教学目标1.知识与技能:使学生理解概率的概念,掌握利用树状图和列表法求解概率的方法。
2.过程与方法:通过实例分析,培养学生运用概率知识解决实际问题的能力。
3.情感态度与价值观:激发学生学习概率的兴趣,培养学生的合作交流意识。
四. 教学重难点1.重点:概率的定义,条件概率,独立事件的概率计算。
2.难点:概率公式的灵活运用,解决实际问题。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解概率的概念。
2.合作学习法:分组讨论,培养学生团队合作精神。
3.问题驱动法:设置问题,激发学生思考,引导学生主动探究。
六. 教学准备1.教学素材:准备与概率相关的实例,如抽奖、投篮等。
2.教学工具:多媒体课件,黑板,粉笔。
3.学生活动:提前分组,准备进行合作学习。
七. 教学过程1.导入(5分钟)教师通过一个简单的抽奖实例,引导学生思考:如何计算抽中一等奖的概率?从而引出本节课的主题——概率。
2.呈现(10分钟)教师讲解概率的定义,通过PPT展示概率的符号表示方法,如P(A)、P(B)等。
同时,介绍条件概率和独立事件的概率计算方法,并用具体的例子进行说明。
25.1.2 概率一、教学目标1.理解一个事件概率的意义.2.会在具体情境中求出一个事件的概率.3.会进行简单的概率计算及应用.二、课时安排1课时三、教学重点会在具体情境中求出一个事件的概率.四、教学难点会进行简单的概率计算及应用.五、教学过程(一)导入新课1.什么是必然事件,不可能事件和随机事件?2.下列事件是必然事件,不可能事件还是随机事件?(1)北京市举办2022年冬季奥运会.(2)篮球明星Stephen·Curry投10次篮,次次命中.(3)打开电视正在播恒大夺冠的比赛.(4)一个正方形的内角和为361度.(二)讲授新课探究1: 概率的定义及适用对象思考在同样条件下,随机事件可能发生,也可能不发生,那么它发生的可能性有多大呢?能否用数值进行刻画呢?活动1 从分别有数字1,2,3,4,5的五个纸团中随机抽取一个,这个纸团里的数字有5种可能,即1,2,3,4,5.因为纸团看上去完全一样,又是随机抽取,所以每个数字被抽取的可能性大小相等,所以我们可以用15表示每一个数字被抽到的可能性大小.活动2 掷一枚骰子,向上一面的点数有6种可能,即1,2,3,4,5,6.因为骰子形状规则、质地均匀,又是随机掷出,所以每种点数出现的可能性大小相等.我们用16表示每一种点数出现的可能性大小.探究2:概率的定义数值15和16刻画了实验中相应随机事件发生的可能性大小.一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A 发生的概率,记为P(A).1.试验具有两个共同特征:(1)每一次试验中,可能出现的结果只有有限个;(2)每一次试验中,各种结果出现的可能性相等.具有这些特点的试验称为古典概率.在这些试验中出现的事件为等可能事件.具有上述特点的实验,我们可以用事件所包含的各种可能的结果数在全部可能的结果数中所占的比,来表示事件发生的概率.探究3:概率计算公式一般地,如果在一次实验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包括其中的m种结果,那么事件A发生的概率()mP An活动2:探究归纳事件发生的可能性越大,它的概率越接近1;反之,事件发生的可能性越小,它的概率越接近0.(三)重难点精讲例1 掷一个骰子,观察向上的一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2小于5.解:(1)点数为2有1种可能,因此P(点数为2)=16;(2)点数为奇数有3种可能,即点数为1,3,5,因此P(点数为奇数)=12;(3)点数大于2且小于5有2种可能,即点数为3,4,因此P(点数大于2且小于5)= 13.例2 如图所示是一个转盘,转盘分成7个相同的扇形,颜色分为红黄绿三种,指针固定,转动转盘后任其自由停止,某个扇形会停在指针所指的位置,(指针指向交线时当作指向右边的扇形)求下列事件的概率.(1)指向红色;(2)指向红色或黄色;(3)不指向红色.解:一共有7种等可能的结果.(1)指向红色有3种结果,P(指向红色)=__ 37 _;(2)指向红色或黄色一共有5种等可能的结果,P( 指向红或黄)=__57__;(3)不指向红色有4种等可能的结果P( 不指向红色)= _47 _.例3、如图是计算机中“扫雷”游戏的画面.在一个有9×9的方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能藏1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出现如图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B区域.数字3表示在A区域有3颗地雷.