【高考领航】高考数学大一轮复习第十二章几何证明选讲文北师大版
- 格式:doc
- 大小:242.50 KB
- 文档页数:6
1.综合法(1)定义:从命题的条件出发,利用定义、公理、定理及运算法则,通过演绎推理,一步一步地接近要证明的结论,直到完成命题的证明.我们把这样的思维方法称为综合法.(2)框图表示:P⇒Q1→Q1⇒Q2→Q2⇒Q3→…→Q n⇒Q(其中P表示已知条件、已有的定义、公理、定理等,Q表示要证明的结论).2.分析法(1)定义:从求证的结论出发,一步一步地探索保证前一个结论成立的充分条件,直到归结为这个命题的条件,或者归结为定义、公理、定理等.我们把这样的思维方法称为分析法.(2)框图表示:Q⇐P1→P1⇐P2→P2⇐P3→…→得到一个明显成立的条件.3.反证法我们可以先假定命题结论的反面成立,在这个前提下,若推出的结果与定义、公理、定理相矛盾,或与命题中的已知条件相矛盾,或与假定相矛盾,从而说明命题结论的反面不可能成立,由此断定命题的结论成立.这种证明方法叫作反证法.反证法的证题步骤是:(1)作出否定结论的假设;(2)进行推理,导出矛盾;(3)否定假设,肯定结论.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)综合法是直接证明,分析法是间接证明.(×)(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( × )(3)用反证法证明结论“a >b ”时,应假设“a <b ”.( × )(4)反证法是指将结论和条件同时否定,推出矛盾.( × )(5)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( √ )(6)证明不等式2+7<3+6最合适的方法是分析法.( √ )1.若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( )A .ac 2<bc 2B .a 2>ab >b 2 C.1a <1bD.b a >a b答案 B解析 a 2-ab =a (a -b ),∵a <b <0,∴a -b <0,∴a 2-ab >0,∴a 2>ab .①又ab -b 2=b (a -b )>0,∴ab >b 2,②由①②得a 2>ab >b 2.2.用反证法证明命题:“a ,b ∈N ,若ab 不能被5整除,则a 与b 都不能被5整除”时,假设的内容应为( )A .a ,b 都能被5整除B .a ,b 不都能被5整除C .a ,b 至少有一个能被5整除D .a ,b 至多有一个能被5整除答案 C解析 “都不能”的否定为“至少有一个能”,故假设的内容应为“a ,b 至少有一个能被5整除”.3.要证a 2+b 2-1-a 2b 2≤0,只要证明( )A .2ab -1-a 2b 2≤0B .a 2+b 2-1-a 4+b 42≤0 C.(a +b )22-1-a 2b 2≤0 D .(a 2-1)(b 2-1)≥0答案 D解析 a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0.4.如果a a +b b >a b +b a ,则a 、b 应满足的条件是__________________________. 答案 a ≥0,b ≥0且a ≠b解析 ∵a a +b b -(a b +b a ) =a (a -b )+b (b -a )=(a -b )(a -b )=(a -b )2(a +b ).∴当a ≥0,b ≥0且a ≠b 时,(a -b )2(a +b )>0.∴a a +b b >a b +b a 成立的条件是a ≥0,b ≥0且a ≠b .5.(2016·青岛模拟)如果函数f (x )在区间D 上是凸函数,则对于区间D 内的任意x 1,x 2,…,x n ,有f (x 1)+f (x 2)+…+f (x n )n ≤f (x 1+x 2+…+x n n),已知函数y =sin x 在区间(0,π)上是凸函数,则在△ABC 中,sin A +sin B +sin C 的最大值为________.答案 332解析 ∵f (x )=sin x 在区间(0,π)上是凸函数,且A 、B 、C ∈(0,π).∴f (A )+f (B )+f (C )3≤f (A +B +C 3)=f (π3), 即sin A +sin B +sin C ≤3sin π3=332, ∴sin A +sin B +sin C 的最大值为332.题型一 综合法的应用例1 数列{a n }满足a n +1=a n 2a n +1,a 1=1. (1)证明:数列{1a n}是等差数列; (2)求数列{1a n }的前n 项和S n ,并证明1S 1+1S 2+…+1S n >n n +1. (1)证明 ∵a n +1=a n 2a n +1, ∴1a n +1=2a n +1a n ,化简得1a n +1=2+1a n , 即1a n +1-1a n =2,故数列{1a n }是以1为首项,2为公差的等差数列. (2)解 由(1)知1a n=2n -1, ∴S n =n (1+2n -1)2=n 2. 方法一 1S 1+1S 2+…+1S n =112+122+…+1n 2>11×2+12×3+…+1n (n +1)=(1-12)+(12-13)+…+(1n -1n +1)=1-1n +1=n n +1. 方法二 1S 1+1S 2+…+1S n =112+122+…+1n 2>1, 又∵1>n n +1, ∴1S 1+1S 2+…+1S n >n n +1. 思维升华 (1)综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性.(2)综合法的逻辑依据是三段论式的演绎推理.若a ,b ,c 是不全相等的正数,求证:lg a +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c . 证明 ∵a ,b ,c ∈(0,+∞),∴a +b 2≥ab >0,b +c 2≥bc >0,a +c 2≥ac >0. 由于a ,b ,c 是不全相等的正数,∴上述三个不等式中等号不能同时成立,∴a +b 2·b +c 2·c +a 2>abc >0成立. 上式两边同时取常用对数,得lg(a +b 2·b +c 2·c +a 2)>lg abc , ∴lg a +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c . 题型二 分析法的应用例2 已知函数f (x )=tan x ,x ∈⎝⎛⎭⎫0,π2,若x 1,x 2∈⎝⎛⎭⎫0,π2,且x 1≠x 2,求证:12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22.证明 要证12[f (x 1)+f (x 2)]>f ⎝ ⎛⎭⎪⎫x 1+x 22, 即证明12(tan x 1+tan x 2)>tan x 1+x 22, 只需证明12⎝⎛⎭⎫sin x 1cos x 1+sin x 2cos x 2>tan x 1+x 22, 只需证明sin (x 1+x 2)2cos x 1cos x 2>sin (x 1+x 2)1+cos (x 1+x 2).由于x 1,x 2∈⎝⎛⎭⎫0,π2,故x 1+x 2∈(0,π). 所以cos x 1cos x 2>0,sin(x 1+x 2)>0,1+cos(x 1+x 2)>0,故只需证明1+cos(x 1+x 2)>2cos x 1cos x 2,即证1+cos x 1cos x 2-sin x 1sin x 2>2cos x 1cos x 2,即证cos(x 1-x 2)<1.由x 1,x 2∈⎝⎛⎭⎫0,π2,x 1≠x 2知上式显然成立, 因此12[f (x 1)+f (x 2)]>f ⎝ ⎛⎭⎪⎫x 1+x 22. 引申探究若本例中f (x )变为f (x )=3x-2x ,试证:对于任意的x 1,x 2∈R ,均有f (x 1)+f (x 2)2≥f ⎝ ⎛⎭⎪⎫x 1+x 22. 证明 要证明f (x 1)+f (x 2)2≥f ⎝ ⎛⎭⎪⎫x 1+x 22, 即证明1212(32)(32)2x x x x -+-≥1223x x +-2·x 1+x 22, 因此只要证明12233x x +-(x 1+x 2)≥1223x x +-(x 1+x 2), 即证明,121223233x x x x ++≥因此只要证明12233x x +由于x 1,x 2∈R 时,13x >0,23x >0,由基本不等式知12233x x + 思维升华 (1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.(2016·重庆月考)设a >0,b >0,2c >a +b ,求证:(1)c 2>ab ;(2)c -c 2-ab <a <c +c 2-ab .证明 (1)∵a >0,b >0,2c >a +b ≥2ab ,∴c >ab ,平方得c 2>ab .(2)要证c -c 2-ab <a <c +c 2-ab , 只要证-c 2-ab <a -c <c 2-ab , 即证|a -c |<c 2-ab ,即(a -c )2<c 2-ab .∵(a -c )2-c 2+ab =a (a +b -2c )<0成立,∴原不等式成立.题型三 反证法的应用命题点1 证明否定性命题例3 (2016·西安模拟)设{a n }是公比为q 的等比数列.(1)推导{a n }的前n 项和公式;(2)设q ≠1,证明:数列{a n +1}不是等比数列.(1)解 设{a n }的前n 项和为S n ,当q =1时,S n =a 1+a 1+…+a 1=na 1;当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1q n -1,①qS n =a 1q +a 1q 2+…+a 1q n ,②①-②得,(1-q )S n =a 1-a 1q n ,∴S n =a 1(1-q n )1-q, ∴S n =⎩⎪⎨⎪⎧ na 1,q =1,a 1(1-q n )1-q ,q ≠1.(2)证明假设{a n+1}是等比数列,则对任意的k∈N+,(a k+1+1)2=(a k+1)(a k+2+1),a2k+1+2a k+1+1=a k a k+2+a k+a k+2+1,a21q2k+2a1q k=a1q k-1·a1q k+1+a1q k-1+a1q k+1,∵a1≠0,∴2q k=q k-1+q k+1.∵q≠0,∴q2-2q+1=0,∴q=1,这与已知矛盾.∴假设不成立,故{a n+1}不是等比数列.命题点2证明存在性问题例4已知四棱锥S-ABCD中,底面是边长为1的正方形,又SB=SD=2,SA=1.(1)求证:SA⊥平面ABCD;(2)在棱SC上是否存在异于S,C的点F,使得BF∥平面SAD?若存在,确定F点的位置;若不存在,请说明理由.(1)证明由已知得SA2+AD2=SD2,∴SA⊥AD.同理SA⊥AB.又AB∩AD=A,AB平面ABCD,AD平面ABCD,∴SA⊥平面ABCD.(2)解假设在棱SC上存在异于S,C的点F,使得BF∥平面SAD.∵BC∥AD,BC平面SAD.∴BC∥平面SAD.而BC∩BF=B,∴平面FBC∥平面SAD.这与平面SBC和平面SAD有公共点S矛盾,∴假设不成立.∴不存在这样的点F ,使得BF ∥平面SAD .命题点3 证明唯一性命题例5 已知a ≠0,证明关于x 的方程ax =b 有且只有一个根.证明 由于a ≠0,因此方程至少有一个根x =b a. 假设x 1,x 2是它的两个不同的根,即ax 1=b ,①ax 2=b ,②由①-②得a (x 1-x 2)=0,因为x 1≠x 2,所以x 1-x 2≠0,所以a =0,这与已知矛盾,故假设错误.所以当a ≠0时,方程ax =b 有且只有一个根.思维升华 应用反证法证明数学命题,一般有以下几个步骤:第一步:分清命题“p ⇒q ”的条件和结论;第二步:作出与命题结论q 相反的假设綈q ;第三步:由p 和綈q 出发,应用正确的推理方法,推出矛盾结果;第四步:断定产生矛盾结果的原因在于开始所作的假设綈q 不真,于是原结论q 成立,从而间接地证明了命题p ⇒q 为真.所说的矛盾结果,通常是指推出的结果与已知公理、已知定义、已知定理或已知事实矛盾,与临时假设矛盾以及自相矛盾等都是矛盾结果.已知二次函数f (x )=ax 2+bx +c (a >0)的图像与x 轴有两个不同的交点,若f (c )=0,且0<x <c 时,f (x )>0.(1)证明:1a是函数f (x )的一个零点; (2)试用反证法证明1a>c . 证明 (1)∵f (x )的图像与x 轴有两个不同的交点,∴f (x )=0有两个不等实根x 1,x 2,∵f (c )=0,∴x 1=c 是f (x )=0的根,又x 1x 2=c a ,∴x 2=1a (1a≠c ), ∴1a是f (x )=0的一个根. 即1a是函数f (x )的一个零点. (2)假设1a <c ,又1a>0,由0<x <c 时,f (x )>0, 知f (1a )>0,与f (1a )=0矛盾,∴1a≥c , 又∵1a ≠c ,∴1a>c .23.反证法在证明题中的应用典例 (12分)直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A 、C 两点,O 是坐标原点. (1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.