高考数学大一轮复习_第三章 三角函数、解三角形 第3课时 两角和与差的正弦、余弦和正切公式课件 文 北师大
- 格式:ppt
- 大小:1.19 MB
- 文档页数:3
【步步高】(浙江通用)2017版高考数学一轮复习 第三章 三角函数、解三角形 3.5 两角和与差的正弦、余弦和正切公式1.两角和与差的余弦、正弦、正切公式cos(α-β)=cos αcos β+sin αsin β (C (α-β)) cos(α+β)=cos_αcos_β-sin_αsin_β (C (α+β)) sin(α-β)=sin_αcos_β-cos_αsin_β (S (α-β)) sin(α+β)=sin_αcos_β+cos_αsin_β (S (α+β)) tan(α-β)=tan α-tan β1+tan αtan β (T (α-β))tan(α+β)=tan α+tan β1-tan αtan β (T (α+β))2.二倍角公式sin 2α=2sin_αcos_α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α. 3.公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ ) (2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( × )(3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tanαtan β),且对任意角α,β都成立.( × )(4)存在实数α,使tan 2α=2tan α.( √ )(5)两角和与差的正弦、余弦公式中的角α,β是任意的.( √)1.化简cos 40°cos 25°1-sin 40°等于( )A .1 B. 3 C. 2 D .2 答案 C解析 原式=cos 40°cos 25°1-cos 50°=cos 40°cos 25°·2sin 25°=cos 40°22sin 50°= 2.2.已知α∈R ,sin α+2cos α=102,则tan 2α等于( ) A.43 B.34 C .-34 D .-43 答案 C解析 ∵si n α+2cos α=102,又sin 2α+cos 2α=1, 联立解得⎩⎪⎨⎪⎧sin α=-1010,cos α=31010或⎩⎪⎨⎪⎧sin α=31010,cos α=1010,故tan α=sin αcos α=-13或tan α=3,代入可得tan 2α=2tan α1-tan 2α=2×⎝ ⎛⎭⎪⎫-131-⎝ ⎛⎭⎪⎫-132=-34, 或tan 2α=2tan α1-tan 2α=2×31-32=-34.3.(2015·重庆)若tan α=13,tan(α+β)=12,则tan β等于( )A.17B.16C.57D.56 答案 A解析 tan β=tan[(α+β)-α]=α+β-tan α1+α+βα=12-131+12×13=17.4.(教材改编)sin 347°cos 148°+sin 77°cos 58°=________. 答案22解析 sin 347°cos 148°+sin 77°cos 58°=sin(270°+77°)cos(90°+58°)+sin 77°cos 58° =(-cos 77°)·(-sin 58°)+sin 77°cos 58° =sin 58°cos 77°+cos 58°sin 77° =sin(58°+77°)=sin 135°=22. 5.(2015·青岛质量检测)设α为锐角,若cos(α+π6)=45,则sin(2α+π12)的值为________.答案17250解析 ∵α为锐角,cos(α+π6)=45,∴α+π6∈⎝ ⎛⎭⎪⎫π6,2π3,∴sin(α+π6)=35,∴sin(2α+π3)=2sin(α+π6)cos(α+π6)=2425,∴cos(2α+π3)=2cos 2(α+π6)-1=725,∴sin(2α+π12)=sin(2α+π3-π4)=22[sin(2α+π3)-cos(2α+π3)]=17250.题型一 三角函数公式的基本应用例1 (1)已知sin α=35,α∈(π2,π),则cos 2α2α+π4=________.(2)设sin 2α=-sin α,α∈⎝ ⎛⎭⎪⎫π2,π,则tan 2α的值是________. 答案 (1)-75 (2) 3解析 (1)cos 2α2sin ⎝⎛⎭⎪⎫α+π4=cos 2α-sin 2α2⎝ ⎛⎭⎪⎫22sin α+22cos α=cos α-sin α,∵sin α=35,α∈⎝ ⎛⎭⎪⎫π2,π,∴cos α=-45.∴原式=-75.(2)∵sin 2α=2sin αcos α=-sin α, ∴cos α=-12,又α∈⎝ ⎛⎭⎪⎫π2,π, ∴sin α=32,tan α=-3, ∴tan 2α=2tan α1-tan 2α=-231--32= 3.思维升华 (1)使用两角和与差的三角函数公式,首先要记住公式的结构特征.(2)使用公式求值,应先求出相关角的函数值,再代入公式求值.(1)若α∈(π2,π),tan(α+π4)=17,则sin α等于( )A.35B.45 C .-35 D .-45(2)已知sin α=35,且α∈⎝⎛⎭⎪⎫0,π2,f (x )=2sin ⎝ ⎛⎭⎪⎫x +π4,则f ⎝⎛⎭⎪⎫α-π12=________________________. 答案 (1)A (2)36+4210解析 (1)∵tan(α+π4)=tan α+11-tan α=17,∴tan α=-34=sin αcos α,∴cos α=-43sin α.又∵sin 2α+cos 2α=1,∴sin 2α=925.又∵α∈(π2,π),∴sin α=35.(2)∵sin α=35,且α∈⎝ ⎛⎭⎪⎫0,π2,∴cos α=45,f ⎝ ⎛⎭⎪⎫α-π12=2sin ⎝⎛⎭⎪⎫α-π12+π4=2sin ⎝ ⎛⎭⎪⎫α+π6=2⎝ ⎛⎭⎪⎫sin αcos π6+cos αsin π6=36+4210.题型二 三角函数公式的灵活应用例2 (1)sin(65°-x )cos(x -20°)+cos(65°-x )·cos(110°-x )的值为( ) A. 2B.22C.12D.32(2)(2015·重庆)若tan α=2tan π5,则cos ⎝⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5等于( )A .1B .2C .3D .4答案 (1)B (2)C解析 (1)原式=sin(65°-x )·cos(x -20°)+cos(65°-x )cos[90°-(x -20°)]=sin(65°-x )cos(x -20°)+cos(65°-x )sin(x -20°)=sin[(65°-x )+(x -20°)] =sin 45°=22.故选B.(2)cos ⎝ ⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝ ⎛⎭⎪⎫π2+α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝⎛⎭⎪⎫α+π5sin ⎝ ⎛⎭⎪⎫α-π5=sin αcos π5+cos αsinπ5sin αcos π5-cos αsin π5=tan αtan π5+1tan αtanπ5-1=2+12-1=3.思维升华 运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力.(1)在斜三角形ABC 中,sin A =-2cos B ·cos C ,且tan B ·tan C =1-2,则角A 的值为( ) A.π4 B.π3 C.π2D.3π4(2)函数f (x )=2sin 2(π4+x )-3cos 2x 的最大值为( )A .2B .3C .2+ 3D .2- 3答案 (1)A (2)B解析 (1)由题意知:sin A =-2cos B ·cos C =sin(B +C )=sin B ·cos C +cos B ·sin C ,在等式-2cos B ·cos C =sin B ·cos C +cos B ·sin C 两边同除以cos B ·cos C 得tan B +tan C =-2,又tan(B +C )=tan B +tan C 1-tan B tan C =-1=-tan A ,所以A =π4.(2)f (x )=1-cos 2(π4+x )-3cos 2x =sin 2x -3cos 2x +1=2sin ⎝⎛⎭⎪⎫2x -π3+1,可得f (x )的最大值是3.题型三 角的变换问题例3 (1)设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于( ) A.2525 B.255C.2525或255 D.55或525(2)已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是________.答案 (1)A (2)-45解析 (1)依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin2α+β=±45.又α,β均为锐角,所以0<α<α+β<π,cos α>cos(α+β). 因为45>55>-45,所以cos(α+β)=-45.于是cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α =-45×55+35×255=2525.(2)∵cos(α-π6)+sin α=453,∴32cos α+32sin α=453, 3(12cos α+32sin α)=453, 3sin(π6+α)=453,∴sin(π6+α)=45,∴sin(α+7π6)=-sin(π6+α)=-45.