下一步应该点击A区域还是B区域?分析 下一步应该怎样走取决于点击哪部分遇到地雷的概率小,只要分别计算点击两区域内的任一方格遇到地雷的概率并加以比较就可以了.解:A 区域的方格总共有8个,标号3表示在这8个方格中有3个方格各藏有1颗地雷.因此,点击A 区域的任一方格,遇到地雷的概率是38; B 区域方格数为9×9-9=72.其中有地雷的方格数为10-3=7.因此,点击B 区域的任一方格,遇到地雷的概率是772 ; 由于38> 772,即点击A 区域遇到地雷的可能性大于点击B 区域遇到地雷的可能性,因而第二步应该点击B 区域.(四)归纳小结用P(A)=n m 计算概率的步骤: 1.列举出一次试验出现的所有等可能的结果(即求出 ). 2.找出要研究的事件中包括哪些事件(即求出 ). 3. 用P(A)= 计算出所求事件的概率.(五)随堂检测1. 1.从1、2、3、4、5、6、7、8、9、10这十个数中随机取出一个数,取出的数是3的倍数的概率是( ) A. 15 B. 310 C. 13 D. 122.话说唐僧师徒越过石砣岭,吃完午饭后,三徒弟商量着今天由谁来刷碗,可半天也没个好主意.还是悟空聪明,他灵机一动,扒根猴毛一吹,变成一粒骰子,对八戒说道:我们三人来掷骰子:如果掷到2的倍数就由八戒来刷碗;如果掷到3就由沙僧来刷碗;如果掷到7的倍数就由我来刷碗;徒弟三人洗碗的概率分别是多少!3.如图,能自由转动的转盘中, A 、B 、C 、D 四个扇形的圆心角的度数分别为180°、 30 °、 60 °、 90 °,转动转盘,当转盘停止时, 指针指向B 的概率是_____,指向C 或D 的概率是_____.【答案】1.B2. 1(=2P 八戒刷碗);1(=6P 沙僧刷碗);(=0P 悟空刷碗) 3. 512;112六.板书设计 25.1.2随机事件与概率用P(A)= nm 计算概率的步骤: 1.列举出一次试验出现的所有等可能的结果(即求出 ).2.找出要研究的事件中包括哪些事件(即求出 ).3.用P(A)= 计算出所求事件的概率.例题1: 例题2: 例题3:七、作业布置课本P133练习1、2、3练习册相关练习八、教学反思。
概率【知识与技能】1.了解什么是概率,认识概率是反映随机事件发生可能性大小的量.2.了解频率可以看作为事件发生概率的估计值,了解必然事件和不可能事件的概率.3.理解概率反映可能性大小的一般规律.【过程与方法】通过试验得出和理解概率的意义,正确鉴别有限等可能性事件,了解简单事件发生概率的计算方法.【情感态度】通过分析探究简单随机事件的概率,培养学生良好的动脑习惯,提高运用数学知识解决实际问题的意识,激发学习兴趣,体验数学的应用价值.【教学重点】1.正确理解有限等可能性.2.用概率定义求简单随机事件的概率.【教学难点】正确理解有限等可能性,准确计算随机事件的概率.一、情境导入,初步认识请同学讲“守株待兔”的故事.问:(1)这是个什么事件?(2)这个事件发生的可能性有多大?引入课题.【教学说明】通过熟悉的故事激起学生的学习兴趣,同时结合上节课所学,思考如何衡量一个随机事件发生的可能性的大小,从而引出课题.二、思考探究,获取新知探究试验1:从分别标有1、2、3、4、5号的5根纸签中随机地抽取一根,回答下列问题:①抽出的号码有多少种情况?②抽到1的可能性与抽到2的可能性一样吗?它们的可能性是多少呢?【讨论结果】①抽出的号码有1、2、3、4、5等5种可能的结果.②由于纸签的形状、大小相同,又是随机抽取的,所以每个号码被抽到的可能性大小相等,抽到一个号码即5种等可能的结果之一发生,于是:1/5就表示每一个号码被抽到的可能性的大小.【教学说明】通过本试验,帮助学生理解、体会在一次试验中,可能出现的结果为有限多个,并且每种结果发生的可能性相同.试验2:投一枚骰子,向上一面的点数有多少种可能?向上一面的点数是1或3的可能性一样吗?是多少呢?【教学说明】学生通过试验,交流得出结论,感知在这个过程中,每种结果的可能性,在一次试验中,可能结果只有有限种.思考(1)概率是从数量上刻画一个随机事件发生的可能性的大小,根据上述两个试验分析讨论,你能给概率下定义吗?(2)以上两个试验有什么共同特征?【讨论结果】(1)一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值称为随机事件A发生的概率,记作:P(A).(2)以上两个试验有两个共同特征:①一次试验中,可能出现的结果有有限多个.②一次试验中,各种结果发生的可能性相等.【教学说明】对于具有上述特点的试验,我们常从事件所包含的各种可能的结果在全部可能的试验结果中所占的比分析出事件的概率.问:(1)根据上面的理解,你认为问题2中向上的一面为偶数的概率是多少?(2)像上述试验,可列举的有限等可能事件的概率,可以怎样表达事件的概率?【讨论结果】(1)“向上一面为偶数”这个事件包括2、4、6三种可能结果,在全部6种可能的结果中所占的比为3/6=1/2.∴P(向上一面为偶数)=1/2.