思想方法指导 在证明否定性问题,存在性问题,唯一性问题时常考虑用反证法证明,应用反证法需注意:(1)掌握反证法的证明思路及证题步骤,正确作出假设是反证法的基础,应用假设是反证法的基本手段,得到矛盾是反证法的目的.(2)当证明的结论和条件联系不明显、直接证明不清晰或正面证明分类较多、而反面情况只有一种或较少时,常采用反证法.(3)利用反证法证明时,一定要回到结论上去.规范解答(1)解 因为四边形OABC 为菱形,则AC 与OB 相互垂直平分.由于O (0,0),B (0,1),所以设点A ⎝⎛⎭⎫t ,12,代入椭圆方程得t 24+14=1, 则t =±3,故|AC |=2 3.[4分](2)证明 假设四边形OABC 为菱形,因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0.由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m , 消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0.[6分]设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 2+y 22=k ·x 1+x 22+m =m 1+4k 2. 所以AC 的中点为M ⎝ ⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2.[8分] 因为M 为AC 和OB 的交点,且m ≠0,k ≠0,所以直线OB 的斜率为-14k, 因为k ·⎝⎛⎭⎫-14k =-14≠-1,所以AC 与OB 不垂直.[10分] 所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.[12分]1.(2017·泰安质检)用反证法证明命题“设a ,b 为实数,则方程x 2+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 2+ax +b =0没有实根B .方程x 2+ax +b =0至多有一个实根C .方程x 2+ax +b =0至多有两个实根D .方程x 2+ax +b =0恰好有两个实根答案 A解析 因为“方程x 2+ax +b =0至少有一个实根”等价于“方程x 2+ax +b =0有一个实根或两个实根”,所以该命题的否定是“方程x 2+ax +b =0没有实根”.故选A.2.若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( ) A .(-3,0)B .[-3,0]C .[-3,0)D .(-3,0]答案 D解析 2kx 2+kx -38<0对一切实数x 都成立, 则必有⎩⎪⎨⎪⎧2k <0,Δ=k 2-4×2k ×(-38)<0或k =0. 解得-3<k ≤0.3.(2017·上饶质检)设x ,y ,z >0,则三个数y x +y z ,z x +z y ,x z +x y( ) A .都大于2B .至少有一个大于2C .至少有一个不小于2D .至少有一个不大于2 答案 C解析 因为(y x +y z )+(z x +z y )+(x z +x y) =(y x +x y )+(y z +z y )+(z x +x z )≥6,当且仅当x =y =z 时等号成立.所以三个数中至少有一个不小于2,故选C.4.①已知p 3+q 3=2,证明:p +q ≤2.用反证法证明时,可假设p +q ≥2;②若a ,b ∈R ,|a |+|b |<1,求证:方程x 2+ax +b =0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x 1的绝对值大于或等于1,即假设|x 1|≥1.以下结论正确的是( )A .①与②的假设都错误B .①的假设正确;②的假设错误C .①与②的假设都正确D .①的假设错误;②的假设正确答案 D解析 对于①,结论的否定是p +q >2,故①中的假设错误;对于②,其假设正确,故选D.5.设a ,b ,c ∈(-∞,0),则a +1b ,b +1c ,c +1a( ) A .都不大于-2B .都不小于-2C .至少有一个不大于-2D .至少有一个不小于-2答案 C解析 因为a +1b +b +1c +c +1a≤-6, 所以三者不能都大于-2.6.用反证法证明:若整系数一元二次方程ax 2+bx +c =0 (a ≠0)有有理数根,那么a ,b ,c 中至少有一个是偶数.用反证法证明时,下列假设正确的是________.①假设a ,b ,c 都是偶数;②假设a ,b ,c 都不是偶数;③假设a ,b ,c 至多有一个偶数;④假设a ,b ,c 至多有两个偶数.答案 ②解析 “至少有一个”的否定为“都不是”,故②正确.7.(2016·全国甲卷)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.答案 1和3解析 由丙说:“我的卡片上的数字之和不是5”可知,丙为“1和2”或“1和3”,又乙说“我与丙的卡片上相同的数字不是1”,所以乙只可能为“2和3”,又甲说“我与乙的卡片上相同的数字不是2”,所以甲只能为“1和3”.8.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是____________.答案 ⎝⎛⎭⎫-3,32 解析 若二次函数f (x )≤0在区间[-1,1]内恒成立,则⎩⎪⎨⎪⎧f (-1)=-2p 2+p +1≤0,f (1)=-2p 2-3p +9≤0, 解得p ≤-3或p ≥32, 故满足题干条件的p 的取值范围为⎝⎛⎭⎫-3,32. 9.已知m >0,a ,b ∈R ,求证:(a +mb 1+m )2≤a 2+mb 21+m. 证明 因为m >0,所以1+m >0.所以要证原不等式成立,只需证(a +mb )2≤(1+m )(a 2+mb 2),即证m (a 2-2ab +b 2)≥0,即证(a -b )2≥0,而(a -b )2≥0显然成立,故原不等式得证.10.设f (x )=ax 2+bx +c (a ≠0),若函数f (x +1)与f (x )的图像关于y 轴对称,求证:f (x +12)为偶函数.证明 由函数f (x +1)与f (x )的图像关于y 轴对称,可知f (x +1)=f (-x ).将x 换成x -12代入上式可得f (x -12+1)=f [-(x -12)], 即f (x +12)=f (-x +12), 由偶函数的定义可知f (x +12)为偶函数. 11.已知函数f (x )=a x +x -2x +1(a >1). (1)证明:函数f (x )在(-1,+∞)上为增函数;(2)用反证法证明方程f (x )=0没有负数根.证明 (1)任取x 1,x 2∈(-1,+∞),不妨设x 1<x 2,则x 2-x 1>0.∵a >1,∴21x x a->1且1x a >0, ∴21x x a a -=121(1)x x x a a -->0.又∵x 1+1>0,x 2+1>0,∴x 2-2x 2+1-x 1-2x 1+1=(x 2-2)(x 1+1)-(x 1-2)(x 2+1)(x 1+1)(x 2+1)=3(x 2-x 1)(x 1+1)(x 2+1)>0. 于是f (x 2)-f (x 1)=21x x a a -+x 2-2x 2+1-x 1-2x 1+1>0, 故函数f (x )在(-1,+∞)上为增函数.(2)假设存在x 0<0(x 0≠-1)满足f (x 0)=0,则0x a =-x 0-2x 0+1. ∵a >1,∴0<0xa <1,∴0<-x 0-2x 0+1<1,即12<x 0<2,与假设x 0<0相矛盾, 故方程f (x )=0没有负数根.12.(2016·浙江)设函数f (x )=x 3+11+x,x ∈[0,1],证明: (1)f (x )≥1-x +x 2;(2)34<f (x )≤32. 证明 (1)因为1-x +x 2-x 3=1-(-x )41-(-x )=1-x 41+x, 由于x ∈[0,1],有1-x 41+x ≤1x +1, 即1-x +x 2-x 3≤1x +1, 所以f (x )≥1-x +x 2.(2)由0≤x ≤1,得x 3≤x ,故f (x )=x 3+1x +1≤x +1x +1=x +1x +1-32+32=(x -1)(2x +1)2(x +1)+32≤32, 所以f (x )≤32. 由(1)得f (x )≥1-x +x 2=⎝⎛⎭⎫x -122+34≥34, 又因为f ⎝⎛⎭⎫12=1924>34,所以f (x )>34. 综上,34<f (x )≤32. 13.(2015·课标全国Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ; (2)a +b >c +d 是|a -b |<|c -d |的充要条件.证明 (1)因为(a +b )2=a +b +2ab , (c +d )2=c +d +2cd ,由题设a +b =c +d ,ab >cd ,得(a +b )2>(c +d )2. 因此a +b > c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .因为a+b=c+d,所以ab>cd.由(1)得a+b>c+d.②若a+b>c+d,则(a+b)2>(c+d)2,即a+b+2ab>c+d+2cd.因为a+b=c+d,所以ab>cd,于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,a+b>c+d是|a-b|<|c-d|的充要条件.。
2018版高考数学大一轮复习第十二章推理与证明、算法、复数 12.1 归纳与类比教师用书文北师大版1.归纳推理根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性.我们将这种推理方式称为归纳推理.简言之,归纳推理是由部分到整体,由个别到一般的推理.归纳推理的基本模式:a,b,c∈M且a,b,c具有某属性,结论:任意d∈M,d也具有某属性.2.类比推理由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,我们把这种推理过程称为类比推理.简言之,类比推理是两类事物特征之间的推理.类比推理的基本模式:A:具有属性a,b,c,d;B:具有属性a′,b′,c′;结论:B具有属性d′.(a,b,c,d与a′,b′,c′,d′相似或相同)3.归纳推理和类比推理是最常见的合情推理,合情推理的结果不一定正确.4.演绎推理是根据已知的事实和正确的结论,按照严格的逻辑法则得到新结论的推理过程.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.( ×)(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( √)(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( ×)(4)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.( √)(5)一个数列的前三项是1,2,3,那么这个数列的通项公式是a n=n(n∈N+).( ×)(6)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.( × )1.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10等于( )A .28B .76C .123D .199 答案 C解析 从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,依据此规律,a 10+b 10=123. 2.下面几种推理过程是演绎推理的是( )A .在数列{a n }中,a 1=1,a n =12(a n -1+1a n -1)(n ≥2),由此归纳数列{a n }的通项公式B .由平面三角形的性质,推测空间四面体性质C .两直线平行,同旁内角互补,如果∠A 和∠B 是两条平行直线与第三条直线形成的同旁内角,则∠A +∠B =180°D .某校高二共10个班,1班51人,2班53人,3班52人,由此推测各班都超过50人 答案 C解析 A 、D 是归纳推理,B 是类比推理,C 符合三段论模式,故选C.3.(2017·济南质检)类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可得出空间内的下列结论:①垂直于同一个平面的两条直线互相平行; ②垂直于同一条直线的两条直线互相平行; ③垂直于同一个平面的两个平面互相平行; ④垂直于同一条直线的两个平面互相平行. 则正确的结论是________. 答案 ①④解析 显然①④正确;对于②,在空间中垂直于同一条直线的两条直线可以平行,也可以异面或相交;对于③,在空间中垂直于同一个平面的两个平面可以平行,也可以相交. 4.(教材改编)在等差数列{a n }中,若a 10=0,则有a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N +)成立,类比上述性质,在等比数列{b n }中,若b 9=1,则存在的等式为________________.