思维升华 (1)解决三角函数的求值问题的关键是把“所求角”用“已知角”表示:①当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;②当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(2)常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=(α+β2)-(α2+β)等.若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝ ⎛⎭⎪⎫π4-β2=33,则cos ⎝⎛⎭⎪⎫α+β2等于( )A.33 B .-33 C.539 D .-69答案 C解析 cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2=cos ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-β2,∵0<α<π2,∴π4<π4+α<3π4,∴sin ⎝ ⎛⎭⎪⎫π4+α=223.又-π2<β<0,则π4<π4-β2<π2,∴sin ⎝ ⎛⎭⎪⎫π4-β2=63. 故cos ⎝⎛⎭⎪⎫α+β2=13×33+223×63=539.4.三角函数求值忽视角的范围致误典例 (1)已知0<β<π2<α<π,且cos ⎝ ⎛⎭⎪⎫α-β2=-19,sin ⎝ ⎛⎭⎪⎫α2-β=23,则cos(α+β)的值为________.(2)已知在△ABC 中,sin(A +B )=23,cos B =-34,则cos A =________.易错分析 (1)角α2-β,α-β2的范围没有确定准确,导致开方时符号错误.(2)对三角形中角的范围挖掘不够,忽视隐含条件,B 为钝角. 解析 (1)∵0<β<π2<α<π,∴-π4<α2-β<π2,π4<α-β2<π,∴cos ⎝ ⎛⎭⎪⎫α2-β= 1-sin 2⎝⎛⎭⎪⎫α2-β=53, sin ⎝⎛⎭⎪⎫α-β2=1-cos 2⎝⎛⎭⎪⎫α-β2=459,∴cos α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-β2-⎝ ⎛⎭⎪⎫α2-β =cos ⎝ ⎛⎭⎪⎫α-β2cos ⎝ ⎛⎭⎪⎫α2-β+sin ⎝ ⎛⎭⎪⎫α-β2sin ⎝ ⎛⎭⎪⎫α2-β=⎝ ⎛⎭⎪⎫-19×53+459×23=7527,∴cos(α+β)=2cos2α+β2-1 =2×49×5729-1=-239729.(2)在△ABC 中,∵cos B =-34,∴π2<B <π,sin B =1-cos 2B =74. ∵π2<B <A +B <π,sin(A +B )=23, ∴cos(A +B )=-1-sin2A +B =-53, ∴cos A =cos[(A +B )-B ]=cos(A +B )cos B +sin(A +B )sin B =⎝ ⎛⎭⎪⎫-53×⎝ ⎛⎭⎪⎫-34+23×74=35+2712. 答案 (1)-239729 (2)35+2712温馨提醒 在解决三角函数式的求值问题时,要注意题目中角的范围的限制,特别是进行开方运算时一定要注意所求三角函数值的符号.另外,对题目隐含条件的挖掘也是容易忽视的问题,解题时要加强对审题深度的要求与训练,以防出错.[方法与技巧] 1.巧用公式变形:和差角公式变形:tan x ±tan y =tan(x ±y )·(1∓tan x ·tan y );倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2,配方变形:1±sin α=⎝ ⎛⎭⎪⎫sin α2±cos α22,1+cos α=2cos2α2,1-cos α=2sin 2α2.2.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形. [失误与防范]1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通.2.在三角函数求值时,一定不要忽视题中给出的或隐含的角的范围.A 组 专项基础训练 (时间:30分钟)1. cos 85°+sin 25°cos 30°cos 25°等于( )A .-32B.22C.12D .1答案 C解析 原式=sin 5°+32sin 25°cos 25°=-+32sin 25°cos 25°=12cos 25°cos 25°=12.2.若θ∈[π4,π2],sin 2θ=378,则sin θ等于( )A.35 B.45 C.74D.34答案 D解析 由sin 2θ=378和sin 2θ+cos 2θ=1得(sin θ+cos θ)2=378+1=(3+74)2,又θ∈[π4,π2],∴sin θ+cos θ=3+74.同理,sin θ-cos θ=3-74,∴sin θ=34.3.若tan θ=3,则sin 2θ1+cos 2θ等于( )A. 3 B .- 3 C.33D .-33答案 A 解析sin 2θ1+cos 2θ=2sin θcos θ1+2cos 2θ-1=tan θ= 3. 4.若sin(π+α)=35,α是第三象限角,则sin π+α2-cosπ+α2sin π-α2-cosπ-α2等于( )A.12 B .-12C .2D .-2答案 B解析 sin π+α2-cos π+α2sin π-α2-cos π-α2=cos α2+sinα2cos α2-sinα2=⎝ ⎛⎭⎪⎫cos α2+sin α2⎝ ⎛⎭⎪⎫cos α2+sin α2⎝⎛⎭⎪⎫cos α2-sin α2⎝ ⎛⎭⎪⎫cos α2+sin α2=cos 2α2+2sin α2cos α2+sin 2α2cos 2α2-sin2α2=1+sin αcos α.∵sin(π+α)=-sin α=35,∴sin α=-35.∵α是第三象限角,∴cos α=-45,故原式=1+⎝ ⎛⎭⎪⎫-35-45=-12.5.已知tan(α+β)=25,tan ⎝ ⎛⎭⎪⎫β-π4=14,那么tan ⎝⎛⎭⎪⎫α+π4等于( )A.1318B.1322C.322D.16 答案 C解析 因为α+π4+β-π4=α+β,所以α+π4=(α+β)-⎝ ⎛⎭⎪⎫β-π4,所以tan ⎝ ⎛⎭⎪⎫α+π4=tan ⎣⎢⎡⎦⎥⎤α+β-⎝⎛⎭⎪⎫β-π4=α+β-tan ⎝⎛⎭⎪⎫β-π41+α+β⎝⎛⎭⎪⎫β-π4=322. 6.sin 250°1+sin 10°=________. 答案 12解析 sin 250°1+sin 10°=1-cos 100°+=1-++=1+sin 10°+=12. 7.已知α、β均为锐角,且cos(α+β)=sin(α-β),则tan α=________. 答案 1解析 根据已知条件:cos αcos β-sin αsin β=sin αcos β-cos αsin β, cos β(cos α-sin α)+sin β(cos α-sin α)=0, 即(cos β+sin β)(cos α-sin α)=0. 又α、β为锐角,则sin β+cos β>0, ∴cos α-sin α=0, ∴tan α=1.8.函数f (x )=2cos x sin ⎝⎛⎭⎪⎫x -π3的最大值为__________.答案 1-32解析 ∵f (x )=2cos x sin ⎝⎛⎭⎪⎫x -π3=2cos x ⎝ ⎛⎭⎪⎫12sin x -32cos x=12sin 2x -32cos 2x -32 =sin ⎝ ⎛⎭⎪⎫2x -π3-32,∴f (x )的最大值为1-32. 9.已知cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=-14,α∈⎝ ⎛⎭⎪⎫π3,π2. (1)求sin 2α的值; (2)求tan α-1tan α的值. 解 (1)cos ⎝⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=cos ⎝ ⎛⎭⎪⎫π6+α·sin ⎝ ⎛⎭⎪⎫π6+α =12sin ⎝ ⎛⎭⎪⎫2α+π3=-14,即sin ⎝ ⎛⎭⎪⎫2α+π3=-12. ∵α∈⎝⎛⎭⎪⎫π3,π2,∴2α+π3∈⎝ ⎛⎭⎪⎫π,4π3 ∴cos ⎝ ⎛⎭⎪⎫2α+π3=-32, ∴sin 2α=sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2α+π3-π3=sin ⎝ ⎛⎭⎪⎫2α+π3cos π3-cos ⎝ ⎛⎭⎪⎫2α+π3sin π3=12. (2)∵α∈⎝ ⎛⎭⎪⎫π3,π2,∴2α∈⎝ ⎛⎭⎪⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32.∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3.10.如图,已知单位圆上有四点E (1,0),A (cos θ,sin θ),B (cos 2θ,sin 2θ),C (cos 3θ,sin 3θ),0<θ≤π3,分别设△OAC ,△ABC 的面积为S 1和S 2.(1)用sin θ,cos θ表示S 1和S 2; (2)求S 1cos θ+S 2sin θ的最大值及取最大值时θ的值.解 (1)根据三角函数的定义,知∠xOA =θ,∠xOB =2θ,∠xOC =3θ,所以∠xOA =∠AOB =∠BOC =θ,所以S 1=12·1·1·sin(3θ-θ)=12sin 2θ.因为S 1+S 2=S 四边形OABC=12·1·1·sin θ+12·1·1·sin θ=sin θ, 所以S 2=sin θ-12sin 2θ=sin θ(1-cos θ).(2)由(1)知S 1cos θ+S 2sin θ=sin θcos θcos θ+sin θ-cos θsin θ=sin θ-cos θ+1=2sin ⎝ ⎛⎭⎪⎫θ-π4+1. 因为0<θ≤π3,所以-π4<θ-π4≤π12,所以-22<sin ⎝⎛⎭⎪⎫θ-π4≤sin π12=6-24,所以S 1cos θ+S 2sin θ的最大值为3+12,此时θ的值为π3. B 组 专项能力提升 (时间:15分钟)11.