(2)一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=m/n.问:(3)请同学们思考P(A)的取值范围是多少?分析:∵m≥0,n>0,∴0≤m≤n,∴0≤mn≤1,即0≤P(A)≤1.问:(4)P(A)=1,P(A)=0各表示什么事件呢?【讨论结果】当A为必然事件时,P(A)=1.当A为不可能事件时,P(A)=0.由此可知:事件发生的可能性越大,它的概率越接近于1;反之,事件发生的可能性越小,它的概率越接近于0,如下图:三、典例精析,掌握新知例1掷一个骰子,观察向上一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2且小于5.分析:(1)掷一个质地均匀的骰子,向上一面的点数共有几种情况?(2)点数为2时有几种可能?点数为奇数有几种可能?点数大于2且小于5有几种可能呢?【教学说明】例1是教材的例1,以此规范简单事件的概率求值的一般步骤,并在运用中进一步体会概率的意义.教师板书完整的解题过程.例2如图所示是一个转盘,转盘分成7个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作向右的扇形).求下列事件的概率:(1)指针指向红色;(2)指针指向红色或黄色;(3)指针不指向红色.分析:①指针停止后所指向的位置是否是有限等可能性事件?为什么?②指针指向红色有几种可能?③指针指向红色或黄色是什么意思?④指针不指向红色等价于什么说法?【教学说明】教师引导学生分析问题,学生通过对问题的思考和交流,写出完整的解题过程,这个转盘问题,实际上是几何概率的模型,是通过面积的大小关系来刻画概率的.例3 教材第133页例3.分析:第二步怎样走取决于踩在哪部分遇到地雷可能性的大小,因此,问题的关键是分别计算在两个区域的任何一个方格内踩中地雷的概率并比较大小就可以了.问1:若例3中,小王在游戏开始时踩中的第一个格上出现了标号1,则下一步踩在哪一区域比较安全?答案:一样,每个区域遇雷的概率都是1/8.问2:谁能重新设计,通过改换雷的总数,使得下一步踩在A区域合适?并计算说明. 这是开放性问题,答案不唯一,仅举一例供参考:把雷的总数由10颗改为31颗,则:A区域的方格共有8个,标号3表示在这8个方格中有3个方格各有1颗地雷,因此踩A 区域遇雷概率是:3/8B区域中共有:9×9-8-1=72(个)小方格,其中有31-3=28(个)方格内各藏有1颗地雷,因此踩B区域的任一方格遇到地雷的概率是:28 72而328872,∴踩A区域遇雷的可能性小于踩B区域遇雷的可能性.【教学说明】这个问题对于有游戏经验的同学来说容易理解题意,若是没有经验就不是很容易理解的,教师要引导学生理解题意,进而分析问题.对于第二步应怎样走关键只要分别计算两个区域内遇雷的概率,这是学生解决这一问题的关键所在.当学生完成问题后,顺势提出后面的2个问题,从正、反两方面对题目进行变式练习.四、运用新知,深化理解1.“从一布袋中随机摸出一球恰是黑球的概率为1/3”的意思是()A.摸球三次就一定有一次摸到黑球B.摸球三次就一定有两次不能摸到黑球C.如果摸球次数很多,那么平均每摸球三次就有一次摸到黑球D.布袋中有一个黑球和两个别的颜色的球2.某班共有41名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是()A.0B.1/41C.2/41D.13.要在一只口袋中装入若干个形状与大小都完全相同的球,使得从袋中摸到红球的概率为1/5,四位同学分别采用了下列装法,你认为他们中装错的是()A.口袋中装入10个小球,其中只有两个是红球B.装入1个红球,1个白球,1个黄球,1个蓝球,1个黑球C.装入红球5个,白球13个,黑球2个D.装入红球7个,白球13个,黑球2个,黄球13个4.从一副未曾启封的扑克牌中取出1张红桃,2张黑桃的牌共3张,洗匀后,从这3张牌中任取1张牌,恰好是黑桃的概率是()A.1/2B.1/3C.2/3D.15.在四张完全相同的卡片上,分别画上圆、矩形、等边三角形、等腰梯形,现从中随机抽取1张,是中心对称图形的概率是______.6.下列事件的概率,哪些能作为等可能性事件的概率求?哪些不能?(1)抛掷一枚图钉,钉尖朝上.(2)随意地抛一枚硬币,背面向上与正面向上.7.摸彩券100张,分别标有1,2,3,……100的号码,只有摸中的号码是7的倍数的彩券才有奖,小明随机地摸出一张,那么他中奖的概率是多少?8.从一副扑克牌中找出所有红桃的牌共13张,从这13张牌中任意抽取一张,求下列事件的概率.(1)抽到红桃5;(2)抽到花牌J、Q、K中的一张;(3)若规定花牌点为0.5,其余牌按数字记点,抽到点数大于5的可能性有多大?【教学说明】上述练习一方面从正反对照的角度深化了对有限等可能的理解,进一步明确了古典概型的使用条件;另一方面还能帮助学生熟练掌握有限等可能的随机事件概率的计算方法,教师应先让学生自主完成,再进行评讲.