答案 b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N +)解析 利用类比推理,借助等比数列的性质,b 29=b 1+n ·b 17-n ,可知存在的等式为b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N +).5.(2016·青岛模拟)若数列{a n }的通项公式为a n =1n +2(n ∈N +),记f (n )=(1-a 1)(1-a 2)…(1-a n ),试通过计算f (1),f (2),f (3)的值,推测出f (n )=________. 答案n +22n +2解析 f (1)=1-a 1=1-14=34,f (2)=(1-a 1)(1-a 2)=34(1-19)=23=46, f (3)=(1-a 1)(1-a 2)(1-a 3)=23(1-116)=58, 推测f (n )=n +22n +2.题型一 归纳推理命题点1 与数字有关的等式的推理 例1 (2016·山东)观察下列等式:⎝ ⎛⎭⎪⎫sin π3-2+⎝ ⎛⎭⎪⎫sin 2π3-2=43×1×2; ⎝ ⎛⎭⎪⎫sin π5-2+⎝ ⎛⎭⎪⎫sin 2π5-2+⎝ ⎛⎭⎪⎫sin 3π5-2+⎝ ⎛⎭⎪⎫sin 4π5-2=43×2×3; ⎝ ⎛⎭⎪⎫sin π7-2+⎝ ⎛⎭⎪⎫sin 2π7-2+⎝ ⎛⎭⎪⎫sin 3π7-2+…+⎝ ⎛⎭⎪⎫sin 6π7-2=43×3×4; ⎝ ⎛⎭⎪⎫sin π9-2+⎝ ⎛⎭⎪⎫sin 2π9-2+⎝ ⎛⎭⎪⎫sin 3π9-2+…+⎝⎛⎭⎪⎫sin 8π9-2=43×4×5; …照此规律,⎝ ⎛⎭⎪⎫sin π2n +1-2+⎝ ⎛⎭⎪⎫sin 2π2n +1-2+⎝ ⎛⎭⎪⎫sin 3π2n +1-2+…+⎝ ⎛⎭⎪⎫sin 2n π2n +1-2=__________. 答案 43×n ×(n +1)解析 观察等式右边的规律:第1个数都是43,第2个数对应行数n ,第3个数为n +1.命题点2 与不等式有关的推理例2 (2016·山西四校联考)已知x ∈(0,+∞),观察下列各式:x +1x ≥2,x +4x 2=x 2+x 2+4x 2≥3,x +27x 3=x 3+x 3+x 3+27x 3≥4,…,类比得x +ax n ≥n +1(n ∈N +),则a =________.答案 n n解析 第一个式子是n =1的情况,此时a =11=1;第二个式子是n =2的情况,此时a =22=4;第三个式子是n =3的情况,此时a =33=27,归纳可知a =n n. 命题点3 与数列有关的推理例3 古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n n +2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2, 五边形数 N (n,5)=32n 2-12n ,六边形数 N (n,6)=2n 2-n . … …可以推测N (n ,k )的表达式,由此计算N (10,24)=____________. 答案 1 000解析 由N (n,4)=n 2,N (n,6)=2n 2-n ,可以推测:当k 为偶数时,N (n ,k )=k -22n 2+4-k2n ,∴N (10,24)=24-22×100+4-242×10=1 100-100=1 000.命题点4 与图形变化有关的推理例4 (2017·大连月考)某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为( )A .21B .34C .52D .55 答案 D解析 由2=1+1,3=1+2,5=2+3知,从第三项起,每一项都等于前两项的和,则第6年为8,第7年为13,第8年为21,第9年为34,第10年为55,故选D. 思维升华 归纳推理问题的常见类型及解题策略(1)与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号可解. (2)与不等式有关的推理.观察每个不等式的特点,注意是纵向看,找到规律后可解. (3)与数列有关的推理.通常是先求出几个特殊现象,采用不完全归纳法,找出数列的项与项数的关系,列出即可.(4)与图形变化有关的推理.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.(1)(2015·陕西)观察下列等式:1-12=12, 1-12+13-14=13+14, 1-12+13-14+15-16=14+15+16, …据此规律,第n 个等式可为_________________________________________________________ _______________.(2)(2016·抚顺模拟)观察下图,可推断出“x ”处应该填的数字是________.答案 (1)1-12+13-14+...+12n -1-12n =1n +1+1n +2+ (12)(2)183解析 (1)等式左边的特征:第1个等式有2项,第2个有4项,第3个有6项,且正负交错,故第n 个等式左边有2n 项且正负交错,应为1-12+13-14+…+12n -1-12n ;等式右边的特征:第1个有1项,第2个有2项,第3个有3项,故第n 个有n 项,且由前几个的规律不难发现第n 个等式右边应为1n +1+1n +2+…+12n. (2)由前两个图形发现:中间数等于四周四个数的平方和,∴“x ”处应填的数字是32+52+72+102=183.题型二 类比推理例5 (1)(2017·西安质检)对于命题:如果O 是线段AB 上一点,则|OB →|OA →+|OA →|OB →=0;将它类比到平面的情形是:若O 是△ABC 内一点,有S △OBC ·OA →+S △OCA ·OB →+S △OBA ·OC →=0;将它类比到空间的情形应该是:若O 是四面体ABCD 内一点,则有________. (2)求1+1+1+…的值时,采用了如下方法:令1+1+1+…=x ,则有x =1+x ,解得x =1+52(负值已舍去).可用类比的方法,求得1+12+11+12+1…的值为________.答案 (1)V O -BCD ·OA →+V O -ACD ·OB →+V O -ABD ·OC →+V O -ABC ·OD →=0 (2)1+32解析 (1)线段长度类比到空间为体积,再结合类比到平面的结论,可得空间中的结论为V O -BCD·OA →+V O -ACD ·OB →+V O -ABD ·OC →+V O -ABC ·OD →=0.(2)令1+12+1…=x ,则有1+12+1x =x ,解得x =1+32(负值已舍去).思维升华 (1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜想.其中找到合适的类比对象是解题的关键.(2)类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等.在平面上,设h a ,h b ,h c 是三角形ABC 三条边上的高,P 为三角形内任一点,P到相应三边的距离分别为P a ,P b ,P c ,我们可以得到结论:P a h a +P b h b +P ch c=1.把它类比到空间,则三棱锥中的类似结论为______________________. 答案P a h a +P b h b +P c h c +P dh d=1 解析 设h a ,h b ,h c ,h d 分别是三棱锥A -BCD 四个面上的高,P 为三棱锥A -BCD 内任一点,P 到相应四个面的距离分别为P a ,P b ,P c ,P d ,于是可以得出结论:P a h a +P b h b +P c h c +P dh d=1.题型三 演绎推理例6 已知函数y =f (x )满足:对任意a ,b ∈R ,a ≠b ,都有af (a )+bf (b )>af (b )+bf (a ). (1)试证明:f (x )为R 上的单调增函数;(2)若x ,y 为正实数且4x +9y=4,比较f (x +y )与f (6)的大小.(1)证明 设x 1,x 2∈R ,且x 1<x 2,则由题意得x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1), ∴x 1[f (x 1)-f (x 2)]+x 2[f (x 2)-f (x 1)]>0, [f (x 2)-f (x 1)](x 2-x 1)>0, ∵x 1<x 2,∴f (x 2)-f (x 1)>0, ∴f (x 2)>f (x 1).∴f (x )为R 上的单调增函数.(2)解 ∵x ,y 为正实数,且4x +9y=4,∴x +y =14(x +y )(4x +9y )=14(13+4y x +9x y )≥14(13+2 4y x ·9x y )=254, 当且仅当⎩⎪⎨⎪⎧ 4y x =9xy ,4x +9y =4,即⎩⎪⎨⎪⎧x =52,y =154时取等号,∵f (x )在R 上是增函数,且x +y ≥254>6,∴f (x +y )>f (6).思维升华 演绎推理是由一般到特殊的推理,常用的一般模式为三段论,演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,若大前提不明确时,可找一个使结论成立的充分条件作为大前提.(1)某国家流传这样的一个政治笑话:“鹅吃白菜,参议员先生也吃白菜,所以参议员先生是鹅.”结论显然是错误的,是因为( ) A .大前提错误 B .小前提错误 C .推理形式错误D .非以上错误(2)(2016·洛阳模拟)下列四个推导过程符合演绎推理三段论形式且推理正确的是( ) A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数答案(1)C (2)B解析(1)因为大前提“鹅吃白菜”,不是全称命题,大前提本身正确,小前提“参议员先生也吃白菜”本身也正确,但不是大前提下的特殊情况,鹅与人不能类比,所以不符合三段论推理形式,所以推理形式错误.(2)A中小前提不是大前提的特殊情况,不符合三段论的推理形式,故A错误;C、D都不是由一般性命题到特殊性命题的推理,所以C、D都不正确,只有B正确,故选B.10.高考中的合情推理问题考点分析合情推理在近年来的高考中,考查频率逐渐增大,题型多为选择、填空题,难度为中档.解决此类问题的注意事项与常用方法:(1)解决归纳推理问题,常因条件不足,了解不全面而致误.应由条件多列举一些特殊情况再进行归纳.(2)解决类比问题,应先弄清所给问题的实质及已知结论成立的缘由,再去类比另一类问题.典例(1)传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n},将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n},可以推测:①b2 014是数列{a n}的第________项;②b2k-1=________.(用k表示)(2)设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数y =f (x )满足:(1)T ={f (x )|x ∈S };(2)对任意x 1,x 2∈S ,当x 1<x 2时,恒有f (x 1)<f (x 2).那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是________. ①A =N +,B =N ;②A ={x |-1≤x ≤3},B ={x |x =-8或0<x ≤10}; ③A ={x |0<x <1},B =R ; ④A =Z ,B =Q .解析 (1)①a n =1+2+…+n =n n +2,b 1=4×52=a 4, b 2=5×62=a 5, b 3=2=a 9, b 4=2=a 10, b 5=2=a 14, b 6=2=a 15,…b 2 014=⎝ ⎛⎭⎪⎫2 0142×5⎝ ⎛⎭⎪⎫2 0142×5+12=a 5 035.②由①知b 2k -1=⎝ ⎛⎭⎪⎫2k -1+12×5-1⎝ ⎛⎭⎪⎫2k -1+12×52=5kk -2.(2)对于①,取f (x )=x -1,x ∈N +,所以A =N +,B =N 是“保序同构”的,故排除①; 对于②,取f (x )=⎩⎪⎨⎪⎧-8,x =-1,x +1,-1<x ≤0,x 2+1,0<x ≤3,所以A ={x |-1≤x ≤3},B ={x |x =-8或0<x ≤10}是“保序同构”的,故排除②; 对于③,取f (x )=tan(πx -π2)(0<x <1),所以A ={x |0<x <1},B =R 是“保序同构”的,故排除③.④不符合,故填④. 答案 (1)①5 035 ②5kk -2(2)④1.若大前提是:任何实数的平方都大于0,小前提是:a ∈R ,结论是:a 2>0,那么这个演绎推理出错在( ) A .大前提 B .小前提 C .推理过程 D .没有出错答案 A解析 推理形式正确,但大前提错误,故得到的结论错误.故选A. 2.下列推理是归纳推理的是( )A .A ,B 为定点,动点P 满足|PA |+|PB |=2a >|AB |,则P 点的轨迹为椭圆 B .由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式C .