网络七层协议
- 格式:doc
- 大小:60.50 KB
- 文档页数:9
网络7层协议网络七层协议是指计算机网络通信规范的七个层次,从物理层到应用层依次为:物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。
这七个层次分别负责不同的网络任务,共同建立了对网络通信的完整控制和管理。
第一层是物理层,它负责将用户数据以二进制形式在物理介质上传输,如电缆、光纤等。
物理层没有对数据进行处理或识别,只是负责电信号的传输。
第二层是数据链路层,它负责在两个相邻节点之间的数据传输。
它将数据转换为数据块,每一个块都包含了控制信息和校验信息,确保数据传输的可靠性。
第三层是网络层,主要负责数据包在网络中的传输。
它使用IP地址来确定数据包的目的地,并选择最佳的路由进行传输。
网络层还负责实施路由选择和拥塞控制等功能。
第四层是传输层,它负责数据的有序传输和差错恢复。
传输层有两个主要协议:TCP(传输控制协议)和UDP(用户数据报协议)。
TCP提供了可靠的数据传输和错误恢复机制,而UDP则提供了快速、无差错的传输。
第五层是会话层,它负责建立和维护两个通信节点之间的会话。
会话层通过建立会话、传递同步信息和管理数据交换等方式,实现了跨网络的数据交换。
第六层是表示层,它负责数据的格式化和数据的加密解密。
表示层可以将用户数据转换为网络传输所需的格式,并进行数据压缩和加密的操作,以保护数据的安全性。
最后一层是应用层,它为用户提供各种网络服务,如电子邮件、文件传输和远程登录等。
应用层协议有HTTP(超文本传输协议)、FTP(文件传输协议)和SMTP(简单邮件传输协议)等。
七层协议的设计使得每一层都相对独立,可以在适当的时候进行更改和升级,而不需要影响到其他层。
它们共同工作,使得计算机网络能够高效地运行和交换信息。
总之,七层协议定义了网络通信的规范和标准,每一层都有其独立的功能和任务。
只有当各个层次之间进行良好的协调和合作,才能保证网络的正常工作和高效传输。
常见的网络协议网络协议大全图最全的细分7层协议网络协议是指计算机网络通信中所使用的约定和规则。
它可以被认为是网络通信的一种语言,用于确保不同设备之间的互联和信息的传输。
在计算机网络中,有许多种不同的协议,每种协议都有不同的功能和目的。
本文将介绍一些常见的网络协议,并对七层协议进行详细解析。
一、物理层协议物理层协议负责将数字信号转化为物理信号,以便在计算机网络中传输。
最常见的物理层协议包括以太网协议、无线协议(如Wi-Fi)、蓝牙协议等。
以太网协议是一种广泛应用于局域网中的协议,它定义了计算机通过网络线缆传输数据的方式和规则。
Wi-Fi协议则是被广泛应用于无线局域网中的协议,它依靠无线信号传输数据。
二、数据链路层协议数据链路层协议用于定义数据在物理层的传输过程中的一些规则和流程。
其中最常见的协议是以太网协议的数据链路层协议,即以太网帧格式。
它规定了数据在传输过程中如何被分割为帧的形式,并定义了帧的头部和尾部的格式。
此外,还有其他的数据链路层协议,如无线局域网中的Wi-Fi数据链路层协议等。
三、网络层协议网络层协议负责将数据从源主机发送到目标主机之间的路由选择和分组转发的过程。
其中最有名的网络层协议是互联网协议(IP协议),它是一个面向无连接的协议,负责将数据从源主机分组发送到目标主机。
IP协议主要关注的是主机之间的通信。
除了IP协议外,还有一些其他的网络层协议,如网际控制报文协议(ICMP)和互联网组管理协议(IGMP)等。
四、传输层协议传输层协议负责提供端到端的通信服务,确保数据的可靠传输。
其中最常用的协议是传输控制协议(TCP)和用户数据报协议(UDP)。
TCP是一个可靠的、面向连接的协议,它基于数据流的概念,在传输数据之前需要建立连接,并提供错误检测和重传机制。
UDP是一种无连接的协议,不提供可靠性和错误检测,但传输效率高。
除了TCP和UDP外,还有一些其他的传输层协议,如传输流控制协议(SCTP)和数据报传输协议(DTP)等。
网络七层协议网络七层协议是计算机网络通信中的一种规范,定义了在不同网络设备之间进行通信时所涉及的不同层次的功能和任务。
这些层次被称为网络七层协议。
七层协议是一个分层的结构,每一层负责特定的功能,通过将网络通信过程拆分为多个层次,使得网络设备之间的通信更加高效和灵活。
网络七层协议的架构是由国际标准化组织(ISO)在1984年发布的ISO/OSI模型(Open Systems Interconnection Reference Model)所定义的。