【答案】1.C2.C【解析】所有可能结果数是41,而每个学生被提问的可能性相等,其中有2个学生是习惯用左手写字,故习惯用左手写字的同学被选中的概率为2/41.3.C4.C5.1/2【解析】圆、矩形是中心对称图形,所以P(中心对称图形)=2/4=1/2.6.(1)不能(2)能7.7/50(提示:本题的关键是找公式P(A)=m/n中的m:从7的1倍到7的14倍,一共14个数.)8.(1)因为13张牌中只有一张红桃5,故抽到红桃5的概率为1/13;(2)13张牌中有1张J、1张Q、1张K,共3张花牌,故抽到一张花牌的概率为3/13;(3)13张牌中点数大于5的牌共有6、7、8、9、10共5张,故抽到点数大于5的牌的概率为5/13. 五、师生互动,课堂小结本堂课你学到了哪些概率知识?你有什么疑问和困惑?1.布置作业,从教材“习题25.1”中选取.2.完成创优作业中本课时练习的“课时作业”部分.1.通过抽签,用学生喜欢的扑克牌和掷骰子试验导入新课,吸引学生迅速进入状态,让学生充分认识概率的意义;由学生自主探索、合作交流此类型概率的求法,利用学生掌握本节课的知识,学生在解决问题的过程中,发展了思维能力,增强思维的缜密性,并且培养了学生解决问题的信心.2.在概率的古典定义基础上,教科书给出了概率的取值范围为0-1的性质,事件发生的可能性越大,它的概率越接近1,其中必然事件的概率为1,不可能事件的概率为0,两个确定事件可以看作特殊的随机事件.学生在学习例2时,应注意三种颜色并非三种可能。
2512 概率教学目标〈一〉知识与技能1知道通过大量重复试验时的频率可以作为事件发生概率的估计值2在具体情境中了解概率的意义〈二〉教学思考让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型初步理解频率与概率的关系〈三〉解决问题在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念〈四〉情感态度与价值观在合作探究学习过程中,激发学生学习的好奇心与求知欲体验数学的价值与学习的乐趣通过概率意义教学,渗透辩证思想教育【教学重点】在具体情境中了解概率意义【教学难点】对频率与概率关系的初步理解【教具准备】壹元硬币数枚、图钉数枚、多媒体课件【教学过程】一、创设情境,引出问题教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去我很为难,真不知该把球给谁请大家帮我想个办法决定把球票给谁学生:抓阄、抽签、猜拳、投硬币,……教师对同学的较好想法予以肯定(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法如抓阄、投硬币)追问,为什么要用抓阄、投硬币的方法呢?由学生讨论:这样做公平能保证小强与小明得到球票的可能性一样大在学生讨论发言后,教师评价归纳用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大质疑:那么,这种直觉是否真的是正确的呢?引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验验证一下说明:现实中不确定现象是大量存在的,新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础二、动手实践,合作探究1.教师布置试验任务(1)明确规则把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行(2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上”的频数及“正面朝上”的频率,整理试验的数据并记录下2.教师巡视学生分组试验情况注意:(1).观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难(2).要求真实记录试验情况对于合作学习中有可能产生的纪律问题予以调控3各组汇报实验结果由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入提出问题:是不是我们的猜想出了问题?引导学生分析讨论产生差异的原因在学生充分讨论的基础上,启发学生分析讨论产生差异的原因使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性,引导他们小组合作,进一步探究解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作4.全班交流把各组测得数据一一汇报,教师将各组数据记录在黑板上全班同学对数据进行累计,按照书上P140要求填好25-2并根据所整理的数据,在251-1图上标注出对应的点完成统计图表25-2n图25.1-1想一想1(投影出示)观察统计表与统计图,你发现“正面向上”的频率有什么规律?