由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆x 2a 2+y 2b2=1的面积S =πabD .科学家利用鱼的沉浮原理制造潜艇 答案 B解析 从S 1,S 2,S 3猜想出数列的前n 项和S n ,是从特殊到一般的推理,所以B 是归纳推理,故应选B.3.正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理( ) A .结论正确 B .大前提不正确 C .小前提不正确 D .全不正确答案 C解析 f (x )=sin(x 2+1)不是正弦函数,所以小前提错误.4.(2016·泉州模拟)正偶数列有一个有趣的现象:①2+4=6;②8+10+12=14+16;③18+20+22+24=26+28+30,…按照这样的规律,则2 016所在等式的序号为( ) A .29 B .30 C .31 D .32答案 C解析 由题意知,每个等式正偶数的个数组成等差数列3,5,7,…,2n +1,…,其前n 项和S n =n [3+n +2=n (n +2)且S 31=1 023,即第31个等式中最后一个偶数是1 023×2=2 046,且第31个等式中含有63个偶数,故2 016在第31个等式中. 5.给出下列三个类比结论:①(ab )n =a n b n 与(a +b )n 类比,则有(a +b )n =a n +b n;②log a (xy )=log a x +log a y 与sin(α+β)类比,则有sin(α+β)=sin αsin β; ③(a +b )2=a 2+2ab +b 2与(a +b )2类比,则有(a +b )2=a 2+2a ·b +b 2. 其中正确结论的个数是( ) A .0 B .1 C .2 D .3 答案 B解析 (a +b )n≠a n+b n(n ≠1,a ·b ≠0),故①错误. sin(α+β)=sin αsin β不恒成立.如α=30°,β=60°,sin 90°=1,sin 30°·sin 60°=34, 故②错误.由向量的运算公式知③正确.6.把正整数按一定的规则排成如图所示的三角形数表,设a ij (i ,j ∈N +)是位于这个三角形数表中从上往下第i 行,从左往右数第j 个数,如a 42=8,若a ij =2 009,则i 与j 的和为________.答案 107解析 由题可知奇数行为奇数列,偶数行为偶数列,2 009=2×1 005-1,所以2 009为第1 005个奇数,又前31个奇数行内数的个数为961,前32个奇数行内数的个数为1 024,故2 009在第32个奇数行内,则i =63,因为第63行第1个数为2×962-1=1 923,2 009=1 923+2(j -1),所以j =44,所以i +j =107.7.若P 0(x 0,y 0)在椭圆x 2a 2+y 2b2=1(a >b >0)外,过P 0作椭圆的两条切线的切点分别为P 1,P 2,则切点弦P 1P 2所在的直线方程是x 0x a 2+y 0yb 2=1,那么对于双曲线则有如下命题:若P 0(x 0,y 0)在双曲线x 2a 2-y 2b2=1(a >0,b >0)外,过P 0作双曲线的两条切线,切点分别为P 1,P 2,则切点弦P 1P 2所在直线的方程是________________. 答案x 0x a 2-y 0y b 2=1 解析 设P 1(x 1,y 1),P 2(x 2,y 2), 则P 1,P 2的切线方程分别是x 1x a 2-y 1y b 2=1,x 2x a 2-y 2yb2=1. 因为P 0(x 0,y 0)在这两条切线上, 故有x 1x 0a 2-y 1y 0b 2=1,x 2x 0a 2-y 2y 0b2=1, 这说明P 1(x 1,y 1),P 2(x 2,y 2)在直线x 0x a 2-y 0yb 2=1上, 故切点弦P 1P 2所在的直线方程是x 0x a 2-y 0yb 2=1. 8.如图(1)若从点O 所作的两条射线OM 、ON 上分别有点M 1、M 2与点N 1、N 2,则三角形面积之比1122OM N OM N S S=OM 1OM 2·ON 1ON 2.如图(2),若从点O 所作的不在同一平面内的三条射线OP 、OQ 和OR 上分别有点P 1、P 2,点Q 1、Q 2和点R 1、R 2,则类似的结论为__________________.答案111222O PQ R O P Q R V V --=OP 1OP 2·OQ 1OQ 2·OR 1OR 2解析 考查类比推理问题,由图看出三棱锥P 1-OR 1Q 1及三棱锥P 2-OR 2Q 2的底面面积之比为OQ 1OQ 2·OR 1OR 2,又过顶点分别向底面作垂线,得到高的比为OP 1OP 2,故体积之比为111222O PQ R O P Q R V V--=OP 1OP 2·OQ 1OQ 2·OR 1OR 2. 9.设f (x )=13x +3,先分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论,并给出证明. 解 f (0)+f (1)=130+3+131+3=11+3+13+3 =33+3+13+3=33, 同理可得f (-1)+f (2)=33,f (-2)+f (3)=33. 由此猜想f (x )+f (1-x )=33. 证明:f (x )+f (1-x )=13x +3+131-x +3=13x +3+3x3+3·3x =13x +3+3x33+3x=3+3x 33+3x=33. 10.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n ∈N +).证明: (1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .证明 (1)∵a n +1=S n +1-S n ,a n +1=n +2nS n , ∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n . ∴S n +1n +1=2·S n n ,又S 11=1≠0,(小前提) 故⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论) (大前提是等比数列的定义,这里省略了) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1 =4a n (n ≥2),(小前提)又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)11.对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f (x )=13x 3-12x 2+3x -512,请你根据这一发现,(1)求函数f (x )的对称中心;(2)计算f (12 017)+f (22 017)+f (32 017)+f (42 017)+…+f (2 0162 017).解 (1)f ′(x )=x 2-x +3,f ″(x )=2x -1, 由f ″(x )=0,即2x -1=0,解得x =12.f (12)=13×(12)3-12×(12)2+3×12-512=1.由题中给出的结论,可知函数f (x )=13x 3-12x 2+3x -512的对称中心为(12,1).(2)由(1)知函数f (x )=13x 3-12x 2+3x -512的对称中心为(12,1),所以f (12+x )+f (12-x )=2,即f (x )+f (1-x )=2. 故f (12 017)+f (2 0162 017)=2,f (22 017)+f (2 0152 017)=2, f (32 017)+f (2 0142 017)=2, …,f (2 0162 017)+f (12 017)=2. 所以f (12 017)+f (22 017)+f (32 017)+f (42 017)+…+f (2 0162 017)=12×2×2 016=2 016.。
1.复数的有关概念(1)定义:形如a +b i(a ,b ∈R )的数叫作复数,其中a 叫作复数z 的实部,b 叫作复数z 的虚部.(i 为虚数单位) (2)分类:(3)复数相等:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ). (4)共轭复数:a +b i 与c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R ).(5)模:向量OZ →的模叫作复数z =a +b i 的模,记作|a +b i|或|z |,即|z |=|a +b i|=a 2+b 2(a ,b ∈R ). 2.复数的几何意义复数z =a +b i 与复平面内的点Z (a ,b )及平面向量OZ →=(a ,b )(a ,b ∈R )是一一对应关系. 3.复数的运算(1)运算法则:设z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R .(2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行.如图给出的平行四边形OZ 1ZZ 2可以直观地反映出复数加减法的几何意义,即OZ →=OZ 1→+OZ 2→,Z 1Z 2→=OZ 2→-OZ 1→.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)方程x 2+x +1=0没有解.( × )(2)复数z =a +b i(a ,b ∈R )中,虚部为b i.( × )(3)复数中有相等复数的概念,因此复数可以比较大小.( × ) (4)原点是实轴与虚轴的交点.( √ )(5)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( √ )1.(2016·全国乙卷)设(1+2i)(a +i)的实部与虚部相等,其中a 为实数,则a 等于( ) A .-3 B .-2 C .2 D .3 答案 A解析 ∵(1+2i)(a +i)=a -2+(2a +1)i , ∴a -2=2a +1,解得a =-3,故选A.2.(2015·课标全国Ⅰ)已知复数z 满足(z -1)i =1+i ,则z 等于( ) A .-2-i B .-2+i C .2-i D .2+i 答案 C解析 由(z -1)i =1+i ,两边同乘以-i ,则有z -1=1-i ,所以z =2-i.3.在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B .若C 为线段AB 的中点,则点C 对应的复数是( )A .4+8iB .8+2iC .2+4iD .4+i 答案 C解析 ∵A (6,5),B (-2,3),∴线段AB 的中点C (2,4), 则点C 对应的复数为z =2+4i.4.(教材改编)在复平面内,向量AB →对应的复数是2+i ,向量CB →对应的复数是-1-3i ,则向量CA →对应的复数是( ) A .1-2i B .-1+2i C .3+4i D .-3-4i答案 D解析 CA →=CB →+BA →=-1-3i +(-2-i)=-3-4i. 5.i 2 011+i 2 012+i 2 013+i 2 014+i 2 015+i 2 016+i 2 017=________. 答案 1解析 原式=i 3+i 4+i 1+i 2+i 3+i 4+i =1.题型一 复数的概念例1 (1)(2015·福建)若(1+i)+(2-3i)=a +b i(a ,b ∈R ,i 是虚数单位),则a ,b 的值分别等于( ) A .3,-2 B .3,2 C .3,-3D .-1,4(2)若z 1=(m 2+m +1)+(m 2+m -4)i(m ∈R ),z 2=3-2i ,则“m =1”是“z 1=z 2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件(3)(2016·天津)i 是虚数单位,复数z 满足(1+i)z =2,则z 的实部为________. 答案 (1)A (2)A (3)1解析 (1)∵(1+i)+(2-3i)=3-2i =a +b i ,∴a =3,b =-2,故选A.(2)由⎩⎪⎨⎪⎧m 2+m +1=3,m 2+m -4=-2,解得m =-2或m =1,所以“m =1”是“z 1=z 2”的充分不必要条件. (3)∵(1+i)z =2,∴z =21+i =1-i ,∴其实部为1.引申探究1.将本例(1)中方程左边改为(1+i)(2-3i),求a ,b 的值. 解 (1+i)(2-3i) =2+3-i =5-i =a +b i , 所以a =5,b =-1.2.将本例(3)中的条件“(1+i)z =2”改为“(1+i)3z =2”,求z 的实部. 解 z =2(1+i )3=2-2+2i =-12-12i ,∴z 的实部为-12.思维升华 解决复数概念问题的方法及注意事项(1)复数的分类及对应点的位置都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.(2)解题时一定要先看复数是否为a +b i(a ,b ∈R )的形式,以确定实部和虚部.(1)已知a ∈R ,复数z 1=2+a i ,z 2=1-2i ,若z 1z 2为纯虚数,则复数z 1z 2的虚部为( )A .1B .i C.25D .0(2)如果复数m 2+i1-m i 是实数,则实数m 等于( )A .