该模型将整个网络通信过程划分为七个层次,从下到上分别为物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。
1. 物理层:物理层是网络七层协议的最底层,负责控制网络设备之间的实际传输介质,例如电缆、光纤等。
物理层的任务包括传输数据的二进制形式,确定物理连接和电压规范等。
2. 数据链路层:数据链路层是位于物理层之上的一层,主要负责将原始的数据分割为数据帧,并在物理层的基础上提供错误检测和纠正功能。
数据链路层还负责进行帧同步和流量控制。
3. 网络层:网络层是位于数据链路层之上的一层,负责处理路由和转发数据包的功能。
网络层使用IP地址来标识和寻址设备,以便将数据包从源节点传输到目标节点。
4. 传输层:传输层是网络七层协议的第四层,主要负责在网络设备之间建立可靠的数据传输连接。
传输层使用端口号来标识不同应用程序,并提供流量控制、拥塞控制和错误恢复等功能。
5. 会话层:会话层是位于传输层之上的一层,负责在不同应用程序之间建立、管理和维护会话连接。
会话层提供了对话控制和同步功能,确保通信的顺序和正确性。
6. 表示层:表示层是网络七层协议的第六层,负责将数据从一种格式转换为另一种格式,以便在不同设备之间进行传输和处理。
表示层可以对数据进行加密、压缩和解压缩等操作。
7. 应用层:应用层是网络七层协议的最上层,提供面向用户的网络服务。
在应用层中,可以实现各种各样的协议和功能,例如电子邮件、文件传输、网页浏览等。
网络七层协议一、物理层1、简介:物理层位于OSI参考模型的最底层,它直接面向实际承担数据传输的物理媒体(即通信通道),物理层的传输单位为比特(bit),即一个二进制位(“0”或“1”)。
实际的比特传输必须依赖于传输设备和物理媒体,但是,物理层不是指具体的物理设备,也不是指信号传输的物理媒体,而是指在物理媒体之上为上一层(数据链路层)提供一个传输原始比特流的物理连接。
2、功能:透明的传送比特流;所实现的硬件:集线器(HUB)。
3、媒体和互连设备物理层的媒体包括架空明线、平衡电缆、光纤、无线信道等。
通信用的互连设备指DTE和DCE间的互连设备。
DTE既数据终端设备,又称物理设备,如计算机、终端等都包括在内。
而DCE则是数据通信设备或电路连接设备,如调制解调器等。
数据传输通常是经过DTE──DCE,再经过DCE──DTE的路径。
互连设备指将DTE、DCE连接起来的装置,如各种插头、插座。
LAN中的各种粗、细同轴电缆、T型接、插头,接收器,发送器,中继器等都属物理层的媒体和连接器。
4、物理层的主要性能⑴为数据端设备提供传送数据的通路,数据通路可以是一个物理媒体,也可以是多个物理媒体连接而成.一次完整的数据传输,包括激活物理连接,传送数据,终止物理连接.所谓激活,就是不管有多少物理媒体参与,都要在通信的两个数据终端设备间连接起来,形成一条通路.⑵传输数据.物理层要形成适合数据传输需要的实体,为数据传送服务.一是要保证数据能在其上正确通过,二是要提供足够的带宽(带宽是指每秒钟内能通过的比特(BIT)数),以减少信道上的拥塞.传输数据的方式能满足点到点,一点到多点,串行或并行,半双工或全双工,同步或异步传输的需要.⑶完成物理层的一些管理工作.5、限制性因素:信号的传输离不开传输介质,而传输介质两端必然有接口用于发送和接收信号。
因此,既然物理层主要关心如何传输信号,物理层的主要任务就是规定各种传输介质和接口与传输信号相关的一些特性。
网络七层协议详解网络七层协议是指计算机网络体系结构中的一种分层模型,用于指导网络协议的设计、实现和管理。
这个模型将网络通信分为七个层次,每个层次都有不同的功能和任务。
接下来我们将详细介绍网络七层协议的每一层,以便更好地理解网络通信的原理和机制。
第一层,物理层。
物理层是网络七层协议的最底层,它负责传输原始比特流,主要涉及传输介质、信号传输和物理连接。
在这一层,数据被转换为电信号,并通过物理介质进行传输。
常见的物理介质包括双绞线、光纤和无线信号等。
第二层,数据链路层。
数据链路层负责将物理层传输的比特流组织成帧,并进行差错检测和纠正。
在这一层,数据被划分为数据帧,并添加了帧头和帧尾等控制信息。
数据链路层还负责数据的访问控制,以及网络设备之间的数据传输。
第三层,网络层。
网络层是整个网络七层协议中的核心层,它负责数据的路由和转发。
在这一层,数据被封装成数据包,并通过路由器进行转发。