已知tan(α+π4)=12,且-π2<α<0,则2sin 2α+sin 2αα-π4等于( )A .-255B .-3510C .-31010D.255答案 A解析 由tan(α+π4)=tan α+11-tan α=12,得tan α=-13.又-π2<α<0,所以sin α=-1010.故2sin 2α+sin 2αα-π4=2sin αα+cos α22α+cos α=22sin α=-255.12.若α∈⎝ ⎛⎭⎪⎫0,π2,且sin 2α+cos 2α=14,则tan α的值等于( )A.22B.33C. 2D. 3答案 D解析 ∵α∈⎝ ⎛⎭⎪⎫0,π2,且sin 2α+cos 2α=14,∴sin 2α+cos 2α-sin 2α=14,∴cos 2α=14,∴cos α=12或-12(舍去),∴α=π3,∴tan α= 3.13.已知cos 4α-sin 4α=23,且α∈⎝ ⎛⎭⎪⎫0,π2,则cos ⎝ ⎛⎭⎪⎫2α+π3=________.答案2-156解析 ∵cos 4α-sin 4α=(sin 2α+cos 2α)(cos 2α-sin 2α) =cos 2α=23,又α∈⎝⎛⎭⎪⎫0,π2,∴2α∈(0,π), ∴sin 2α=1-cos 22α=53, ∴cos ⎝ ⎛⎭⎪⎫2α+π3=12cos 2α-32sin 2α =12×23-32×53=2-156. 14.设f (x )=1+cos 2x 2sin ⎝ ⎛⎭⎪⎫π2-x +sin x +a 2sin ⎝ ⎛⎭⎪⎫x +π4的最大值为2+3,则常数a =________.答案 ± 3解析 f (x )=1+2cos 2x -12cos x +sin x +a 2sin ⎝⎛⎭⎪⎫x +π4=cos x +sin x +a 2sin ⎝ ⎛⎭⎪⎫x +π4=2sin ⎝ ⎛⎭⎪⎫x +π4+a 2sin ⎝⎛⎭⎪⎫x +π4=(2+a 2)sin ⎝ ⎛⎭⎪⎫x +π4.依题意有2+a 2=2+3, ∴a =± 3.15.(2015·嘉兴一模)已知函数f (x )=1-2sin ⎝ ⎛⎭⎪⎫x +π8·⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫x +π8-cos ⎝⎛⎭⎪⎫x +π8.(1)求函数f (x )的最小正周期;(2)当x ∈⎣⎢⎡⎦⎥⎤-π2,π12,求函数f ⎝⎛⎭⎪⎫x +π8的值域.解 (1)函数f (x )=1-2sin ⎝ ⎛⎭⎪⎫x +π8[sin ⎝ ⎛⎭⎪⎫x +π8-cos ⎝⎛⎭⎪⎫x +π8] =1-2sin 2⎝ ⎛⎭⎪⎫x +π8+2sin ⎝ ⎛⎭⎪⎫x +π8cos ⎝ ⎛⎭⎪⎫x +π8=cos ⎝ ⎛⎭⎪⎫2x +π4+sin ⎝ ⎛⎭⎪⎫2x +π4=2sin ⎝ ⎛⎭⎪⎫2x +π2 =2cos 2x ,所以f (x )的最小正周期T =2π2=π.(2)由(1)可知f ⎝ ⎛⎭⎪⎫x +π8=2cos ⎝ ⎛⎭⎪⎫2x +π4.由于x ∈⎣⎢⎡⎦⎥⎤-π2,π12,所以2x +π4∈⎣⎢⎡⎦⎥⎤-3π4,5π12,所以cos ⎝ ⎛⎭⎪⎫2x +π4∈⎣⎢⎡⎦⎥⎤-22,1,则f ⎝ ⎛⎭⎪⎫x +π8∈[-1,2],所以f ⎝ ⎛⎭⎪⎫x +π8的值域为[-1,2].。
第3讲两角和与差的正弦、余弦和正切公式π 1 ππ1.(2016·山西省第二次四校联考)已知sin(+α)=,-2<α<0,则cos(α-3)的值是2 2()1 2A. B.2 31C.-D.121 3 π 1 3 1解析:选C.由已知得cos α=,sin α=-2,cos (α-3)=cos α+sin α=-.2 2 2 21+cos 2α+8sin2α2.(2016·开封模拟)已知tan α=4,则的值为()sin 2α65A.4 3 B.42 3C.4 D.31+cos 2α+8sin2α2cos2α+8sin2α2+8tan2α2+8 × 42 65解析:选B. ====.故选B.sin 2α2sin αcos α2tan α 2 × 4 4π 1 π3.(2016·景德镇二检)已知tan(α+β)=1,tan(α-3)=3,则tan(β+3)的值为()2 1A. B.3 23 4C. D.4 5ππ解析:选B.tan(β+3)=tan[(α+β)-(α-3)]π1tan(α+β)-tan(α-3)1-3 1===.π 1 21+tan(α+β)tan(α-3)1+1 ×3π 4 3 7π4.(2016·贵阳监测)已知sin(+α)+sin α=5 ,则sin(α+6 )的值是()32 3 2 3A.- B.5 54 4C. D.-5 5π 4 3 ππ 4 3 3解析:选D.sin (+α)+sin α=⇒sin ·cosα+cos ·sinα+sin α=⇒3 5 3 3 5 23 4 3 3 1 4sin α+cos α=⇒sin α+cos α=,2 5 2 2 517π 7π 7π 故 sin(α+ 6 )=sin αcos+cos αsin=6 631 4-(cos α)=- .sin α+ 2 25 π 1π 5.已知 sin ( -α)=3,则 cos [2( +α)]的值是( )637 1A. B. 9 3 1 7 C .- D .-39π 1 解析:选 D.因为 sin( -α)= ,63ππ 所以 cos( -2α)=cos [2( -α)]36π 7 =1-2 s in 2( -α)= ,6 9 π2π所以 cos [2( +α)]=cos (+2α)33π π =cos [π-( -2α)]=-cos ( -2α)337 =- . 9 3 1 6.(2016·河北省衡水中学高三调研) - =( ) cos 10° sin 170° A .4 B .2 C .-2 D .-43 1 3 1 3sin 10°-cos 10° 解 析 : 选 D. - = - = =cos 10° sin 170° cos 10° sin 10° sin 10°cos 10° 2sin (10°-30°) -2sin 20° = =-4,故选 D. 1 1sin 20° sin 20° 2 22 1 π 7.(2016·江苏省四市调研)已知 t an(α+β)= ,tan β=3,则 tan (α+ 4)的值为________.5 解析:因为 tan α=tan(α+β-β)2 1- tan (α+β)-tan β 5 3 1 = = = , 1+tan (α+β)tan β 2 1 17 1+ ×5 31 1+ π 1+tan α 17 9 所以 tan(α+ 4)== = . 1-tan α 1 81-179 答案: 823 5π8.已知sin(α-β)cos α-cos(β-α)sin α=,β是第三象限角,则sin4 )=5 (β+________.解析:依题意可将已知条件变形为3 3sin [(α-β)-α]=-sin β=,sin β=-.5 54又β是第三象限角,因此有cos β=-.55ππππ7 2sin(β+4 )=-sin(β+)=-sin βcos -cos βsin =.4 4 4 107 2答案:1029.已知sin(α-45°)=-,0°<α<90°,则cos α=________.10解析:因为0°<α<90°,所以-45°<α-45°<45°,7 2所以cos(α-45°)=1-sin2(α-45°)=,10所以cos α=cos[(α-45°)+45°]=cos(α-45°)cos 45°-sin(α-45°)sin45°4=.54答案:5π10.(2016·商丘一模)已知α∈(0,2),且2sin2α-sin α·cosα-3cos2α=0,则πsin(α+4)=________.sin 2α+cos 2α+1π解析:因为α∈(0,2),且2sin2α-sin α·cosα-3cos2α=0,则(2sin α-3cos α)·(sinα+cos α)=0,所以2sin α=3cos α,2 3又sin2α+cos2α=1,所以cos α=,sin α=,13 13πsin(α+4)所以sin 2α+cos 2α+12(sin α+cos α)2=(sin α+cos α)2+(cos2α-sin2α)26=.8答案:2683π5π 3 2 11.已知函数 f (x )=A sin (x + 3),x ∈R ,且 f (12 )= .2(1)求 A 的值;π(2)若 f (θ)-f (-θ)= 3,θ∈(0, 2),求 cos θ的值.5π 5π π解:(1)f(=A sin 3)12) (+123π 2 3 2=A sin = A = ,所以 A =3. 4 2 2π π(2)f (θ)-f (-θ)=3sin (θ+ 3)-3sin (-θ+ 3)ππ=3[(sin θcos 3))-3+cos θsinError!π=6sin θcos =3sin θ= 3,3 3 π所以 sin θ= 3.又因为 θ∈(0, 2),32 6所以 cos θ= 1-sin 2θ= 1-(3)=.3π512.(2014·高考江苏卷)已知 α∈( ,π),sin α=.25π(1)求 sin( +α)的值;4 5π(2)求 cos(-2α)的值.6π5解:(1)因为 α∈( ,π),sin α=,252 5所以 cos α=- 1-sin 2α=- .5π π π故 sin( +α)=sincos α+cos sin α4 4 4 2 25 102 5= 2×(- 5 )+× =-.2 5 1052 5(2)由(1)知sin 2α=2sin αcos α=2×5×(-5 )4 5 2 3=-5,cos 2α=1-2sin2α=1-2×(5 )=,55π5π5π 3 3 1 4所以cos (-2α)=cos cos 2α+sin 6 ·s in 2α=(-2 )×+2×(-5 )=-6 6 54+3 3.1041.