-1B .1C .- 2 D. 2答案 (1)A (2)A解析 (1)由z 1z 2=2+a i 1-2i =(2+a i )(1+2i )5=2-2a 5+4+a 5i 是纯虚数,得a =1,此时z 1z 2=i ,其虚部为1. (2)因为m 2+i1-m i=(m 2+i )(1+m i )1+m 2=m 2-m +(1+m 3)i 1+m 2是实数,所以1+m 31+m 2=0,所以m =-1,故选A.题型二 复数的运算 命题点1 复数的乘法运算例2 (1)(2016·四川)设i 为虚数单位,则复数(1+i)2等于( ) A .0 B .2 C .2i D .2+2i(2)(2016·全国乙卷)设(1+i)x =1+y i ,其中x ,y 是实数,则|x +y i|等于( ) A .1 B. 2 C. 3 D .2(3)(2015·课标全国Ⅱ)若a 为实数,且(2+a i)(a -2i)=-4i ,则a 等于( ) A .-1 B .0 C .1 D .2 答案 (1)C (2)B (3)B解析 (1)(1+i)2=12+i 2+2i =1-1+2i =2i.(2)由(1+i)x =1+y i ,得x +x i =1+y i ⇒⎩⎪⎨⎪⎧ x =1,x =y ⇒⎩⎪⎨⎪⎧x =1,y =1.所以|x +y i|=x 2+y 2=2,故选B.(3)因为a 为实数,且(2+a i)(a -2i)=4a +(a 2-4)i =-4i ,得4a =0且a 2-4=-4,解得a =0,故选B.命题点2 复数的除法运算例3 (1)(2016·全国丙卷)若z =1+2i ,则4iz z -1等于( )A .1B .-1C .iD .-i (2)(2016·北京)复数1+2i2-i等于( )A .iB .1+iC .-iD .1-i (3)(1+i 1-i )6+2+3i 3-2i =________. 答案 (1)C (2)A (3)-1+i 解析 (1)z =1+2i ,z z =5,4iz z -1=i.(2)1+2i 2-i =(1+2i )(2+i )(2-i )(2+i )=5i 5=i. (3)原式=[(1+i )22]6+(2+3i )(3+2i )(3)2+(2)2 =i 6+6+2i +3i -65=-1+i.命题点3 复数的综合运算例4 (1)(2016·山东)若复数z 满足2z +z =3-2i ,其中i 为虚数单位,则z 等于( ) A .1+2i B .1-2i C .-1+2iD .-1-2i(2)(2016·全国丙卷)若z =4+3i ,则z |z |等于( ) A .1 B .-1 C.45+35i D.45-35i (3)若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ) A .-4 B .-45 C .4 D.45答案 (1)B (2)D (3)D解析 (1)设z =a +b i(a ,b ∈R ),则z =a -b i ,∴2(a +b i)+(a -b i)=3-2i ,整理得3a +b i=3-2i ,∴⎩⎪⎨⎪⎧3a =3,b =-2,解得⎩⎪⎨⎪⎧a =1,b =-2,∴z =1-2i ,故选B.(2)z =4+3i ,|z |=5,z|z |=45-35i. (3)设z =a +b i ,故(3-4i)(a +b i)=3a +3b i -4a i +4b =|4+3i|,所以⎩⎪⎨⎪⎧3b -4a =0,3a +4b =5,解得b =45.思维升华 复数代数形式运算问题的常见类型及解题策略(1)复数的乘法.复数的乘法类似于多项式的四则运算,可将含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可.(2)复数的除法.除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把i 的幂写成最简形式.(3)复数的运算与复数概念的综合题.先利用复数的运算法则化简,一般化为a +b i(a ,b ∈R )的形式,再结合相关定义解答.(4)复数的运算与复数几何意义的综合题.先利用复数的运算法则化简,一般化为a +b i(a ,b ∈R )的形式,再结合复数的几何意义解答.(5)复数的综合运算.分别运用复数的乘法、除法法则进行运算,要注意运算顺序,要先算乘除,后算加减,有括号要先算括号里面的.(1)(2015·山东)若复数z 满足z1-i=i ,其中i 为虚数单位,则z 等于( )A .1-iB .1+iC .-1-iD .-1+i(2)⎝ ⎛⎭⎪⎫1+i 1-i 2 017=________. (3)-23+i 1+23i +⎝ ⎛⎭⎪⎫21-i 2 017=________. 答案 (1)A (2)i (3)22+(22+1)i 解析 (1)z =i(1-i)=1+i ,∴z =1-i ,故选A.(2)(1+i 1-i )2 017=[(1+i )2(1-i )(1+i )]2 017=i 2 017=i. (3)-23+i 1+23i +(21-i )2 017 =i (1+23i )1+23i +(21-i )[(21-i)2]1 008=i +i 1 008·22(1+i)=22+(22+1)i.题型三 复数的几何意义例5 (1)△ABC 的三个顶点对应的复数分别为z 1,z 2,z 3,若复数z 满足|z -z 1|=|z -z 2|=|z -z 3|,则z 对应的点为△ABC 的( ) A .内心 B .垂心 C .重心 D .外心答案 D解析 由几何意义知,复数z 对应的点到△ABC 三个顶点距离都相等,z 对应的点是△ABC 的外心.(2)如图所示,平行四边形OABC ,顶点O ,A ,C 分别表示0,3+2i ,-2+4i ,试求:①AO →、BC →所表示的复数; ②对角线CA →所表示的复数; ③B 点对应的复数.解 ①AO →=-OA →,∴AO →所表示的复数为-3-2i. ∵BC →=AO →,∴BC →所表示的复数为-3-2i. ②CA →=OA →-OC →,∴CA →所表示的复数为 (3+2i)-(-2+4i)=5-2i.③OB →=OA →+AB →=OA →+OC →,∴OB →所表示的复数为(3+2i)+(-2+4i)=1+6i , 即B 点对应的复数为1+6i.思维升华 因为复平面内的点、向量及向量对应的复数是一一对应的,要求某个向量对应的复数时,只要找出所求向量的始点和终点,或者用向量相等直接给出结论即可.已知z 是复数,z +2i ,z2-i均为实数(i 为虚数单位),且复数(z +a i)2在复平面内对应的点在第一象限,求实数a 的取值范围. 解 设z =x +y i(x ,y ∈R ),∴z +2i =x +(y +2)i ,由题意得y =-2. ∵z2-i =x -2i 2-i =15(x -2i)(2+i) =15(2x +2)+15(x -4)i , 由题意得x =4.∴z =4-2i.∵(z +a i)2=(12+4a -a 2)+8(a -2)i ,根据条件,可知⎩⎪⎨⎪⎧12+4a -a 2>0,8(a -2)>0,解得2<a <6,∴实数a 的取值范围是(2,6).24.解决复数问题的实数化思想典例 (12分)已知x ,y 为共轭复数,且(x +y )2-3xy i =4-6i ,求x ,y .思想方法指导 (1)复数问题要把握一点,即复数问题实数化,这是解决复数问题最基本的思想方法.(2)本题求解的关键是先把x 、y 用复数的基本形式表示出来,再用待定系数法求解,这是常用的数学方法.(3)本题易错原因为想不到利用待定系数法,或不能将复数问题转化为实数方程求解. 规范解答解 设x =a +b i (a ,b ∈R ),则y =a -b i ,x +y =2a ,xy =a 2+b 2,[3分] 代入原式,得(2a )2-3(a 2+b 2)i =4-6i ,[5分]根据复数相等得⎩⎪⎨⎪⎧4a 2=4,-3(a 2+b 2)=-6,[7分]解得⎩⎪⎨⎪⎧ a =1,b =1或⎩⎪⎨⎪⎧ a =1,b =-1或⎩⎪⎨⎪⎧ a =-1,b =1或⎩⎪⎨⎪⎧a =-1,b =-1.[9分]故所求复数为⎩⎪⎨⎪⎧ x =1+i ,y =1-i 或⎩⎪⎨⎪⎧ x =1-i ,y =1+i 或⎩⎪⎨⎪⎧ x =-1+i ,y =-1-i 或⎩⎪⎨⎪⎧x =-1-i ,y =-1+i.[12分]1.若复数z =(x 2-1)+(x -1)i 为纯虚数,则实数x 的值为( ) A .-1 B .0 C .1 D .-1或1 答案 A解析 由复数z 为纯虚数,得⎩⎪⎨⎪⎧x 2-1=0,x -1≠0,解得x =-1,故选A.2.(2017·天津质检)已知i 为虚数单位,a ∈R ,如果复数2i -a1-i 是实数,则a 的值为( )A .-4B .2C .-2D .4 答案 D解析 ∵2i -a1-i =2i -a (1+i )(1-i )(1+i )=2i -a 2-a 2i =(2-a 2)i -a 2,a ∈R ,∴2-a 2=0,∴a =4.3.若i 为虚数单位,图中复平面内点Z 表示复数z ,则表示复数z1+i 的点是( )A .EB .FC .GD .H答案 D解析 由题图知复数z =3+i ,∴z 1+i =3+i 1+i =(3+i )(1-i )(1+i )(1-i )=4-2i 2=2-i.∴表示复数z1+i 的点为H .4.(2017·南昌质检)z 是z 的共轭复数,若z +z =2,(z -z )i =2(i 为虚数单位),则z 等于() A .1+i B .-1-iC .-1+iD .1-i答案 D解析 方法一 设z =a +b i ,a ,b 为实数,则z =a -b i.∵z +z =2a =2,∴a =1.又(z -z )i =2b i 2=-2b =2,∴b =-1.故z =1-i.方法二 ∵(z -z )i =2,∴z -z =2i =-2i.又z +z =2,∴(z -z )+(z +z )=-2i +2,∴2z =-2i +2,∴z =1-i.5.设f (n )=⎝ ⎛⎭⎪⎫1+i1-i n +⎝ ⎛⎭⎪⎫1-i1+i n (n ∈N +),则集合{f (n )}中元素的个数为( )A .1B .2C .3D .无数个答案 C解析 f (n )=⎝ ⎛⎭⎪⎫1+i 1-i n +⎝ ⎛⎭⎪⎫1-i 1+i n =i n +(-i)n , f (1)=0,f (2)=-2,f (3)=0,f (4)=2,f (5)=0,…,∴集合中共有3个元素.6.集合M ={4,-3m +(m -3)i}(其中i 为虚数单位),N ={-9,3},若M ∩N ≠∅,则实数m 的值为( )A .-1B .-3C .3或-3D .3答案 D解析 由题意可知-3m +(m -3)i 必为实数,则m =3,经检验符合题意.7.(2016·陕西西工大附中模拟)已知a 为实数,若复数z =a 2-3a -4+(a -4)i 为纯虚数,则复数a -a i 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 答案 B解析 若复数z =a 2-3a -4+(a -4)i 为纯虚数,则⎩⎪⎨⎪⎧ a 2-3a -4=0,a -4≠0,得⎩⎪⎨⎪⎧a =4或a =-1,a ≠4, 得a =-1,则复数a -a i =-1+i 对应的坐标为(-1,1)位于第二象限.8.复数(3+i)m -(2+i)对应的点在第三象限内,则实数m 的取值范围是________.答案 (-∞,23) 解析 z =(3m -2)+(m -1)i ,其对应点(3m -2,m -1)在第三象限内,故3m -2<0且m -1<0,∴m <23. 9.已知集合M ={1,m,3+(m 2-5m -6)i},N ={-1,3},若M ∩N ={3},则实数m 的值为________.答案 3或6解析 ∵M ∩N ={3},∴3∈M 且-1∉M ,∴m ≠-1,3+(m 2-5m -6)i =3或m =3,∴m 2-5m -6=0且m ≠-1或m =3,解得m =6或m =3,经检验符合题意.10.已知i 是虚数单位,m 和n 都是实数,且m (1+i)=1+n i ,则(m +n i m -n i)2 017=________. 答案 i解析 由m (1+i)=1+n i ,得m =n =1,所以(m +n i m -n i )2 017=(1+i 1-i)2 017=i 2 017=i. 11.若1+2i 是关于x 的实系数方程x 2+bx +c =0的一个复数根,则b =________,c =________.答案 -2 3解析 ∵实系数一元二次方程x 2+bx +c =0的一个虚根为1+2i ,∴其共轭复数1-2i 也是方程的根.由根与系数的关系知,⎩⎪⎨⎪⎧(1+2i )+(1-2i )=-b ,(1+2i )(1-2i )=c ,∴b =-2,c =3.12.给出下列命题:①若z ∈C ,则z 2≥0;②若a ,b ∈R ,且a >b ,则a +i>b +i ;③若a ∈R ,则(a +1)i 是纯虚数;④若z =-i ,则z 3+1在复平面内对应的点位于第一象限.其中正确的命题是________.(填上所有正确命题的序号)答案 ④解析 由复数的概念及性质知,①错误;②错误;若a =-1,则(a +1)i =0,③错误;z 3+1=(-i)3+1=i +1,④正确.13.计算:(1)(-1+i )(2+i )i 3; (2)(1+2i )2+3(1-i )2+i; (3)1-i (1+i )2+1+i (1-i )2; (4)1-3i (3+i )2. 