注意学生的语言表述情况,意思正确予以肯定与鼓励“正面朝上”的频率在05上下波动想一想2(投影出示)随着抛掷次数增加,“正面向上”的频率变化趋势有何规律?在学生讨论的基础上,教师帮助归纳使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性在试验次数较少时,“正面朝上”的频率起伏较大,而随着试验次数的逐渐增加,一般地,频率会趋于稳定,“正面朝上”的频率越越接近05 这也与我们刚开始的猜想是一致的我们就用05这个常数表示“正面向上”发生的可能性的大小说明:注意帮助解决学生在填写统计表与统计图遇到的困难通过以上实践探究活动,让学生真实地感受到、清楚地观察到试验所体现的规律,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率)鼓励学生在学习中要积极合作交流,思考探究学会倾听别人意见,勇于表达自己的见解为了给学生提供大量的、快捷的试验数据利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高课堂教学效率,使他们能直观地、便捷地观察到试验结果的规律性--大量重复试验中,事件发生的频率逐渐稳定到某个常数附近其实,历史上有许多著名数学家也做过掷硬币的试验让学生阅读历史上数学家做掷币试验的数据统计表(看书P141表25-3)表25-3通过以上学生亲自动手实践电脑辅助演示历史材料展示让学生真实地感受到、清楚地观察到试验所体现的规律,大量重复试验中,事件发生的频率逐渐稳定到某个常数附近即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率)同时又感受到无论试验次数多么大也无法保证事件发生的频率充分地接近事件发生的概率在探究学习过程中应注意评价学生在活动中参与程度、自信心、是否愿意交流等,鼓励学生在学习中不怕困难积极思考,敢于表达自己的观点与感受养成实事求是的科学态度5下面我们能否研究一下“反面向上”的频率情况?学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到05教师归纳:(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半)也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样(2)在实际生活还有许多这样的例子,如在足球比赛中,裁判用掷硬币的办法决定双方的比赛场地等等说明:这个环节,让学生亲身经历了猜想试验——收集数据——分析结果的探索过程,在真实数据的分析中形成数学思考,在讨论交流中达成知识的主动建构,为下一环节概率意义的教学作了很好的铺垫三、评价概括,揭示新知问题1通过以上大量试验,你对频率有什么新的认识?有没有发现频率还有其他作用?学生探究交流发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述通过猜想试验及探究讨论,学生不难有以上认识对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不必过高归纳:以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小那么我们给这样的常数一个名称,引入概率定义给出概率定义(板书):一般地,在大量重复试验中,如果事件A 发生的频率nm会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率(prbability ) 记作P (A )= p注意指出:1.概率是随机事件发生的可能性的大小的数量反映2.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同想一想(学生交流讨论)问题2.频率与概率有什么区别与联系?从定义可以得到二者的联系 可用大量重复试验中事件发生频率估计事件发生的概率另一方面大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值而频率随不同试验次数而有所不同是概率的近似值二者不能简单地等同说明:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破为下节课进一步研究概率和今后的学习打下了基础 当然,学生随机观念的养成是循序渐进的、长期的这节课教学应把握教学难度,注意关注学生接受情况四.练习巩固,发展提高 学生练习1.书上P143练习1 巩固用频率估计概率的方法 2.书上P143练习2 巩固对概率意义的理解教师应当关注学生对知识掌握情况,帮助学生解决遇到的问题五.归纳总结,交流收获:1.学生互相交流这节课的体会与收获,教师可将学生的总结与板书串一起,使学生对知识掌握条理化、系统化2.