(2016·山西省晋中名校高三联合测试)对于集合{a 1,a 2,…,a n }和常数 a 0,定义:ω= sin 2(a 1-a 0)+sin 2(a 2-a 0)+…+sin 2(a n -a 0)为集合{a 1,a 2,…,a n }相对 a 0的“正nπ 5π 7π弦方差”,则集合{, 相对 a 0的“正弦方差”为( ) ,6}2 61 1 A. B.2 31 C. D .与 a 0有关的一个值4π 5π 7π 解析:选 A.集合{6 }相对 a 0的“正弦方差” , ,2 6π5π7π sin 2( -a 0)+sin 2(-a 0)+sin 2(-a 0)2 6 6ω=3π πcos 2a 0+sin 2( +a 0)+sin 2( -a 0)6 6=3 1 2cos 2a 0+(cos a 0+= 3 2 1sin a 0)+(cos a 0- 22332 sin a 0)2 1 3cos 2a 0+ cos 2a 0+ sin 2a 0 2 2=33(sin 2a 0+cos 2a 0) 2 1 = = . 3 2π4 π2.(2016·山东省德州一中月考)设 α 为锐角,若 cos (α+ 6)=5,则 sin (α-12)=________. π 4解析:因为 α 为锐角,cos(α+ 6)= ,5π3 所以 sin(α+ 6)= ,5πππ 故 sin(α-12)=sin [(α+ 6)- 4]ππππ 32 422=sin(α+ 6)cos4-cos (α+ 6)sin= × - × =- .4 5 2 5 2 102答案:-103 5 π 3 π 33.若sin(π+α)=13,cos(-β)=,且0<α< <β< π,求cos(α+β)的值.4 45 4 4π 3解:因为0<α< <β< π.4 43 3 ππ所以π< π+α<π,-< -β<0.4 4 2 453 5 π 3又 sin (π+α)=13,cos ( -β)= ,4 4 53 12所以 cos (π+α)=- ,4 13π 4sin ( -β)=-,4 5π所以 cos(α+β)=sin [ +(α+β)]23 π=sin [(π+α)-( -β)]4 43 π 3 π=sin (π+α)cos ( -β)-cos (π+α)·sin ( -β)4 4 4 433=- .65 3 5 π π 3π π 4.已知 sin α+cos α= ,α∈ ,sin = ,β∈2). 5 (0, 4) (β- 4) 5(, 4 (1)求 sin 2α和 tan 2α的值;(2)求 cos(α+2β)的值.9 解:(1)由题意得(sin α+cos α)2= ,59 4即 1+sin 2α= ,所以 sin 2α= . 5 5π又 2α∈(0, 2).3所以 cos 2α= 1-sin 22α= , 5sin 2α 4所以 tan 2α= = .cos 2α 3 π π π π(2)因为 β∈( ,β- 4∈(0, 4),, 2)4 π 3sin (β- 4)= ,5π 4所以 cos (β- 4)= ,5π π π 24于是sin 2(β-4)=2sin(β-4)·cos(β-4)=.25π又sin 2(β-4)=-cos 2β,24所以cos 2β=-,25π又2β∈(,π),27所以sin 2β=,2561+cos 2α 4 π又cos2α==5,α∈(0,4),22 5 5所以cos α=,sin α=.5 5所以cos(α+2β)=cos αcos 2β-sin αsin 2β2 5 24 5 7=×-×5 (-25 )5 2511 5=-.257。
第3讲 两角和与差的正弦、余弦和正切公式1.两角和与差的正弦、余弦和正切公式 sin(α±β)=sin_αcos__β±cos_αsin__β; cos(α∓β)=cos_αcos__β±sin_αsin__β; tan(α±β)=tan α±tan β1∓tan αtan β⎝ ⎛⎭⎪⎫α±β,α,β均不为k π+π2,k ∈Z . 2.二倍角的正弦、余弦、正切公式 sin 2α=2sin_αcos__α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α⎝ ⎛⎭⎪⎫α,2α均不为k π+π2,k ∈Z . 3.三角公式关系1.两角差余弦公式的推导过程如图,在平面直角坐标系xOy 内作单位圆O ,以Ox 为始边作角α,β,它们的终边与单位圆O 的交点分别为A ,B .则OA →=(cos α,sin α),OB →=(cos β,sin β).由向量数量积的坐标表示,有OA →·OB →=(cos α,sin α)·(cos β,sin β)=cos αcos β+sin αsin β.设OA →与OB →的夹角为θ,则 OA →·OB →=|OA →|·|OB →|cos θ=cos θ=cos αcos β+sin αsin β.另一方面,由图(1)可知,α=2k π+β+θ; 由图(2)可知,α=2k π+β-θ. 于是α-β=2k π±θ,k ∈Z . 所以cos(α-β)=cos θ.即cos(α-β)=cos αcos β+sin αsin β. 2.辨明两个易误点(1)在使用两角和与差的余弦或正切公式时运算符号易错. (2)在(0,π)范围内,sin(α+β)=22所对应的角α+β不是唯一的. 3.有关公式的逆用及变形用(1)tan α±tan β=tan(α±β)(1∓tan αtan β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝⎛⎭⎪⎫α±π4. 4.角的变换技巧 α=(α+β)-β; α=β-(β-α); α=12;β=12;π4+α=π2-⎝ ⎛⎭⎪⎫π4-α.1.教材习题改编已知cos α=-35,α是第三象限角,则cos ⎝ ⎛⎭⎪⎫π4+α为( ) A.210 B .-210C.7210D .-7210A 因为cos α=-35,α是第三象限的角,所以sin α=-1-cos 2α=-1-⎝ ⎛⎭⎪⎫-352=-45,所以cos ⎝ ⎛⎭⎪⎫π4+α=cos π4cos α-sin π4sin α =22×⎝ ⎛⎭⎪⎫-35-22×⎝ ⎛⎭⎪⎫-45=210. 2.教材习题改编化简cos 18°cos 42°-cos 72°·sin 42°的值为( ) A.32B.12 C .-12D .-32B 法一:原式=cos 18°cos 42°-sin 18°·sin 42°=cos(18°+42°)=cos 60°=12. 法二:原式=sin 72°cos 42°-cos 72°sin 42° =sin(72°-42°)=sin 30°=12.3.已知tan ⎝ ⎛⎭⎪⎫α-π6=37,tan ⎝ ⎛⎭⎪⎫π6+β=25,则tan(α+β)的值为( )A.2941 B.129C.141D .1Dtan(α+β)=tan ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π6+⎝ ⎛⎭⎪⎫π6+β =tan ⎝ ⎛⎭⎪⎫α-π6+tan ⎝ ⎛⎭⎪⎫π6+β1-tan ⎝ ⎛⎭⎪⎫α-π6tan ⎝ ⎛⎭⎪⎫π6+β=37+251-37×25=1.4.已知sin ⎝ ⎛⎭⎪⎫π4-x =35,则sin 2x =________.因为sin ⎝ ⎛⎭⎪⎫π4-x =35,所以22cos x -22sin x =35,所以cos x -sin x =325,则1-sin 2x =1825,所以sin 2x =725.7255.sin 15°+sin 75°的值是________.sin 15°+sin 75°=sin 15°+cos 15°=2sin(15°+45°)=2sin 60°=62.62三角函数公式的直接应用(1)(2017·贵阳市监测考试)已知α∈⎝⎛⎭⎪⎫π2,π,sin α=513,则tan ⎝⎛⎭⎪⎫α+π4=( )A .-717B.177C.717D .-177(2)(2017·广州市综合测试(一))已知f (x )=sin ⎝ ⎛⎭⎪⎫x +π6,若sin α=35⎝ ⎛⎭⎪⎫π2<α<π,则f ⎝⎛⎭⎪⎫α+π12=( )A .-7210B .-210C.210D.7210【解析】 (1)因为α∈⎝⎛⎭⎪⎫π2,π,所以cos α=-1213,所以tan α=-512,所以tan ⎝⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=-512+11+512=717.(2)因为sin α=35⎝ ⎛⎭⎪⎫π2<α<π,所以cos α=-45,所以f ⎝ ⎛⎭⎪⎫α+π12=sin ⎝ ⎛⎭⎪⎫α+π12+π6=sin ⎝⎛⎭⎪⎫α+π4=22sin α+22cos α=-210.【答案】 (1)C(2)B两角和与差的三角函数公式可看作是诱导公式的推广,可用α、β的三角函数表示α±β的三角函数,在使用两角和与差的三角函数公式时,特别要注意角与角之间的关系,完成统一角和角与角转换的目的.1.(2017·湖南省东部六校联考)设α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=45,则sin ⎝ ⎛⎭⎪⎫2α+π3的值为( )A.1225B.2425 C .-2425D .-1225B 因为α为锐角,cos ⎝ ⎛⎭⎪⎫α+π6=45>0,所以α+π6为锐角,sin ⎝ ⎛⎭⎪⎫α+π6=1-cos 2⎝ ⎛⎭⎪⎫α+π6=35,所以sin ⎝ ⎛⎭⎪⎫2α+π3=2sin ⎝ ⎛⎭⎪⎫α+π6cos ⎝ ⎛⎭⎪⎫α+π6=2425,故选B.2.已知tan ⎝ ⎛⎭⎪⎫α-π4=14,则tan ⎝ ⎛⎭⎪⎫α+π4=( )A .-2B .2C .-4D .4C 因为tan ⎝⎛⎭⎪⎫α-π4=tan α-11+tan α=14, 所以tan ⎝ ⎛⎭⎪⎫α+π4=tan α+11-tan α=1-tan ⎝⎛⎭⎪⎫α-π4=-4.故选C. 三角函数公式的活用(高频考点)三角函数公式的活用是高考的热点,高考多以选择题或填空题的形式出现,解答题中研究三角函数的性质和解三角形常应用三角函数公式.