解 (1)(-1+i )(2+i )i 3=-3+i -i=-1-3i. (2)(1+2i )2+3(1-i )2+i =-3+4i +3-3i 2+i=i2+i =i (2-i )5=15+25i. (3)1-i (1+i )2+1+i (1-i )2=1-i 2i +1+i -2i =1+i -2+-1+i 2=-1. (4)1-3i (3+i )2=(3+i )(-i )(3+i )2=-i 3+i=(-i )(3-i )4 =-14-34i. 14.复数z 1=3a +5+(10-a 2)i ,z 2=21-a +(2a -5)i ,若z 1+z 2是实数,求实数a 的值. 解 z 1+z 2=3a +5+(a 2-10)i +21-a+(2a -5)i =⎝ ⎛⎭⎪⎫3a +5+21-a +[(a 2-10)+(2a -5)]i =a -13(a +5)(a -1)+(a 2+2a -15)i. ∵z 1+z 2是实数,∴a 2+2a -15=0,解得a =-5或a =3.又(a +5)(a -1)≠0,∴a ≠-5且a ≠1,故a =3.15.若虚数z 同时满足下列两个条件:①z +5z是实数; ②z +3的实部与虚部互为相反数.这样的虚数是否存在?若存在,求出z ;若不存在,请说明理由. 解 这样的虚数存在,z =-1-2i 或z =-2-i.设z =a +b i(a ,b ∈R 且b ≠0),z +5z =a +b i +5a +b i =a +b i +5(a -b i )a 2+b 2 =⎝ ⎛⎭⎪⎫a +5a a 2+b 2+⎝ ⎛⎭⎪⎫b -5b a 2+b 2i. ∵z +5z 是实数,∴b -5b a 2+b 2=0. 又∵b ≠0,∴a 2+b 2=5.①又z +3=(a +3)+b i 的实部与虚部互为相反数,∴a +3+b =0.②由①②得⎩⎪⎨⎪⎧ a +b +3=0,a 2+b 2=5,解得⎩⎪⎨⎪⎧ a =-1,b =-2或⎩⎪⎨⎪⎧ a =-2,b =-1, 故存在虚数z ,z =-1-2i 或z =-2-i.。
第十二篇几何证明选讲(选修4-1)第1节全等与相似【选题明细表】知识点、方法题号平行线截割定理及应用 4相似三角形的判定与性质1,3直角三角形的射影定理 2 1. 如图所示,平行四边形ABCD中,E是CD延长线上的一点,BE与AD交于点F,DE=CD.(1)求证:△ABF∽△CEB;(2)若△DEF的面积为2,求平行四边形ABCD的面积.(1)证明:因为四边形ABCD是平行四边形,所以∠A=∠C,AB∥CD.所以∠ABF=∠CEB.所以△ABF∽△CEB.(2)解:因为四边形ABCD是平行四边形,所以AD∥BC,AB∥CD.所以△DEF∽△CEB,△DEF∽△ABF.因为DE=CD,所以==,==.因为S△DEF=2,所以S△CEB=18,S△ABF=8.所以S四边形BCDF=S△CEB-S△DEF=16.所以S平行四边形ABCD=S四边形BCDF+S△ABF=16+8=24.2. 已知Rt△ABC中,∠BAC=90°,AD⊥BC,垂足为D,DF⊥AC,垂足为F,DE⊥AB,垂足为E.求证:(1)AB·AC=AD·BC;(2)AD3=BC·BE·CF.证明:(1)因为∠BAC=90°,AD⊥BC,所以∠BAC=∠ADB,又因为∠B=∠B,所以△ABD∽△CBA,所以=,即AB·AC=AD·BC.(2)由题AD2=BD·DC,所以AD4=BD2·DC2=BE·BA·CF·CA=BE·CF·AD·BC,所以AD3=BC·BE·CF.3. 如图,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若∠BAE=30°,AD=3,求BF的长.(1)证明:因为AB∥CD,所以∠BAF=∠AED.又因为∠BFE=∠C,∠BFE+∠BFA=∠C+∠EDA,所以∠BFA=∠ADE.所以△ABF∽△EAD.(2)解:因为∠BAE=30°,所以∠AEB=60°,所以=sin 60°=,又=,所以BF=·AD=.4. 如图所示,梯形ABCD中,AD∥BC,EF经过梯形对角线的交点O,且EF∥AD.(1)求证:OE=OF;(2)求:+的值;(3)求证:+=.(1)证明:因为EF∥AD,AD∥BC,所以EF∥AD∥BC.因为EF∥BC,所以=,=.因为EF∥AD∥BC,所以=.所以=,所以OE=OF.(2)解:因为OE∥AD,所以=.由(1)知=,所以+=+==1.(3)证明:由(2)知+=1,所以+=2.又EF=2OE,所以+=2, 所以+=.。
1.(2021·新课标全国Ⅰ,22)如图,AB是⊙O的直径,AC是⊙O的切线,BC 交⊙O于点E.(1)若D为AC的中点,证明:DE是⊙O的切线;(2)若OA=3CE,求∠ACB的大小.(1)证明如图,连接AE,由已知得,AE⊥BC,AC⊥AB.在Rt △AEC中,由已知得,DE=DC,故∠DEC=∠DCE.连接OE,则∠OBE=∠OEB.又∠ACB+∠ABC=90°,所以∠DEC+∠OEB=90°,故∠OED=90°,DE是⊙O的切线. (2)解设CE=1,AE=x,由已知得AB=23,BE=12-x2.由射影定理可得,AE2=CE·BE,所以x2=12-x2,即x4+x2-12=0.可得x=3,所以∠ACB =60°.2.(2022·新课标全国Ⅰ,22)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,12OA为半径作圆.(1)证明:直线AB与⊙O相切;(2)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.证明(1)设E是AB的中点,连接OE.由于OA=OB,∠AOB=120°,所以OE⊥AB,∠AOE=60°,在Rt△AOE中,OE=12AO,即O到直线AB的距离等于⊙O的半径,所以直线AB与⊙O相切.(2)由于OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设O′是A,B,C,D四点所在圆的圆心,作直线OO′.由已知得O在线段AB的垂直平分线上,又O′在线段AB的垂直平分线上,所以OO′⊥AB.同理可证,OO′⊥CD,所以AB∥CD.3.(2022·新课标全国Ⅱ,22)如图,在正方体ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.(1)证明:B,C,G,F四点共圆;(2)若AB=1,E为DA的中点,求四边形BCGF的面积.(1)证明由于DF⊥EC,所以△DEF∽△CDF,则有∠GDF=∠DEF=∠FCB,DFCF=DECD=DGCB,所以△DGF∽△CBF,由此可得∠DGF=∠CBF,因此∠CGF+∠CBF=180°,所以B,C,G,F四点共圆.(2)解由B,C,G,F四点共圆,CG⊥CB知FG⊥FB,连接GB,由G为Rt △DFC 斜边CD 的中点,知GF =GC ,故Rt △BCG ≌Rt △BFG ,因此,四边形BCGF 的面积S 是△GCB 的面积S △GCB 的2倍,即S =2S △GCB =2×12×12×1=12. 4.(2022·新课标全国Ⅲ,22)如图,⊙O 中AB ︵的中点为P ,弦PC ,PD 分别交AB 于E ,F 两点.(1)若∠PFB =2∠PCD ,求∠PCD 的大小;(2)若EC 的垂直平分线与FD 的垂直平分线交于点G ,证明OG ⊥CD . 解 (1)连接PB ,BC ,则∠BFD =∠PBA +∠BPD ,∠PCD =∠PCB +∠BCD .由于AP ︵=BP ︵,所以∠PBA =∠PCB ,又∠BPD =∠BCD . 所以∠BFD =∠PCD .又∠PFB +∠BFD =180°,∠PFB =2∠PCD , 所以3∠PCD =180°, 因此∠PCD =60°.(2)证明 由于∠PCD =∠BFD ,所以∠EFD +∠PCD =180°,由此知C ,D ,F ,E 四点共圆,其圆心既在CE 的垂直平分线上,又在DF 的垂直平分线上,故G 就是过C ,D ,F ,E 四点的圆的圆心.所以G 在CD 的垂直平分线上.又O 也在CD 的垂直平分线上,因此OG ⊥CD . 5.(2021·新课标全国Ⅱ,22)如图,O 是等腰三角形ABC 内一点,⊙O 与△ABC 的底边BC 交于M ,N 两点,与底边上的高AD 交于点G ,且与AB ,AC 分别相切于E ,F 两点. (1)证明EF ∥BC ;(2)若AG 等于⊙O 半径,且AE =MN =23,求四边形EBCF 的面积. (1)证明 由于△ABC 是等腰三角形,AD ⊥BC ,所以AD 是∠CAB 的平分线. 又由于⊙O 分别与AB ,AC 相切于点E ,F ,所以AE =AF ,故AD ⊥EF . 从而EF ∥BC .(2)解 由(1)知,AE =AF ,AD ⊥EF ,故AD 是EF 的垂直平分线.又EF 为⊙O 的弦,所以O 在AD 上. 连接OE ,OM ,则OE ⊥AE .由AG 等于⊙O 的半径得AO =2OE ,所以∠OAE =30°.因此△ABC 和△AEF 都是等边三角形. 由于AE =23,所以AO =4,OE =2.由于OM =OE =2,DM =12MN =3, 所以OD =1.于是AD =5,AB =1033.所以四边形EBCF 的面积为12×⎝⎛⎭⎪⎫10332×32-12×(23)2×32=1633. 6.(2022·新课标全国Ⅰ,22)如图,四边形ABCD 是⊙O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB =CE . (1)证明:∠D =∠E ;(2)设AD 不是⊙O 的直径,AD 的中点为M ,且MB =MC ,证明:△ADE 为等边三角形.证明 (1)由题设知A ,B ,C ,D 四点共圆,所以∠D =∠CBE . 由已知CB =CE 得∠CBE =∠E ,故∠D =∠E .(2)如图,设BC 的中点为N ,连接MN ,则由MB =MC 知MN ⊥BC ,故O 在直线MN 上.又AD 不是⊙O 的直径,M 为AD 的中点,故OM ⊥AD ,即MN ⊥AD .所以AD ∥BC ,故∠A =∠CBE . 又∠CBE =∠E ,故∠A =∠E .由(1)知,∠D =∠E ,所以△ADE 为等边三角形.7.(2022·新课标全国Ⅱ,22)如图,P 是⊙O 外一点,P A 是切线,A 为切点,割线PBC 与⊙O 相交于点B ,C ,PC =2P A ,D 为PC 的中点,AD 的延长线交⊙O 于点E .证明: (1)BE =EC ; (2)AD ·DE =2PB 2.证明 (1)连接AB ,AC .由题设知P A =PD ,故∠P AD =∠PDA . 由于∠PDA =∠DAC +∠DCA ,∠P AD =∠BAD +∠P AB ,∠DCA =∠P AB , 所以∠DAC =∠BAD ,从而BE ︵=EC ︵. 因此BE =EC .(2)由切割线定理得P A 2=PB ·PC . 由于P A =PD =DC , 所以DC =2PB ,BD =PB .由相交弦定理得AD ·DE =BD ·DC , 所以AD ·DE =2PB 2.1.(2022·陕西,15B)如图,△ABC 中,BC =6,以BC 为直径的半圆分别交AB ,AC 于点E ,F ,若AC =2AE ,则EF =______.解析 由圆内接四边形对角互补的特征可得到∠AEF =∠ACB , ∴△AEF ∽△ACB ,∴AE AC =EF BC =12=EF6,∴EF =3. 答案 32.(2022·广东,15)如图,在平行四边形ABCD 中,点E 在AB 上且EB =2AE ,AC 与DE 交于点F ,则△CDF 的周长△AEF 的周长=________.解析 由CD ∥AE ,得△CDF ∽△AEF ,于是△CDF 的周长△AEF 的周长=CD AE =ABAE =3.答案 33.(2022·江苏,21A)如图,在△ABC 中,∠ABC =90°,BD ⊥AC ,D 为垂足,E 是BC 的中点,求证:∠EDC =∠ABD . 证明 由BD ⊥AC .可得∠BDC =90°,由E 为BC 中点,可得DE =CE =12BC ,则∠EDC =∠C ,由∠BDC =90°,得∠C +∠DBC =90°, 又∠ABC =90°,则∠ABD +∠DBC =90°, ∴∠ABD =∠C , 又∵∠EDC =∠C , ∴∠EDC =∠ABD .4.(2021·江苏,21A)如图,在△ABC 中,AB =AC ,△ABC 的外接圆⊙O 的弦AE 交BC 于点D .求证:△ABD ∽△AEB .证明 由于AB =AC ,所以∠ABD =∠C .又由于∠C =∠E ,所以∠ABD =∠E , 又∠BAE 为公共角, 可知△ABD ∽△AEB .5.(2021·天津,6)如图,在圆O 中,M ,N 是弦AB 的三等分点,弦CD ,CE分别经过点M ,N .若CM =2,MD =4,CN =3,则线段NE 的长为( ) A.83 B.3 C.103D.52解析 由圆的相交弦定理得CM ·MD =AM ·MB =29AB 2=8, CN ·NE =AN ·NB =29AB 2=8, 而CN =3,所以NE =83,选A. 答案 A6.(2021·广东,15)如图,AB 为圆O 的直径,E 为AB 的延长线上一点,过E 作圆O 的切线,切点为C ,过A 作直线EC 的垂线,垂足为D .若AB =4,CE =23,则AD=________.