在学生交流总结时,还应注意总结评价这节课所经历的探索过程,体会到的数学价值与合作交流学习的意义【作业设计】(1)完成P144 习题251 2、4(2)课外活动分小组活动,用试验方法获得图钉从一定高度落下后钉尖着地的概率【教学设计说明】这节课是在学习了2511节随机事件的基础上学习的,学生通过大量重复试验,体验用事件发生的频率去刻画事件发生的可能性大小,从而得到概率的定义1.对概率意义的正确理解,是建立在学生通过大量重复试验后,发现事件发生的频率可以刻画随机事件发生可能性的基础上结合学生认知规律与教材特点,这节课以用掷硬币方法分配球票为问题情境,引导学生亲身经历猜测试验—收集数据—分析结果的探索过程这符合《新课标》“从学生已有生活经验出发,让学生亲身经历将实际问题抽象为数学模型并进行解释与应用的过程”的理念贴近生活现实的问题情境,不仅易于激发学生的求知欲与探索热情,而且会促进他们面对要解决的问题大胆猜想,主动试验,收集数据,分析结果,为寻求问题解决主动与他人交流合作在知识的主动建构过程中,促进了教学目标的有效达成更重要的是,主动参与数学活动的经历会使他们终身受益2.随机现象是现实世界中普遍存在的,概率的教学的一个很重要的目标就是培养学生的随机观念为了实现这一目标,教学设计中让学生亲身经历对随机事件的探索过程,通过与他人合作探究,使学生自我主动修正错误经验,揭示频率与概率的关系,从而逐步建立正确的随机观念,也为以后进一步学习概率有关知识打下基础3.在教学中,本课力求向学生提供从事数学活动的时间与空间,为学生的自主探索与同伴的合作交流提供保障,从而促进学生学习方式的转变,使之获得广泛的数学活动经验教师在学习活动中是组织者、引导者与合作者,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,给学生以适时的引导与鼓励。
25.1.2概率教学目标:1.知识与技能目标:(1)在具体情境问题中了解概率的意义;(2)能用符号表示事件发生的概率;(3)会进行简单的概率计算.2.过程与方法目标:经历动手实验、合作游戏、分析实验结果的过程体会不确定事件的随机特性.3.情感、态度与价值观目标:通过主动探究,合作交流,增强合作意识和团队精神,感受学习数学的乐趣,发展“用数学”的意识.教学重点:在具体情境中体会概率的意义,能对一类事件发生的概率进行计算.教学难点:正确进行一类事件发生概率的计算.教法学法:教法设计: “先学后教-合作探究-当堂达标”式教学.学法设计:本堂课立足于学生的“学”,利用数学活动,使学生真正成为教学的主体,体会参与的乐趣,感知数学课堂的美妙.教学程序:一、回顾复习,做好铺垫从具体问题中复习什么是必然事件、不可能事件和不确定事件,三类事件的可能性和图示法表示三类事件的可能性。
二、创设情境,导入新课首先教师拿出一个盒子,里面放着形状大小完全相同的三个红球和一个白球,展示课件,提出问题:“摸到红球和白球的概率分别是多少?”引发学生的思考.以此为契机,点出求一类不确定事件发生的可能性大小正是本节课要解决的问题,从而引出课题――摸到红球的概率.三、动手实验,探索新知 展示摸球实验:(鼓励学生大胆猜想“摸到红球”的可能性是多少.其次组织学生分组进行摸球试验.在活动时教师深入其中,并对学生表现的积极性以及与他人合作的意识给予及时的评价.)若盒子里有3个红球、1个白球,它们除颜色外完全相同,从盒中任意摸出一球.1.在这个问题中,摸到红球和白球的可能性分别是多少?2. 为什么实验的结果和同学所说的结论相差很大?怎么用实验的方法验证同学的结论? 以小组为单位,每组摸球共20次,并统计好摸到红球的次数.活动后教师使用程序和学生共同收集实验的数据,并利用计算机强大的功能对学生们亲手得到的数据进行处理,让学生真实的感知刚才的猜想是否合理,为下面的理论分析奠定基础. 引导学生自主探索,得出摸到红球的可能性也即概率是43,并明确43中分子、分母的含义,引出概率的定义:人们通常用P (摸到红球)= 来表示摸到红球的可能性,也叫做摸到红球的概率(pro bability ).概率用英文(probability )的第一个字母P 来表示.并总结三类事件发生的概率及表示。
人教版义务教育课程标准实验教科书九年级上册
25.1.2 概率教学设计
一、教材分析
1、地位作用:概率是新人教版九年级数学上册25.1.2第一课时的内容,主要内容是概率的意义并计算一些简单随机事件的概率.本教材是在学生已经学习了随机事件概念以及定性判断随机事件发生的可能性大小的基础上,给出了从定量的角度去刻画随机事件发生可能性大小的概念——概率,并求一些简单随机事件的概率.
2、目标和目标解析:
(1)、目标:概率的意义并计算一些简单随机事件的概率.
(2)、目标解析:达成目标的标志是通过在具体情境中了解概率的意义;让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系;在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.