高考对三角函数公式的考查主要有以下两个命题角度: (1)两角和与差公式的逆用及变形应用; (2)二倍角公式的活用.(1)(2015·高考重庆卷)若tan α=2tan π5,则cos ⎝⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=( )A .1B .2C .3D .4(2)求值:3tan 12°-3sin 12°(4cos 212°-2)=________. 【解析】 (1)因为cos ⎝ ⎛⎭⎪⎫α-3π10=cos ⎝ ⎛⎭⎪⎫α+π5-π2 =sin ⎝⎛⎭⎪⎫α+π5,所以原式=sin ⎝⎛⎭⎪⎫α+π5sin ⎝ ⎛⎭⎪⎫α-π5=sin αcos π5+cos αsinπ5sin αcos π5-cos αsin π5=tan α+tanπ5tan α-tanπ5.又因为 tan α=2tan π5,所以原式=2tan π5+tanπ52tan π5-tanπ5=3.(2)原式=3×sin 12°cos 12°-3sin 12°(4cos 212°-2) =3sin 12°-3cos 12°2sin 12°cos 12°(2cos 212°-1)=23⎝ ⎛⎭⎪⎫12sin 12°-32cos 12°sin 24°cos 24°=23sin (12°-60°)12sin 48°=-4 3.【答案】 (1)C (2)-43三角函数公式的应用技巧运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力,只有熟悉了公式的逆用和变形应用后,才能真正掌握公式的应用.角度一 两角和与差公式的逆用及变形应用1.已知cos ⎝ ⎛⎭⎪⎫α-π6+sin α=435,则sin ⎝⎛⎭⎪⎫α+7π6的值是________. 由cos ⎝ ⎛⎭⎪⎫α-π6+sin α=435,可得32cos α+12sin α+sin α=435,即32sin α+32cos α=435,所以3sin ⎝ ⎛⎭⎪⎫α+π6=435,sin ⎝⎛⎭⎪⎫α+π6=45,所以sin ⎝ ⎛⎭⎪⎫α+7π6=-sin ⎝ ⎛⎭⎪⎫α+π6=-45. -452.若α+β=3π4,则(1-tan α)(1-tan β)的值是________.-1=tan 3π4=tan(α+β)=tan α+tan β1-tan αtan β,所以tan αtan β-1=tan α+tan β. 所以1-tan α-tan β+tan αtan β=2, 即(1-tan α)(1-tan β)=2. 2角度二 二倍角公式的活用3.化简⎝ ⎛⎭⎪⎫tan α+1tan α·12sin 2α-2cos 2α=( ) A .cos 2α B .sin 2α C .cos 2α D .-cos 2αD 原式=⎝⎛⎭⎪⎫sin αcos α+cos αsin α·sin αcos α-2cos 2α=(sin 2α+cos 2α)-2cos 2α=1-2cos 2α=-cos 2α.角的变换(1)(2017·深圳一模)若α,β都是锐角,且cos α=55,sin(α-β)=1010,则cos β=( )A.22B.210C.22或-210D.22或210(2)(2017·六盘水质检)已知cos α=13,cos(α+β)=-13,且α、β∈⎝ ⎛⎭⎪⎫0,π2,则cos(α-β)的值等于( )A .-12B.12 C .-13D.2327【解析】 (1)因为α,β都是锐角,且cos α=55,sin(α-β)=1010,所以sin α=255,cos(α-β)=31010,从而cos β=cos =cos αcos(α-β)+sin αsin(α-β)=22,故选A. (2)因为α∈⎝⎛⎭⎪⎫0,π2,所以2α∈(0,π).因为cos α=13,所以cos 2α=2cos 2α-1=-79,所以sin 2α=1-cos 22α=429,而α,β∈⎝⎛⎭⎪⎫0,π2,所以α+β∈(0,π),所以sin(α+β)=1-cos 2(α+β)=223,所以cos(α-β)=cos=cos 2αcos(α+β)+sin 2αsin(α+β)=⎝ ⎛⎭⎪⎫-79×⎝ ⎛⎭⎪⎫-13+429×223=2327. 【答案】 (1)A (2)D若本例(2)条件不变,求cos 2β的值.因为cos α=13,cos(α+β)=-13,且α,β∈⎝ ⎛⎭⎪⎫0,π2,所以α+β∈(0,π),所以sin α=223,sin(α+β)=223,cos β=cos=cos(α+β)cos α+sin(α+β)sin α =-13×13+223×223=79.所以cos 2β=2cos 2β-1=2×⎝ ⎛⎭⎪⎫792-1=1781.角的变换技巧(1)当“已知角”有两个时,一般把“所求角”表示为两个“已知角”的和或差的形式; (2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.1.已知tan(α+β)=1,tan ⎝ ⎛⎭⎪⎫α-π3=13,则tan ⎝ ⎛⎭⎪⎫β+π3的值为( ) A.23 B.12 C.34D.45Btan ⎝ ⎛⎭⎪⎫β+π3=tan ⎣⎢⎡⎦⎥⎤(α+β)-⎝ ⎛⎭⎪⎫α-π3=tan (α+β)-tan ⎝ ⎛⎭⎪⎫α-π31+tan (α+β)tan ⎝ ⎛⎭⎪⎫α-π3=1-131+1×13=12. 2.已知cos(α-β)=35,sin β=-513,且α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫-π2,0,则sin α=( )A.3365B.6365 C .-3365D .-6365A 因为β∈⎝ ⎛⎭⎪⎫-π2,0,sin β=-513, 所以cos β=1213.又因为α-β∈(0,π),cos(α-β)=35,所以sin(α-β)=45,所以sin α=sin=sin(α-β)cos β+cos(α-β)sin β=3365.1.(2017·陕西西安质检)sin 45°cos 15°+cos 225°sin 165°=( ) A .1B.12C.32D .-12Bsin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12.2.已知sin 2α=13,则cos 2⎝ ⎛⎭⎪⎫α-π4=( ) A.13 B .-13C.23D .-23Ccos 2⎝⎛⎭⎪⎫α-π4=1+cos ⎝ ⎛⎭⎪⎫2α-π22=1+sin 2α2=1+132=23,故选C.3.(2017·武汉市武昌区调研)已知cos(π-α)=45,且α为第三象限角,则tan 2α的值等于( )A.34 B .-34C.247D .-247C 因为cos α=-45,且α为第三象限角,所以sin α=-35,tan α=34,tan 2α=2tan α1-tan 2α=321-916=247,故选C. 4.(2017·兰州市实战考试)sin 2α=2425,0<α<π2,则2cos ⎝ ⎛⎭⎪⎫π4-α的值为( ) A .-15B.15 C .-75D.75D 2cos ⎝ ⎛⎭⎪⎫π4-α=2⎝ ⎛⎭⎪⎫22cos α+22sin α=sin α+cos α,又因为(sin α+cosα)2=1+2sin αcos α=1+sin 2α=4925,0<α<π2,所以sin α+cos α=75,故选D.5.(2017·东北四市联考(二))已知sin ⎝ ⎛⎭⎪⎫π6-α=cos ⎝ ⎛⎭⎪⎫π6+α,则cos 2α=( ) A .1 B .-1 C.12D .0D 因为sin ⎝ ⎛⎭⎪⎫π6-α=cos ⎝ ⎛⎭⎪⎫π6+α,所以12cos α-32sin α=32cos α-12sin α,即⎝ ⎛⎭⎪⎫12-32sin α=-⎝ ⎛⎭⎪⎫12-32cos α,所以tan α=sin αcos α=-1,所以cos 2α=cos 2α-sin 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2αtan 2α+1=0. 6.已知sin ⎝ ⎛⎭⎪⎫π6-α=13,则cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π3+α的值是( ) A.79 B.13 C .-13D .-79D 因为sin ⎝ ⎛⎭⎪⎫π6-α=13,所以cos ⎝ ⎛⎭⎪⎫π3-2α=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π6-α =1-2 sin 2⎝ ⎛⎭⎪⎫π6-α=79,所以cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π3+α=cos ⎝ ⎛⎭⎪⎫2π3+2α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3-2α=-cos ⎝ ⎛⎭⎪⎫π3-2α=-79.7.已知cos ⎝ ⎛⎭⎪⎫α+π3=sin ⎝ ⎛⎭⎪⎫α-π3,则tan α=________.因为cos ⎝ ⎛⎭⎪⎫α+π3=sin ⎝⎛⎭⎪⎫α-π3, 所以cos αcos π3-sin αsin π3=sin αcos π3-cos αsin π3,所以tan α=1. 18.已知sin(α-45°)=-210,0°<α<90°,则cos α=________. 因为0°<α<90°,所以-45°<α-45°<45°,所以cos(α-45°)=1-sin 2(α-45°)=7210, 所以cos α=cos=cos(α-45°)cos 45°-sin(α-45°)sin 45° =45. 459.已知sin(α-β)cos α-cos(β-α)sin α=35,β是第三象限角,则sin ⎝ ⎛⎭⎪⎫β+5π4=________.依题意可将已知条件变形为 sin =-sin β=35,sin β=-35.