解析连接OC ,则OC ⊥DE ,∵AD⊥DE,∴OC∥AD,∴OC AD =OE AE,由切割线定理得CE2=BE·AE,∴BE(BE+4)=12.即BE2+4BE-12=0,解得BE=2(舍负),∴AD=OC·AEOE=2×64=3.答案 37.(2021·陕西,22)如图,AB切⊙O于点B,直线AO交⊙O于D,E两点,BC⊥DE,垂足为C.(1)证明:∠CBD=∠DBA;(2)若AD=3DC,BC=2,求⊙O的直径.(1)证明由于DE为⊙O直径,则∠BED+∠EDB=90°,又BC⊥DE,所以∠CBD+∠EDB=90°,从而∠CBD=∠BED,又AB切⊙O于点B,得∠DBA=∠BED,所以∠CBD=∠DBA.(2)解由(1)知BD平分∠CBA,则BABC=ADCD=3,又BC=2,从而AB=32,所以AC=AB2-BC2=4,所以AD=3,由切割线定理得AB2=AD·AE,即AE=AB2AD=6,故DE=AE-AD=3,即⊙O直径为3. 1.平行线等分线段定理(1)平行线等分线段定理:假如一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.(2)推论①经过三角形一边的中点与另一边平行的直线必平分第三边.②经过梯形一腰的中点,且与底边平行的直线平分另一腰.2.平行线分线段成比例定理(1)定理:三条平行线截两条直线,所得的对应线段成比例.(2)推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.3.相像三角形(1)相像三角形的判定①判定定理定理1:两角对应相等,两三角形相像.定理2:两边对应成比例且夹角相等,两三角形相像.定理3:三边对应成比例,两三角形相像.②引理:假如一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.③直角三角形相像的特殊判定斜边与一条直角边对应成比例的两个直角三角形相像.(2)相像三角形的性质①相像三角形对应边上的高、中线、对应角平分线和它们周长的比都等于相像比.②相像三角形的面积比等于相像比的平方.(3)直角三角形的射影定理直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上射影与斜边的比例中项.►一个方法:平行截割定理的应用.(1)[利用平行截割定理解决问题,特殊要留意被平行线所截的直线,找准成比例的线段,得到相应的比例式,有时需要进行适当的变形,从而得到最终的结果.]如图,在△ABC 中,DE ∥BC ,EF ∥CD ,若BC =3,DE =2,DF =1,则AB 的长为________.解析由⎩⎪⎨⎪⎧DE ∥BC ,EF ∥CD ,BC =3,DE =2⇒AE AC =AF AD =DE BC =23,又DF =1,故可解得AF =2,∴AD =3,又AD AB =23,∴AB =92. 答案 92►两种技巧:直角三角形射影定理应用技巧.(2)[①将“乘积式”转化为相像三角形中的“比例式”.②作垂线构造直角三角形.]如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D ,AD =4,AC =5.则BC =________.解析 由射影定理得AC 2=AD ·AB ,所以AB =AC 2AD =254.∴BD =AB -AD =254-4=94.由射影定理得BC 2=BD ·AB =94×254,∴BC =154. 答案 1541.圆周角定理与圆心角定理(1)圆周角定理:圆上一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等. 推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. (2)圆心角定理定理:圆心角的度数等于它所对弧的度数.2.圆的切线(1)切线的性质及判定①切线的性质定理:圆的切线垂直于经过切点的半径. 推论1:经过圆心且垂直于切线的直线必经过切点. 推论2:经过切点且垂直于切线的直线必经过圆心.②切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. (2)切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角. (3)弦切角定理弦切角等于它所夹的弧所对的圆周角. 3.圆内接四边形的性质与判定 (1)性质定理定理1:圆的内接四边形的对角互补.定理2:圆内接四边形的外角等于它的内角的对角.(2)判定定理:假如一个四边形的对角互补,那么这个四边形的四个顶点共圆. 推论:假如四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆.4.与圆有关的成比例线段定理 名称基本图形条件结论应用内容相交弦定理弦AB,CD 相交于圆内点P(1)P A·PB=PC·PD(2)△ACP∽△DBP(1)在P A,PB ,PC,PD四条线段中知三求一(2)求弦长及角圆内的两条相交弦,被交点分成的两条线段长的积相等割线定理P AB,PCD是⊙O的割线(1)P A·PB=PC·PD(2)△P AD∽△PCB(1)求线段P A,PB,PC,PD及AB,CD(2)应用三角形相像求AD,BC从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等切割线定理P A切⊙O于点A,PBC是⊙O的割线(1)P A2=PB·PC(2)△P AB∽△PCA(1)对于线段P A,PB,PC的长可知二求一(2)求解AB,AC从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项►五种方法:与圆有关的帮助线的作法.(3)[①有弦,作弦心距.②有直径,作直径所对的圆周角.③有切点,作过切点的半径.④两圆相交,作公共弦.⑤两圆相切,作公切线]如图,△ABC中,∠C=90°,AB=10,AC=6,以AC为直径的圆与斜边交于点P,则BP长为________.解析连接CP.由推论2知∠CP A=90°,即CP⊥AB,由射影定理知,AC2=AP·AB.∴AP=3.6,∴BP=AB-AP=6.4.答案 6.4►一个切入点:与圆有关的问题中,圆心、弦的中点,直径等是解题中首先要考虑的量,往往成为解题的突破口.优弧BC︵上的(4)如图AB,AC是⊙O的两条切线,切点分别为,B,C,D是点,已知∠BAC=80°,那么∠BDC=________.解析连接OB、OC,则OB⊥AB.OC⊥AC,∴∠BOC=180°-∠BAC=100°,∴∠BDC=12∠BOC=50°.答案50°相像三角形的判定与性质突破方略(1)相像三角形的判定①已知有一角相等时,可选择判定定理1与判定定理2;②已知有两边对应成比例时,可选择判定定理2与判定定理3;③判定两个直角三角形相像时,首先看是否可以用判定直角三角形相像的方法来判定,如不能,再考虑用判定三角形相像的一般方法来判定.(2)相像三角形的性质可用来证明线段成比例,角相等;也可间接证明线段相等.【例1】(2022·黑龙江哈六中二模)如图,A,B,C,D四点在同一圆上,BC与AD的延长线交于点E,点F在BA的延长线上.(1)若ECEB=13,EDEA=12,求DCAB的值;(2)若EF2=F A·FB,证明:EF∥CD.(1)解∵A,B,C,D四点共圆,∴∠EDC=∠EBF,又∵∠CED=∠AEB.∴△CED∽△AEB,∴ECEA=EDEB=DCAB.∵ECEB=13,EDEA=12.∴DCAB=66.(2)证明∵EF2=F A·FB.∴EFF A=FBFE,又∵∠EF A=∠BFE,∴△F AE∽△FEB.∴∠FEA=∠EBF,又∵A,B,C,D四点共圆,∠EDC=∠EBF,∴∠FEA=∠EDC.∴EF∥CD.[点评]判定两个三角形相像的几种方法:①两角对应相等,两三角形相像;②两边对应成比例且夹角相等,两三角形相像;③三边对应成比例,两三角形相像;④相像三角形的定义.与圆有关的定理的应用求解策略(1)与圆有关的比例线段(等积式)的证明常有以下三种方法:①利用相像三角形;②利用切割线定理、相交弦定理;③利用角平分线定理.(2)判定圆的切线的方法以及切线定理的应用①判定切线通常有三种方法:(ⅰ)和圆有唯一一个公共点的直线是圆的切线;(ⅱ)到圆心距离等于半径的直线是圆的切线;(ⅲ)过半径外端且和半径垂直的直线是圆的切线.②已知圆的切线时,第一要考虑过切点和圆心的连线得直角;其次应考虑弦切角定理;第三涉及线段成比例或线段的积时要考虑切割线定理.【例2】如图,AB是⊙O的直径,C,F为⊙O上的点,AC是∠BAF的平分线,过点C作CD⊥AF交AF的延长线于D点,CM⊥AB,垂足为点M.(1)求证:DC是⊙O的切线;(2)求证:AM·MB=DF·DA.证明(1)如图,连接OC,∵OA=OC,∴∠OCA=∠OAC.又∵AC是∠BAF的平分线,∴∠DAC=∠OAC.∴∠DAC=∠OCA.∴AD∥OC.又CD⊥AD,∴OC⊥CD,即DC是⊙O的切线.(2)∵AC是∠BAF的平分线,∠CDA=∠CMA=90°,AC=AC,∴△ACD≌△ACM,∴CD=CM.由(1)知DC2=DF·DA,连接BC,在Rt△ABC中,CM⊥AB,∴CM2=AM·MB,∴AM·MB=DF·DA.[点评]涉及与圆有关的等积线段或成比例的线段,常利用圆周角或弦切角证明三角形相像,在相像三角形中查找比例线段;也可以利用相交弦定理、切割线定理证明线段成比例,在实际应用中,一般涉及两条相交弦应首先考虑相交弦定理,涉及两条割线就要想到割线定理,见到切线和割线时要留意应用切割线定理.四点共圆问题解题方略证明四点共圆方法(1)假如四点与肯定点距离相等,那么这四点共圆.(2)假如四边形的一组对角互补,那么这个四边形的四个顶点共圆.(3)假如四边形的一个外角等于它的内对角,那么这个四边形的四个顶点共圆.(4)假如两个三角形有公共边,公共边所对的角相等,且在公共边的同侧,那么这两个三角形的四个顶点共圆.(5)相交弦定理的逆定理.(6)割线定理的逆定理.【例3】(2022·豫南九校3月模拟)如图,AB为圆O的直径,CD为垂直于AB的一条弦,垂足为E,弦BM与CD相交于点F.(1)证明:A,E,F,M四点共圆;(2)若MF=4BF=4,求线段BC的长.(1)证明连接AM.由AB为直径可知∠AMB=90°,又由于CD⊥AB,所以∠AEF=90°,所以∠AMF+∠AEF=180°,因此A,E,F,M四点共圆.(2)解连接AC,由A,E,F,M四点共圆,知BF·BM=BE·BA.在Rt△ABC中,BC2=BE·BA.又由MF=4BF=4知BF=1,BM=5,所以BC2=5,BC = 5.[点评]以圆为载体与三角形、四边形相结合的综合性题目,往往要综合运用多个定理以及添加相应的帮助线才能解决,在解题时要留意总结一些添加帮助线的技巧.与圆有关的证明与计算问题【示例】(2021·新课标全国卷Ⅰ)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC=3,延长CE交AB于点F,求△BCF外接圆的半径.(1)证明如图,连接DE,交BC于点G.由弦切角定理,得∠ABE=∠BCE,而∠ABE=∠CBE,故∠CBE=∠BCE,所以BE=CE.又由于DB⊥BE,所以DE为圆的直径,∠DCE=90°.由勾股定理可得DB=DC.(2)解由(1)知,∠CDE=∠BDE,DB=DC,故DG是BC边的中垂线,所以BG=3 2.设DE的中点为O,连接BO,则∠BOG=60°,从而∠ABE=∠BCE=∠CBE=30°,所以CF⊥BF,所以△BCF为直角三角形,且斜边BC=3,故Rt△BCF外接圆的半径等于3 2.[答题模板]第一步:依据弦切角定理证明∠ABE=∠BCE,从而证明∠CBE=∠BCE,则有BE =CE;其次步:依据∠DCE=90°及勾股定理得DB=DC;第三步:证明DG是BC边的中垂线,从而得BG=3 2;第四步:证明△BCF是直角三角形,从而求得△BCF外接圆的半径.[方法点评]求三角形外接圆半径的方法主要有:一是利用直角三角形的外接圆半径是斜边的一半求解;二是利用正弦定理asin A=2R求解.全国新课标区模拟精选题:依据高考命题大数据分析,重点关注基础题6,力量题9,10. 专项基础测试模拟精选题一、填空题1.(2021·北京丰台区模拟)如图,AB是圆O的直径,CD与圆O相切于点D,AB=8,BC=1,则CD=________;AD=________.解析连接OD,由切割线定理:CD2=BC·AC,得CD=3,cos∠AOD=-cos∠DOC=-4 5,由余弦定理得:AD2=AO2+DO2-2AO·DO cos∠AOD,解得AD=12105.答案3121052.(2021·天津六校联考)如图,PC、DA为⊙O的切线,A、C为切点,AB为⊙O的直径,若DA=2,CD∶DP=1∶2,则AB=________.解析∵CD=AD=2,CD∶DP=1∶2,∴DP=4,CP=6,又∵∠DAP=90°,∴AP=DP2-AD2=23,由切割线定理得:PC2=P A·PB=P A·(P A+AB),解得AB=4 3.答案4 33.(2022·湖南六校联考)点A、B、C都在⊙O上,过点C的切线交AB的延长线于点D,若AB=5,BC=3,CD=6,则线段AC的长为________.解析由切割线定理,得CD2=BD·AD.由于CD=6,AB=5,则36=BD(BD+5),即BD2+5BD-36=0,即(BD+9)(BD-4)=0,所以BD=4.