3、教学重、难点
教学重点:在具体情境中了解概率意义
教学难点:计算一些简单随机事件的概率
突破难点的方法:通过相关旧知的复习,按照猜想、推理的思维过程进行突破。
二、教学准备:多媒体课件、导学案、硬币数枚。
三、教学过程。
25.1.2概率一、教学内容:人民教育出版社九年级上册数学第二十五章概率初步第二节概率.二、教学目标:1、知识与技能:(1)、理解随机事件发生的概率的概念.(2)、会根据概率的定义求事件发生的概率.2、过程与方法:经历概率概念的形成过程及概率公式的探究过程培养学生分析问题的能力;3、情感态度价值观:经历解决实际问题的过程,,认识数学与现实世界是密不可分的.三、教学重点:概率概念的形成过程及理解.四、教学难点:概率概念的理解.五、教学用具:多媒体教学六、教学方法:启发引导式、讲授法、练习法.七、教学过程:(一)、复习引入:1、复习:下列事件中哪些事件是随机事件?哪些事件是必然事件?哪些是不可能事件?(1)抛出的铅球会下落(2)某运动员百米赛跑的成绩为2秒(3)买到的电影票,座位号为单号(4)x2+1是正数(5)投掷硬币时,国徽朝上【设计意图】复习回顾确定性事件和随机事件,能够区分各种事件.2、随机事件发生的可能性究竟有多大?能否用数值刻画可能性的大小呢?【设计意图】提出问题,激发学生的学习兴趣,引入新课. (二)、学习新课:1、问题1:抛掷一个质地均匀的骰子(1)、它落地时向上的点数有几种可能的结果?(2)、各点数出现的可能性会相等吗?(3)、试猜想:你能用一个数值来说明各点数出现的可能性大小吗?问题2:从分别标有1,2,3,4,5的5根纸签中随机抽取一根(1)抽取的结果会出现几种可能?(2)每根纸签抽到的可能性会相等吗?(3)试猜想:你能用一个数值来说明每根纸签被抽到的可能性大小吗?2、概率的定义:一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记作P(A).3、回忆刚才两个试验,它们有什么共同特点吗?可以发现,以上试验有两个共同特点:(1)每一次试验中,可能出现的结果只有有限个;(2)每一次试验中,各种结果出现的可能性相等.在这些试验中出现的事件为等可能事件.4、问题2:从分别标有1,2,3,4,5的5根纸签中随机抽取一根(4)你能用一个数值来说明抽到标有1的可能性大小吗?“抽到1号”这个事件包含___种可能的结果,在全部__种可能的结果中所占的比为___,于是这个事件的概率为____________(5)你能用一个数值来说明抽到标有偶数号的可能性大小吗?“抽到偶数号”这个事件包含抽到___和___这___种可能的结果,在全部__种可能的结果中所占的比为___,于是这个事件的概率为____.5、等可能事件概率的求法一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率 P(A)=______【设计意图】通过一系列的问题引出概率的定义及公式.6、例1:例1:掷一个骰子,观察向上的一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2且小于5。
25.1.2概率
教学目标:
1.知识与技能目标:
(1)在具体情境问题中了解概率的意义;
(2)能用符号表示事件发生的概率;
(3)会进行简单的概率计算.
2.过程与方法目标:
经历动手实验、合作游戏、分析实验结果的过程体会不确定事件的随机特性.
3.情感、态度与价值观目标:
通过主动探究,合作交流,增强合作意识和团队精神,感受学习数学的乐趣,发展“用数学”的意识. 教学重点:
在具体情境中体会概率的意义,能对一类事件发生的概率进行计算.
教学难点:
正确进行一类事件发生概率的计算.
教法学法:
教法设计:“先学后教-合作探究-当堂达标”式教学.
学法设计:本堂课立足于学生的“学”,利用数学活动,使学生真正成为教学的主体,体会参与的乐趣,感知数学课堂的美妙.
教学程序:
一、回顾复习,做好铺垫
从具体问题中复习什么是必然事件、不可能事件和不确定事件,三类事件的可能性和图示法表示三类事件的可能性。
二、创设情境,导入新课
首先教师拿出一个盒子,里面放着形状大小完全相同的三个红球和一个白球,展示课件,提出问题:“摸到红球和白球的概率分别是多少?”引发学生的思考.以此为契机,点出求一类不确定事件发生的可能性大小正是本节课要解决的问题,从而引出课题――摸到红球的概率.
三、动手实验,探索新知
展示摸球实验:(鼓励学生大胆猜想“摸到红球”的可能性是多少.其次组织学生分组进行摸球试验.在活动时教师深入其中,并对学生表现的积极性以及与他人合作的意识给予及时的评价.)若盒子里有3个红球、1个白球,它们除颜色外完全相同,从盒中任意摸出一球.
1.在这个问题中,摸到红球和白球的可能性分别是多少?