又β是第三象限角,因此有cos β=-45.sin ⎝ ⎛⎭⎪⎫β+5π4=-sin(β+π4)=-sin βcos π4-cos βsin π4=7210. 721010.(2017·河北衡水中学二调)若tan α+1tan α=103,α∈⎝ ⎛⎭⎪⎫π4,π2,则sin ⎝ ⎛⎭⎪⎫2α+π4+2cos π4cos 2α的值为________.因为tan α+1tan α=103, 所以(tan α-3)(3tan α-1)=0,所以tan α=3或13.因为α∈⎝ ⎛⎭⎪⎫π4,π2,所以tan α>1,所以tan α=3, sin ⎝ ⎛⎭⎪⎫2α+π4+2cos π4cos 2α=22sin 2α+22cos 2α+2(1+cos 2α)2=22(sin 2α+2cos 2α+1)=22⎝ ⎛⎭⎪⎫2tan α1+tan 2α+21-tan 2α1+tan 2α+1=22⎝ ⎛⎭⎪⎫610-1610+1=0. 011.(2015·高考广东卷)已知tan α=2. (1)求tan ⎝⎛⎭⎪⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.(1)tan ⎝⎛⎭⎪⎫α+π4=tan α+tanπ41-tan αtanπ4=2+11-2×1=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1= 2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×24+2-2=1. 12.已知函数f (x )=A sin ⎝ ⎛⎭⎪⎫x +π3,x ∈R ,且f ⎝ ⎛⎭⎪⎫5π12=322.(1)求A 的值;(2)若f (θ)-f (-θ)=3,θ∈⎝⎛⎭⎪⎫0,π2,求cos θ的值.(1)f ⎝⎛⎭⎪⎫5π12=A sin ⎝ ⎛⎭⎪⎫5π12+π3=A sin 3π4=22A =322,所以A =3.(2)f (θ)-f (-θ)=3sin ⎝ ⎛⎭⎪⎫θ+π3-3sin ⎝ ⎛⎭⎪⎫-θ+π3=3⎣⎢⎡⎝ ⎛⎭⎪⎫sin θcos π3+cos θsin π3-⎝ ⎛-sin θcosπ3 ⎦⎥⎤⎭⎪⎫+cos θsin π3 =6sin θcos π3=3sin θ=3,所以sin θ=33.又因为θ∈⎝⎛⎭⎪⎫0,π2,所以cos θ=1-sin 2θ=1-⎝ ⎛⎭⎪⎫332=63.13.(2017·山西省晋中名校高三联合测试)对于集合{a 1,a 2,…,a n }和常数a 0,定义:ω=sin 2(a 1-a 0)+sin 2(a 2-a 0)+…+sin 2(a n -a 0)n为集合{a 1,a 2,…,a n }相对a 0的“正弦方差”,则集合⎩⎨⎧⎭⎬⎫π2,5π6,7π6相对a 0的“正弦方差”为( )A.12 B.13C.14D .与a 0有关的一个值A 集合⎩⎨⎧⎭⎬⎫π2,5π6,7π6相对a 0的“正弦方差”ω=13⎣⎢⎡sin 2⎝ ⎛⎭⎪⎫π2-a 0+sin 2⎝ ⎛⎭⎪⎫5π6-a 0⎦⎥⎤+sin 2⎝ ⎛⎭⎪⎫7π6-a 0=13⎣⎢⎡⎦⎥⎤cos 2a 0+sin 2⎝ ⎛⎭⎪⎫π6+a 0+sin 2⎝ ⎛⎭⎪⎫π6-a 0 =13⎣⎢⎡cos 2a 0+⎝ ⎛⎭⎪⎫12cos a 0+32sin a 02+⎦⎥⎤⎝ ⎛⎭⎪⎫12cos a 0-32sin a 02=13⎝ ⎛⎭⎪⎫cos 2a 0+12cos 2a 0+32sin 2a 0=13⎣⎢⎡⎦⎥⎤32(sin 2a 0+cos 2a 0)=12. 14.(2017·郑州第一次质量预测)△ABC 的三个内角为A 、B 、C ,若3cos A +sin A 3sin A -cos A=tan ⎝ ⎛⎭⎪⎫-7π12,则tan A =___________________________. 3cos A +sin A 3sin A -cos A =2sin ⎝ ⎛⎭⎪⎫A +π32sin ⎝⎛⎭⎪⎫A -π6=-sin ⎝ ⎛⎭⎪⎫A +π3cos ⎝⎛⎭⎪⎫A +π3=-tan ⎝ ⎛⎭⎪⎫A +π3=tan ⎝ ⎛⎭⎪⎫-A -π3 =tan ⎝ ⎛⎭⎪⎫-7π12,所以-A -π3=-7π12,所以A =7π12-π3=3π12=π4,所以tan A =tan π4=1.115.已知sin α+cos α=355,α∈⎝ ⎛⎭⎪⎫0,π4,sin ⎝ ⎛⎭⎪⎫β-π4=35,β∈⎝ ⎛⎭⎪⎫π4,π2.(1)求sin 2α和tan 2α的值; (2)求cos(α+2β)的值.(1)由题意得(sin α+cos α)2=95,即1+sin 2α=95,所以sin 2α=45.又2α∈⎝ ⎛⎭⎪⎫0,π2,所以cos 2α=1-sin 22α=35,所以tan 2α=sin 2αcos 2α=43.(2)因为β∈⎝ ⎛⎭⎪⎫π4,π2,β-π4∈⎝ ⎛⎭⎪⎫0,π4,sin ⎝ ⎛⎭⎪⎫β-π4=35,所以cos ⎝⎛⎭⎪⎫β-π4=45,于是sin 2⎝ ⎛⎭⎪⎫β-π4=2sin ⎝ ⎛⎭⎪⎫β-π4·cos ⎝ ⎛⎭⎪⎫β-π4=2425. 又sin 2⎝ ⎛⎭⎪⎫β-π4=-cos 2β,所以cos 2β=-2425, 又2β∈⎝ ⎛⎭⎪⎫π2,π,所以sin 2β=725,又cos 2α=1+cos 2α2=45,α∈⎝ ⎛⎭⎪⎫0,π4,所以cos α=255,sin α=55.所以cos(α+2β)=cos αcos 2β-sin αsin 2β =255×⎝ ⎛⎭⎪⎫-2425-55×725=-11525.16.已知函数f (x )=(a +2cos 2x )cos(2x +θ)为奇函数,且f ⎝ ⎛⎭⎪⎫π4=0,其中a ∈R ,θ∈(0,π).(1)求a ,θ的值.(2)若f ⎝ ⎛⎭⎪⎫α4=-25,α∈⎝ ⎛⎭⎪⎫π2,π,求sin ⎝⎛⎭⎪⎫α+π3的值. (1)因为y =a +2cos 2x 是偶函数,所以g (x )=cos(2x +θ)为奇函数,而θ∈(0,π),故θ=π2,所以f (x )=-(a +2cos 2x )sin 2x ,代入⎝ ⎛⎭⎪⎫π4,0得a =-1.所以a =-1,θ=π2.(2)f (x )=-(-1+2cos 2x )sin 2x =-cos 2x sin 2x =-12sin 4x ,因为f ⎝ ⎛⎭⎪⎫α4=-25,所以f ⎝ ⎛⎭⎪⎫α4=-12sin α=-25,故sin α=45,又α∈⎝ ⎛⎭⎪⎫π2,π,所以cos α=-35,sin ⎝ ⎛⎭⎪⎫α+π3=45×12+⎝ ⎛⎭⎪⎫-35×32=4-3310.。
【步步高】(某某通用)2017版高考数学一轮复习 第三章 三角函数、解三角形 3.5 两角和与差的正弦、余弦和正切公式1.两角和与差的余弦、正弦、正切公式cos(α-β)=cos αcos β+sin αsin β (C (α-β)) cos(α+β)=cos_αcos_β-sin_αsin_β (C (α+β)) sin(α-β)=sin_αcos_β-cos_αsin_β (S (α-β)) sin(α+β)=sin_αcos_β+cos_αsin_β (S (α+β)) tan(α-β)=tan α-tan β1+tan αtan β (T (α-β))tan(α+β)=tan α+tan β1-tan αtan β (T (α+β))2.二倍角公式sin 2α=2sin_αcos_α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α. 3.公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ ) (2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( × )(3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tanαtan β),且对任意角α,β都成立.( × )(4)存在实数α,使tan 2α=2tan α.( √ )(5)两角和与差的正弦、余弦公式中的角α,β是任意的.( √ )1.化简cos 40°cos 25°1-sin 40°等于( )A .1 B. 3 C. 2 D .2 答案 C解析 原式=cos 40°cos 25°1-cos 50°=cos 40°cos 25°·2sin 25°=cos 40°22sin 50°= 2.2.已知α∈R ,sin α+2cos α=102,则tan 2α等于( ) A.43 B.34 C .-34 D .-43 答案 C解析 ∵sin α+2cos α=102,又sin 2α+cos 2α=1, 联立解得⎩⎪⎨⎪⎧sin α=-1010,cos α=31010或⎩⎪⎨⎪⎧sin α=31010,cos α=1010,故tan α=sin αcos α=-13或tan α=3,代入可得tan 2α=2tan α1-tan 2α=2×⎝ ⎛⎭⎪⎫-131-⎝ ⎛⎭⎪⎫-132=-34, 或tan 2α=2tan α1-tan 2α=2×31-32=-34.3.(2015·某某)若tan α=13,tan(α+β)=12,则tan β等于( )A.17B.16C.57D.56 答案 A解析 tan β=tan[(α+β)-α]=tan α+β-tan α1+tan α+βtan α=12-131+12×13=17.4.(教材改编)sin 347°cos 148°+sin 77°cos 58°=________. 答案22解析 sin 347°cos 148°+sin 77°cos 58°=sin(270°+77°)cos(90°+58°)+sin 77°cos 58° =(-cos 77°)·(-sin 58°)+sin 77°cos 58° =sin 58°cos 77°+cos 58°sin 77° =sin(58°+77°)=sin 135°=22. 5.(2015·某某质量检测)设α为锐角,若cos(α+π6)=45,则sin(2α+π12)的值为________.