由于∠A=∠BCD,∠D=∠D,所以△ADC∽△CDB,于是ACCB=CDBD,所以AC=CDBD·BC=64×3=92.答案92二、解答题4.(2022·郑州质量猜测)如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB.(1)求证:OC∥AD;(2)若AD=2,AC=5,求AB的长.(1)证明∵AO=CO,∴∠OAC=∠ACO,∵AC平分∠DAB,∴∠DAC=∠OAC,∴∠DAC=∠ACO,∴OC∥AD.(2)解∵直线CD与⊙O相切于点C,∴OC⊥CD,由(1)知OC∥AD,∴AD⊥DC,即∠ADC=90°,连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ADC=∠ACB,又∵∠DAC=∠BAC,∴△ADC∽△ACB,∴ADAC=ACAB,∵AD=2,AC=5,∴AB=5 2.5.(2022·云南昆明一中第八次适应性训练)如图已知直线P A与半圆O 切于点A,PO交半圆于B,C两点,AD⊥PO于点D.(1)求证:∠P AB=∠BAD:(2)求证:PB·CD=PC·BD.证明(1)连接AC,依题意知BC为半圆O的直径,A为半圆上一点,所以∠BAC=90°,又AD⊥BC,所以∠BAD=∠ACD,又P A为半圆O的切线,所以∠P AB=∠ACD.所以∠P AB=∠BAD.(2)由于∠P AB=∠PCA;∠P=∠P,所以△P AB∽△PCA.所以P APC=PBP A=ABAC,在Rt△BAC中,AD⊥CD于点D,所以ABAC=ADCD=BDAD.所以P APC=ADCD,PBP A=BDAD,所以PCCD=P AAD,PBBD=P AAD,所以PCCD=PBBD,所以PB·CD=PC·BD.创新导向题全等三角形的判定与弦切角定理的应用6.如图,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.(1)求证:AB为圆的直径;(2)若AC=BD,求证:AB=ED.证明(1)由于PD=PG,所以∠PDG=∠PGD.由于PD为切线,故∠PDA=∠DBA.又由于∠PGD=∠EGA,故∠DBA=∠EGA,所以∠DBA+∠BAD=∠EGA+∠BAD,从而∠BDA=∠PF A.由于AF⊥EP,所以∠PF A=90°,于是∠BDA=90°,故AB是直径.(2)连接BC,DC.由于AB是直径,故∠BDA=∠ACB=90°.在Rt△BDA与Rt△ACB中,AB=BA,AC=BD,从而Rt△BDA≌Rt△ACB.于是∠DAB=∠CBA.又由于∠DCB=∠DAB,所以∠DCB=∠CBA,故DC∥AB.由于AB⊥EP,所以DC⊥EP,∠DCE为直角.于是ED为直径.由(1)得ED=AB.专项提升测试模拟精选题一、填空题7.(2021·北京东城区一模)如图,在△ABC中,∠A=60°,AB=2AC=8,过C作△ABC外接⊙O的切线CD,BD⊥CD于D,BD与外接圆交于点E,则DE=________.解析连接OC,由题意得,∠ACB=90°,∠OCB=∠ABC=30°,∵OC⊥CD,BD⊥DC,∴OC∥BD,∴∠DBC=30°.∴DC=12BC=23,BD=BC·sin 60°=6,故由切割线定理:CD2=DE·BD,得DE=2.答案 28.(2021·广州市综合测试一)如图,BC是圆O的一条弦,延长BC至点E,使得BC=2CE=2,过E作圆O的切线,A为切点,∠BAC的平分线AD 交BC于点D,则DE的长为________.解析延长AD交圆O于点F,由切割线定理:AE2=EC·EB得AE=3,∵∠ADE=∠ABE+∠BAF,∠DAE=∠EAC+∠DAC,又∵∠EAC=∠ABE,∠BAF=∠F AC,∴∠EAD=∠EDA,∴AE=ED= 3.答案 3二、解答题9.(2022·山西阳泉模拟)如图,△ABO三边上的点C,D,E都在⊙O上,已知AB∥DE,AC=CB.(1)求证:直线AB是⊙O的切线.(2)若AD=2,且tan∠ACD=12,求⊙O的半径r的长.(1)证明如图连接OC,∵AB∥DE,∴OAOD=OBOE,∵OD=OE,∴OA=OB,∵AC=CB,∴OC⊥AB.∴直线AB是EO的切线.(2)解延长AO交⊙O于点F,连接CF. 由(1)得∠ACD=∠F. ∵tan∠ACD=12,∴tan∠F=12.∵△ACD∽△AFC.∴CDCF=ADAC=12.而AD=2,∴AC=4.由切割线定理得AC2=AD·(AD+2r).∴42=2×(2+2r),解得r=3.创新导向题相像三角形的判定及弦切角定理逆定理的应用10.如图,△ABC的外接圆为⊙O,延长CB至Q,再延长QA至P,使得QC2-QA2=BC·QC.(1)求证:QA为⊙O的切线;(2)若AC恰好为∠BAP的平分线,AB=10,AC=15,求QA的长度. (1)证明∵QC2-QA2=BC·QC,∴QC(QC-BC)=QA2,即QC·QB=QA2,于是QCQA=QAQB,又∠Q=∠Q.∴△QCA∽△QAB,∴∠QAB=∠QCA,依据弦切角定理的逆定理可得QA为⊙O的切线,(2)解∵QA为⊙O的切线,∴∠P AC=∠ABC,而AC为∠BAP的平分线,∴∠BAC=∠ABC,于是AC=BC=15,∴QC2-QA2=15QC,①又由△QCA∽△QAB得QC∶QA=AC∶AB=15∶10,②联合①②消掉QC,得QA=18.。
【高考领航】高考数学大一轮复习第十二章几何证明选讲文北师大版
考点一平行线与相似(全等)三角形
命题点平行线分线段成比例定理
1.平行线截割定理
(1)平行线等分线段定理
如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.
(2)平行线分线段成比例定理
①定理:三条平行线截两条直线,所得的对应线段成比例.
②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.
2.相似三角形的判定与性质
(1)相似三角形的判定定理
①两角对应相等的两个三角形相似;
②两边对应成比例并且夹角相等的两个三角形相似;
③三边对应成比例的两个三角形相似;
(2)相似三角形的性质定理
①相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比.
②相似三角形周长的比等于相似比.
③相似三角形面积的比等于相似比的平方.
3.直角三角形的射影定理
直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上射影与斜边的比例中项.如图,在Rt△ABC中,CD是斜边AB上的高,则有CD2=AD·BD,AC2=AD·AB,BC2=BD·AB.
1.
(2015·高考课标卷Ⅱ)如图,O 为等腰三角形ABC 内一点,⊙O 与△ABC 的底边BC 交于M ,N 两点,与底边上的高AD 交于点G ,且与AB ,
AC 分别相切于E ,F 两点.
(1)证明:EF ∥BC ;
(2)若AG 等于⊙O 的半径,且AE =MN =23,求四边形EBCF 的面积. 解:(1)证明:由于△ABC 是等腰三角形,AD ⊥BC , 所以AD 是∠CAB 的平分线.
又因为⊙O 分别与AB ,AC 相切于点E ,F ,所以AE =AF ,即△AEF 也是等腰三角形. 故AD ⊥EF .从而EF ∥BC . (2)由(1)知,AE =AF ,AD ⊥EF , 故AD 是EF 的垂直平分线. 又EF 为⊙O 的弦,所以O 在AD 上. 连接OE ,OM ,则OE ⊥AE .
由AG 等于⊙O 的半径得AO =2OE ,所以∠OAE =30°. 因此△ABC 和△AEF 都是等边三角形.
因为AE =23,所以AO =4,OE =2. 因为OM =OE =2,DM = 1
2
MN =3,所以OD =1. 于是AD =5,AB =103
3
.
所以四边形EBCF 的面积S =12×⎝ ⎛⎭⎪⎫10332×32-12×(23)2
×32=1633
. 2.(2016·河南三市调研)如图,切线AB 与圆切于点B ,圆内有一点C 满足AB =AC ,∠CAB 的平分线AE 交圆于D ,E ,延长EC 交圆于F ,延长DC 交圆于G ,连接FG ,EG .
(1)证明:AC ∥FG ;
(2)证明:EC =EG . 证明:(1)
∵AB 切圆于点B ,∴AB 2
=AD ·AE ,又∵AB =AC ,∴AC 2
=AD ·AE ,即AC AE =AD AC
,又∠DAC =∠CAE , ∴△ACD ∽△AEC ,∴∠ACD =∠AEC ,
又∵∠AEC =∠DGF ,∴∠ACD =∠DGF ,∴AC ∥FG .
(2)连接BD ,BE ,由AB =AC ,∠BAD =∠CAD 及AD =AD ,知△ABD ≌△ACD .∴∠ADB =∠ADC ,∴∠BDE =∠CDE ,故BE =EG ,由AB =AC ,∠BAE =∠CAE ,AE =AE ,知△ABE ≌△ACE ,∴BE =CE ,∴EC =EG .
判定三角形相似的思路与方法
1.抓住判定两个三角形相似的常规思路: (1)先找两对对应角相等;
(2)若只能找到一对对应角相等,则判断相等的角的两夹边是否对应成比例;
(3)若找不到角相等,就判断三边是否对应成比例,否则考虑平行线分线段成比例定理及相似三角形的“传递性”.
2.借助图形判断三角形相似的方法:(1)有平行线的可围绕平行线找相似;(2)有公共角或相等角的可围绕角做文章,再找其他相等的角或对应边成比例;(3)有公共边的可将图形旋转,观察其特征,找出相等的角或成比例的对应边.
3.(1)利用平行线分线段成比例定理来计算或证明,首先要观察平行线组,再确定所截直线,进而确定比例线段及比例式,同时注意合比性质、等比性质的运用.
(2)有时图形中没有平行线,要添加辅助线,构造相似图形,创造可以形成比例式的条件,达到证明的目的.
选考部分考点二 圆中的相关定理与有关线段
命题点 圆周角定理 1.圆周角定理与圆心角定理 (1)圆周角定理及其推论
①定理:圆上一条弧所对的圆周角等于它所对的圆心角的一半. ②推论:
(ⅰ)推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等. (ⅱ)推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径. (2)圆心角定理:圆心角的度数等于它所对弧的度数.
2.弦切角的性质
弦切角定理:弦切角等于它所夹的弧所对的圆周角. 3.圆的切线的性质及判定定理
(1)定理:圆的切线垂直于经过切点的半径. (2)推论:
①推论1:经过圆心且垂直于切线的直线必经过切点. ②推论2:经过切点且垂直于切线的直线必经过圆心. 4.与圆有关的比例线段
5.圆内接四边形的性质与判定定理 (1)圆内接四边形的性质定理
①定理1:圆内接四边形的对角互补.
②定理2:圆内接四边形的外角等于它的内角的对角. (2)圆内接四边形的判定定理及推论
①判定定理:如果一个四边形的对角互补,那么这个四边形的四个顶点共圆.
②推论:如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆.
1.(2015·高考课标卷Ⅰ)
如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.
(1)若D为AC的中点,证明:DE是⊙O的切线;
(2)若OA=3CE,求∠ACB的大小.
第十二章几何证明选讲解:(1)证明:如图,连接AE,由已知得AE⊥BC,AC⊥AB.
在Rt△AEC中,由已知得DE=DC,故∠DEC=∠DCE.
连接OE,则∠OBE=∠OEB.
又∠ACB+∠ABC=90°,
所以∠DEC+∠OEB=90°,
故∠OED=90°,即DE是⊙O的切线.
(2)设CE=1,AE=x.
由已知得AB=23,BE=12-x2.
由射影定理可得AE2=CE·BE,
即x2=12-x2,即x4+x2-12=0.
解得x=3,所以∠ACB=60°.
2.
(2016·衡水中学检测)如图,AB是圆O的直径,C,D是圆O上两点,AC与BD相交于点E,GC,GD是圆O的切线,点F在DG的延长线上,且DG=GF.
求证:(1)D、E、C、F四点共圆;
(2)GE⊥AB.
证明:(1)如图,连接OC,OD,则OC⊥CG,OD⊥DG,
易知∠COB=2∠1,∠DOA=2∠2,
所以∠DGC=180°-∠DOC=180°-(180°-2∠1-2∠2)=2(∠1+∠2),
由题意得∠DGC=2∠F,所以∠F=∠1+∠2.
又因为∠DEC=∠AEB=180°-(∠1+∠2),
所以∠DEC+∠F=180°,所以D,E,C,F四点共圆.
(2)延长GE交AB于H.
因为GD=GC=GF,
所以点G是经过D,E,C,F四点的圆的圆心.
所以GE=GC,所以∠GCE=∠GEC.
又因为∠GCE+∠3=90°,∠1=∠3,
所以∠GEC+∠3=90°,所以∠AEH+∠1=90°,
所以∠EHA=90°,即GE⊥AB.
解与圆有关的几何证明题的方法;
1.首先观察分析图形的特点,认准图形中圆的切线所形成的弦切角,再利用弦切角定理,寻找相等的角,往往与相似三角形的相关知识联系在一起得到最终的结论.
2.利用圆的切线的性质来证明或进行有关的计算,有时需添加辅助线,其中连接圆心和切点的半径是常用辅助线,从而可以构造直角三角形,利用直角三角形边角关系求解.
3.抓住角度相等或互补,转化为四点共圆,另一方面,利用四点共圆,可以得到相关的角度相等.
4.与圆有关的等角问题找角相等,要找同弧或等弧所对的圆周角,并注意结合应用弦切角定理的意识.。