2.为什么实验的结果和同学所说的结论相差很大?怎么用实验的方法验证同学的结论?
以小组为单位,每组摸球共20次,并统计好摸到红球的次数.
活动后教师使用程序和学生共同收集实验的数据,并利用计算机强大的功能对学生们亲手得到的数据进行处理,让学生真实的感知刚才的猜想是否合理,为下面的理论分析奠定基础. 引导学生自主探索,得出摸到红球的可能性也即概率是
43,并明确4
3中分子、分母的含义,引出概率的定义:
人们通常用P (摸到红球)= 来表示摸到红球的可能性,也叫做摸到红球的概率(probability ).概率用英文(probability )的第一个字母P 来表示
.并总结三类事件发生的概率及表示。
(设计意图:让学生经历“动手试验,收集试验数据,分析试验结果”的探索过程,体会不确定事件的随机特性,并在层层递进的问题中理解概率的意义,在积极主动的思维中建构起完整清晰的新知.从而达成本节课的教学目标1和2,并突出了教学重点.)
四、思考问题,小组讨论
为了对前面的新知探索进一步加深印象,课件展示了几个问题和要求给学生分组讨论,加强合作意识。
问题和要求:
1.你能写出摸到白球的概率吗?
2.若把摸球游戏换成4个红球,那么摸到红球、白球的概率分别是多少?
3.袋子里有1个红球,3个白球和5个黄球,每一个球除颜色外都相同,从中任意摸出一个球,则摸到红球、白球、黄球的概率分别是多少?
4.请你用4个除颜色外完全相同的球设计一个摸球游戏使:
(1)摸到白球的概率为2
1,摸到红球的概率为21; (2)摸到白球的概率为21,摸到红球的概率为4
1。
5.你能用8个除颜色外完全相同的球分别设计满足如上条件的游戏吗?
6.甲产品合格率为98%,乙产品的合格率为80% ,你认为买哪一种产品更可靠?
7.在一次抽奖活动中,小彤只抽了一张奖券,就中了一等奖,能不能说这次抽奖活动的中奖率为百分之百?为什么?
(设计意图:培养学生从学习的知识、体验等多方面归纳、概括,同时激发学生互相学习,共同进步。
)
五、学以致用,当堂达标
设计了9道练习题,全班3大组,每组举手竞选3道题竞答,以计分的形式激发学生回答问题的积极性。
1、任意掷一枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6), “6”朝上的概率是多少?
2、在我们班中任意抽取1人做游戏,你被抽到的概率是多少?
3、一批产品有1000个,其中有4个次品,任意取一个,拿到次品的概率是多少?
4、任意翻一下2006年日历,翻出 1月6日的概率为______;翻出4月31日的概率为_____。
翻出2号的43
概率为______。
5、从一副扑克牌(除去大小王)中任抽一张
P (抽到红心) = P (抽到黑桃) =
P (抽到红心3)= P (抽到5)=
6、一个桶里有60个弹珠。
一些是红色的,一些是蓝色的,一些是白色的。
拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%。
桶里每种颜色的弹珠各有多少?
7、小华上衣有3件,其中2件棕色,1件红色,裤子有3条,其中1条白色,2条棕色,他任意拿 1件上衣和1条裤子正好全都是棕色的概率是多少?
8、某旅游胜地上山有A 、B 两条路,下山有C 、D 、E 三条路,某旅游者任选一条上山和下山的路,则选中A 路上山,C 路下山的概率是多少?
9、某种彩票投注的规则如下:
你可以从00~99中任意选取一个整数作为投注号码,中奖号码是00~99之间的一个整数,若你选中号码与中奖号码相同,即可获奖。
请问中奖号码中两个数字相同的机会是多少?
(设计意图:在整堂课中,师生互动、生生互动、合作交流,力求学生始终处于高昂的学习状态中,在浓厚的学习氛围(情感、态度)中探索并掌握知识技能,在探索过程中提高每一位学生的学习能力,进一步优化课堂教学效益.)
四、 回顾小结
通过本节课,你学到了哪些知识?你最大的体验是什么?同学的哪些表现值得你学习?
五、分组布置作业
第一组:掷两枚均匀的骰子(每个面上分别标有1~6六个数字),想一想在它们的和中,哪一个数字出现的概率最大? 第二组:请设计一个概率为3
1的游戏。
第三组:篮猫走进迷宫,迷宫中的每一个门都相同,第一道关口有三个门,只有第三个门有开关,第二道关口有两个门,只有第一个门有开关,蓝猫一次就能走出迷宫的概率是多少?
(设计意图:分层布置,因材施教,反馈教学,巩固提高。
)
附:本节课的板书设计.。