答案17250解析 ∵α为锐角,cos(α+π6)=45,∴α+π6∈⎝ ⎛⎭⎪⎫π6,2π3,∴sin(α+π6)=35,∴sin(2α+π3)=2sin(α+π6)cos(α+π6)=2425,∴cos(2α+π3)=2cos 2(α+π6)-1=725,∴sin(2α+π12)=sin(2α+π3-π4)=22[sin(2α+π3)-cos(2α+π3)]=17250.题型一 三角函数公式的基本应用例1 (1)已知sin α=35,α∈(π2,π),则cos 2α2sin α+π4=________.(2)设sin 2α=-sin α,α∈⎝ ⎛⎭⎪⎫π2,π,则tan 2α的值是________. 答案 (1)-75 (2) 3解析 (1)cos 2α2sin ⎝⎛⎭⎪⎫α+π4=cos 2α-sin 2α2⎝ ⎛⎭⎪⎫22sin α+22cos α=cos α-sin α,∵sin α=35,α∈⎝ ⎛⎭⎪⎫π2,π,∴cos α=-45.∴原式=-75.(2)∵sin 2α=2sin αcos α=-sin α, ∴cos α=-12,又α∈⎝ ⎛⎭⎪⎫π2,π, ∴sin α=32,tan α=-3, ∴tan 2α=2tan α1-tan 2α=-231--32= 3.思维升华 (1)使用两角和与差的三角函数公式,首先要记住公式的结构特征.(2)使用公式求值,应先求出相关角的函数值,再代入公式求值.(1)若α∈(π2,π),tan(α+π4)=17,则sin α等于( )A.35B.45 C .-35 D .-45(2)已知sin α=35,且α∈⎝⎛⎭⎪⎫0,π2,f (x )=2sin ⎝ ⎛⎭⎪⎫x +π4,则f ⎝⎛⎭⎪⎫α-π12=________________________. 答案 (1)A (2)36+4210解析 (1)∵tan(α+π4)=tan α+11-tan α=17,∴tan α=-34=sin αcos α,∴cos α=-43sin α.又∵si n 2α+cos 2α=1,∴sin 2α=925.又∵α∈(π2,π),∴sin α=35.(2)∵sin α=35,且α∈⎝⎛⎭⎪⎫0,π2,∴cos α=45,f ⎝⎛⎭⎪⎫α-π12=2sin ⎝⎛⎭⎪⎫α-π12+π4=2sin ⎝⎛⎭⎪⎫α+π6=2⎝ ⎛⎭⎪⎫sin αcos π6+cos αsin π6=36+4210. 题型二 三角函数公式的灵活应用例2 (1)sin(65°-x )cos(x -20°)+cos(65°-x )·cos(110°-x )的值为( ) A.2B.22C.12D.32(2)(2015·某某)若tan α=2tan π5,则cos ⎝⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5等于( )A .1B .2C .3D .4 答案 (1)B (2)C解析 (1)原式=sin(65°-x )·cos(x -20°)+cos(65°-x )cos[90°-(x -20°)]=sin(65°-x )cos(x -20°)+cos(65°-x )sin(x -20°)=sin[(65°-x )+(x -20°)] =sin 45°=22.故选B.(2)cos ⎝ ⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝ ⎛⎭⎪⎫π2+α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝⎛⎭⎪⎫α+π5sin ⎝ ⎛⎭⎪⎫α-π5=sin αcos π5+cos αsinπ5sin αcos π5-cos αsin π5=tan αtan π5+1tan αtanπ5-1=2+12-1=3.思维升华 运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力.(1)在斜三角形ABC 中,sin A =-2cos B ·cos C ,且tan B ·tan C =1-2,则角A 的值为( ) A.π4B.π3 C.π2D.3π4(2)函数f (x )=2sin 2(π4+x )-3cos 2x 的最大值为( )A .2B .3C .2+3D .2- 3 答案 (1)A (2)B解析 (1)由题意知:sin A =-2cos B ·cos C =sin(B +C )=sin B ·cos C +cos B ·sin C ,在等式-2cos B ·cos C =sin B ·cos C +cos B ·sin C 两边同除以cos B ·cos C 得tan B +tan C =-2,又tan(B +C )=tan B +tan C 1-tan B tan C =-1=-tan A ,所以A =π4.(2)f (x )=1-cos 2(π4+x )-3cos 2x =sin 2x -3cos 2x +1=2sin ⎝⎛⎭⎪⎫2x -π3+1,可得f (x )的最大值是3.题型三 角的变换问题例3 (1)设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于( ) A.2525 B.255C.2525或255 D.55或525(2)已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是________.答案 (1)A (2)-45解析 (1)依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin2α+β=±45.又α,β均为锐角,所以0<α<α+β<π,cos α>cos(α+β). 因为45>55>-45,所以cos(α+β)=-45.于是cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α =-45×55+35×255=2525.(2)∵cos(α-π6)+sin α=453,∴32cos α+32sin α=453, 3(12cos α+32sin α)=453, 3sin(π6+α)=453,∴sin(π6+α)=45,∴sin(α+7π6)=-sin(π6+α)=-45.思维升华 (1)解决三角函数的求值问题的关键是把“所求角”用“已知角”表示:①当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;②当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(2)常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=(α+β2)-(α2+β)等.若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝ ⎛⎭⎪⎫π4-β2=33,则cos ⎝⎛⎭⎪⎫α+β2等于( )A.33 B .-33 C.539 D .-69答案 C解析 cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2=cos ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-β2,∵0<α<π2,∴π4<π4+α<3π4,∴sin ⎝ ⎛⎭⎪⎫π4+α=223.又-π2<β<0,则π4<π4-β2<π2,∴sin ⎝ ⎛⎭⎪⎫π4-β2=63. 故cos ⎝⎛⎭⎪⎫α+β2=13×33+223×63=539.4.三角函数求值忽视角的X 围致误典例 (1)已知0<β<π2<α<π,且cos ⎝ ⎛⎭⎪⎫α-β2=-19,sin ⎝ ⎛⎭⎪⎫α2-β=23,则cos(α+β)的值为________.(2)已知在△ABC 中,sin(A +B )=23,cos B =-34,则cos A =________.易错分析 (1)角α2-β,α-β2的X 围没有确定准确,导致开方时符号错误.(2)对三角形中角的X 围挖掘不够,忽视隐含条件,B 为钝角. 解析 (1)∵0<β<π2<α<π,∴-π4<α2-β<π2,π4<α-β2<π,∴cos ⎝ ⎛⎭⎪⎫α2-β= 1-sin 2⎝⎛⎭⎪⎫α2-β=53,sin ⎝⎛⎭⎪⎫α-β2=1-cos 2⎝⎛⎭⎪⎫α-β2=459,∴cosα+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-β2-⎝ ⎛⎭⎪⎫α2-β=cos ⎝ ⎛⎭⎪⎫α-β2cos ⎝ ⎛⎭⎪⎫α2-β+sin ⎝ ⎛⎭⎪⎫α-β2sin ⎝ ⎛⎭⎪⎫α2-β=⎝ ⎛⎭⎪⎫-19×53+459×23=7527,∴cos(α+β)=2cos2α+β2-1=2×49×5729-1=-239729.(2)在△ABC 中,∵cos B =-34,∴π2<B <π,sin B =1-cos 2B =74. ∵π2<B <A +B <π,sin(A +B )=23, ∴cos(A +B )=-1-sin2A +B =-53, ∴cos A =cos[(A +B )-B ]=cos(A +B )cos B +sin(A +B )sin B =⎝ ⎛⎭⎪⎫-53×⎝ ⎛⎭⎪⎫-34+23×74=35+2712. 答案 (1)-239729(2)35+2712温馨提醒 在解决三角函数式的求值问题时,要注意题目中角的X 围的限制,特别是进行开方运算时一定要注意所求三角函数值的符号.另外,对题目隐含条件的挖掘也是容易忽视的问题,解题时要加强对审题深度的要求与训练,以防出错.[方法与技巧] 1.巧用公式变形:和差角公式变形:tan x ±tan y =tan(x ±y )·(1∓tan x ·tan y );倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2,配方变形:1±sin α=⎝⎛⎭⎪⎫sin α2±co s α22,1+cos α=2cos2α2,1-cos α=2sin2α2.2.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形. [失误与防X]1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通.2.在三角函数求值时,一定不要忽视题中给出的或隐含的角的X 围.A 组 专项基础训练 (时间:30分钟)1. cos 85°+sin 25°cos 30°cos 25°等于( )A .-32B.22C.12D .1 答案 C解析 原式=sin 5°+32sin 25°cos 25°=sin 30°-25°+32sin 25°cos 25°=12cos 25°cos 25°=12.2.若θ∈[π4,π2],sin 2θ=378,则sin θ等于( )A.35B.45 C.74D.34答案 D解析 由sin 2θ=378和sin 2θ+cos 2θ=1得(sin θ+cos θ)2=378+1=(3+74)2,又θ∈[π4,π2],∴sin θ+cos θ=3+74.同理,sin θ-cos θ=3-74,∴sin θ=34.3.若tan θ=3,则sin 2θ1+cos 2θ等于( )A.3B .- 3C.33D .-33答案 A解析 sin 2θ1+cos 2θ=2sin θcos θ1+2cos 2θ-1=tan θ= 3.4.若sin(π+α)=35,α是第三象限角,则sin π+α2-cos π+α2sin π-α2-cos π-α2等于() A.12B .-12C .2D .-2答案 B解析 sin π+α2-cos π+α2sin π-α2-cos π-α2=cos α2+sin α2cos α2-sin α2=⎝ ⎛⎭⎪⎫cos α2+sin α2⎝ ⎛⎭⎪⎫cos α2+sin α2⎝ ⎛⎭⎪⎫cos α2-sin α2⎝ ⎛⎭⎪⎫cos α2+sin α2=cos 2α2+2sin α2cos α2+sin 2α2cos 2α2-sin 2α2=1+sin αcos α.∵sin(π+α)=-sin α=35,∴sin α=-35. ∵α是第三象限角,∴cos α=-45,故原式=1+⎝ ⎛⎭⎪⎫-35-45=-12.5.已知tan(α+β)=25,tan ⎝ ⎛⎭⎪⎫β-π4=14,那么tan ⎝ ⎛⎭⎪⎫α+π4等于( )A.1318B.1322C.322D.16答案 C解析 因为α+π4+β-π4=α+β, 所以α+π4=(α+β)-⎝⎛⎭⎪⎫β-π4, 所以tan ⎝ ⎛⎭⎪⎫α+π4=tan ⎣⎢⎡⎦⎥⎤α+β-⎝ ⎛⎭⎪⎫β-π4 =tan α+β-tan ⎝ ⎛⎭⎪⎫β-π41+tan α+βtan ⎝⎛⎭⎪⎫β-π4=322. 6.sin 250°1+sin 10°=________. 答案 12解析 sin 250°1+sin 10°=1-cos 100°21+sin 10°=1-cos 90°+10°21+sin 10°=1+sin 10°21+sin 10°=12. 7.已知α、β均为锐角,且cos(α+β)=sin(α-β),则tan α=________. 答案 1解析 根据已知条件:cos αcos β-sin αsin β=sin αcos β-cos αsin β,cos β(cos α-sin α)+sin β(cos α-sin α)=0,即(cos β+sin β)(cos α-sin α)=0.又α、β为锐角,则sin β+cos β>0,∴cos α-sin α=0,∴tan α=1.8.函数f (x )=2cos x sin ⎝⎛⎭⎪⎫x -π3的最大值为__________. 答案 1-32解析 ∵f (x )=2cos x sin ⎝⎛⎭⎪⎫x -π3=2cos x ⎝ ⎛⎭⎪⎫12sin x -32cos x =12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎪⎫2x -π3-32, ∴f (x )的最大值为1-32. 9.已知cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=-14,α∈⎝ ⎛⎭⎪⎫π3,π2. (1)求sin 2α的值;(2)求tan α-1tan α的值. 解 (1)cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α =cos ⎝ ⎛⎭⎪⎫π6+α·sin ⎝ ⎛⎭⎪⎫π6+α =12sin ⎝ ⎛⎭⎪⎫2α+π3=-14, 即sin ⎝⎛⎭⎪⎫2α+π3=-12. ∵α∈⎝ ⎛⎭⎪⎫π3,π2,∴2α+π3∈⎝ ⎛⎭⎪⎫π,4π3 ∴cos ⎝⎛⎭⎪⎫2α+π3=-32, ∴sin 2α=sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2α+π3-π3 =sin ⎝ ⎛⎭⎪⎫2α+π3cos π3-cos ⎝⎛⎭⎪⎫2α+π3sin π3 =12. (2)∵α∈⎝ ⎛⎭⎪⎫π3,π2,∴2α∈⎝ ⎛⎭⎪⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32. ∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3. 10.如图,已知单位圆上有四点E (1,0),A (cos θ,sin θ),B (cos 2θ,sin 2θ),C (cos3θ,sin 3θ),0<θ≤π3,分别设△OAC ,△ABC 的面积为S 1和S 2.(1)用sin θ,cos θ表示S 1和S 2;(2)求S 1cos θ+S 2sin θ的最大值及取最大值时θ的值. 解 (1)根据三角函数的定义,知∠xOA =θ,∠xOB =2θ,∠xOC =3θ,所以∠xOA =∠AOB=∠BOC =θ,所以S 1=12·1·1·sin(3θ-θ)=12sin 2θ. 因为S 1+S 2=S 四边形OABC=12·1·1·sin θ+12·1·1·sin θ=sin θ, 所以S 2=sin θ-12sin 2θ=sin θ(1-cos θ). (2)由(1)知S 1cos θ+S 2sin θ=sin θcos θcos θ+sin θ1-cos θsin θ =sin θ-cos θ+1=2sin ⎝⎛⎭⎪⎫θ-π4+1. 因为0<θ≤π3,所以-π4<θ-π4≤π12, 所以-22<sin ⎝⎛⎭⎪⎫θ-π4≤sin π12=6-24, 所以S 1cos θ+S 2sin θ的最大值为3+12,此时θ的值为π3. B 组 专项能力提升(时间:15分钟)11.已知tan(α+π4)=12,且-π2<α<0,则2sin 2α+sin 2αcos α-π4等于( )A .-255B .-3510C .-31010 D.255答案 A解析 由tan(α+π4)=tan α+11-tan α=12,得tan α=-13. 又-π2<α<0,所以sin α=-1010. 故2sin 2α+sin 2αcos α-π4=2sin αsin α+cos α22sin α+cos α=22sin α =-255. 12.若α∈⎝⎛⎭⎪⎫0,π2,且sin 2α+cos 2α=14,则tan α的值等于( ) A.22B.33C.2D. 3 答案 D解析 ∵α∈⎝⎛⎭⎪⎫0,π2,且sin 2α+cos 2α=14, ∴sin 2α+cos 2α-sin 2α=14, ∴cos 2α=14, ∴cos α=12或-12(舍去), ∴α=π3,∴tan α= 3. 13.已知cos 4α-sin 4α=23,且α∈⎝ ⎛⎭⎪⎫0,π2,则cos ⎝⎛⎭⎪⎫2α+π3=________. 答案 2-156解析 ∵cos 4α-sin 4α=(sin 2α+cos 2α)(cos 2α-sin 2α)=cos 2α=23, 又α∈⎝⎛⎭⎪⎫0,π2,∴2α∈(0,π),∴sin 2α=1-cos 22α=53, ∴cos ⎝⎛⎭⎪⎫2α+π3=12cos 2α-32sin 2α =12×23-32×53=2-156. 14.设f (x )=1+cos 2x 2sin ⎝ ⎛⎭⎪⎫π2-x +sin x +a 2sin ⎝ ⎛⎭⎪⎫x +π4的最大值为2+3,则常数a =________. 答案 ± 3解析 f (x )=1+2cos 2x -12cos x +sin x +a 2sin ⎝⎛⎭⎪⎫x +π4 =cos x +sin x +a 2sin ⎝⎛⎭⎪⎫x +π4 =2sin ⎝ ⎛⎭⎪⎫x +π4+a 2sin ⎝⎛⎭⎪⎫x +π4 =(2+a 2)sin ⎝ ⎛⎭⎪⎫x +π4. 依题意有2+a 2=2+3,∴a =± 3. 15.(2015·某某一模)已知函数f (x )=1-2sin ⎝⎛⎭⎪⎫x +π8 ·⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫x +π8-cos ⎝⎛⎭⎪⎫x +π8. (1)求函数f (x )的最小正周期;(2)当x ∈⎣⎢⎡⎦⎥⎤-π2,π12,求函数f ⎝⎛⎭⎪⎫x +π8的值域. 解 (1)函数f (x )=1-2sin ⎝ ⎛⎭⎪⎫x +π8[sin ⎝ ⎛⎭⎪⎫x +π8-cos ⎝⎛⎭⎪⎫x +π8] =1-2sin 2⎝ ⎛⎭⎪⎫x +π8+2sin ⎝ ⎛⎭⎪⎫x +π8cos ⎝⎛⎭⎪⎫x +π8 =cos ⎝ ⎛⎭⎪⎫2x +π4+sin ⎝ ⎛⎭⎪⎫2x +π4=2sin ⎝⎛⎭⎪⎫2x +π2 =2cos 2x ,所以f (x )的最小正周期T =2π2=π.(2)由(1)可知f ⎝ ⎛⎭⎪⎫x +π8=2cos ⎝⎛⎭⎪⎫2x +π4. 由于x ∈⎣⎢⎡⎦⎥⎤-π2,π12,所以2x +π4∈⎣⎢⎡⎦⎥⎤-3π4,5π12, 所以cos ⎝ ⎛⎭⎪⎫2x +π4∈⎣⎢⎡⎦⎥⎤-22,1,则f ⎝ ⎛⎭⎪⎫x +π8∈[-1,2],所以f ⎝ ⎛⎭⎪⎫x +π8的值域为[-1,2].。