网络层的主要功能是实现不同网络之间的通信,以及选择最佳的数据传输路径。
第四层,传输层。
传输层主要负责端到端的数据传输,它提供了可靠的数据传输服务和错误恢复机制。
在这一层,数据被划分为数据段,并通过端到端的连接进行传输。
传输层还负责数据的流量控制和拥塞控制,以确保数据的可靠传输。
第五层,会话层。
会话层负责建立、管理和终止网络会话。
在这一层,数据被划分为会话数据单元,并通过会话协议进行传输。
会话层还负责数据的同步和检查点,以确保数据传输的顺序和完整性。
第六层,表示层。
表示层主要负责数据的格式转换和加密解密。
在这一层,数据被转换为适合传输的格式,并进行加密和解密操作。
表示层还负责数据的压缩和解压缩,以减少数据传输的开销。
第七层,应用层。
应用层是网络七层协议中的最高层,它负责网络应用程序的交互和数据传输。
在这一层,数据被封装为应用数据,并通过应用协议进行传输。
应用层还负责数据的解析和处理,以确保应用程序能够正确地接收和处理数据。
综上所述,网络七层协议是计算机网络体系结构中的重要概念,它为网络通信提供了清晰的分层模型和指导原则。
网络7层协议详细解释第一层:物理层(PhysicalLayer),规定通信设备的机械的、电气的、功能的和规程的特性,用以建立、维护和拆除物理链路连接。
具体地讲,机械特性规定了网络连接时所需接插件的规格尺寸、引脚数量和排列情况等;电气特性规定了在物理连接上传输bit流时线路上信号电平的大小、阻抗匹配、传输速率距离限制等;功能特性是指对各个信号先分配确切的信号含义,即定义了DTE和DCE之间各个线路的功能;规程特性定义了利用信号线进行bit流传输的一组操作规程,是指在物理连接的建立、维护、交换信息时,DTE和DCE双方在各电路上的动作系列。
在这一层,数据的单位称为比特(bit)。
属于物理层定义的典型规范代表包括:EIA/TIA RS-232、EIA/TIA RS-449、V.35、RJ-45等。
第二层:数据链路层(DataLinkLayer):在物理层提供比特流服务的基础上,建立相邻结点之间的数据链路,通过差错控制提供数据帧(Frame)在信道上无差错的传输,并进行各电路上的动作系列。
数据链路层在不可靠的物理介质上提供可靠的传输。
该层的作用包括:物理地址寻址、数据的成帧、流量控制、数据的检错、重发等。
在这一层,数据的单位称为帧(frame)。
数据链路层协议的代表包括:SDLC、HDLC、PPP、STP、帧中继等。
第三层是网络层(Network layer)在计算机网络中进行通信的两个计算机之间可能会经过很多个数据链路,也可能还要经过很多通信子网。
网络层的任务就是选择合适的网间路由和交换结点,确保数据及时传送。
网络层将数据链路层提供的帧组成数据包,包中封装有网络层包头,其中含有逻辑地址信息- -源站点和目的站点地址的网络地址。
如果你在谈论一个IP地址,那么你是在处理第3层的问题,这是“数据包”问题,而不是第2层的“帧”。
IP是第3层问题的一部分,此外还有一些路由协议和地址解析协议(ARP)。
有关路由的一切事情都在第3层处理。
osi七层协议OSI七层协议。
OSI(Open System Interconnection)是国际标准化组织(ISO)制定的一个用于计算机网络体系结构的标准框架,它将计算机网络体系结构划分为七层。
每一层都有特定的功能,并且它们之间有着明确的界限和联系。
OSI七层协议的出现,极大地促进了计算机网络的发展和应用。
本文将对OSI七层协议进行详细介绍。
第一层,物理层。
物理层是OSI七层模型中最底层的一层,主要负责传输比特流(0和1)以及物理连接的建立和拆除。
在这一层,数据以比特的形式在网络中传输,而无需考虑数据的含义。
常见的物理层设备有中继器、集线器等。
第二层,数据链路层。
数据链路层负责将比特流组织成帧,并进行物理地址的寻址和识别。
它还负责差错检测和纠正,以确保数据的可靠传输。
在数据链路层中,常见的设备有网桥、交换机等。
第三层,网络层。
网络层主要负责数据包的传输和路由选择。
它将数据包从源主机传输到目标主机,并通过路由器进行数据包的转发和选择最佳路径。
IP地址就是网络层的地址标识。
常见的网络层设备有路由器等。
第四层,传输层。
传输层主要负责端到端的通信和数据传输。
它提供了可靠的数据传输机制,并且负责数据的分段和重组。
常见的传输层协议有TCP和UDP。
第五层,会话层。
会话层负责建立、管理和终止会话连接。
它提供了数据的同步和检查点的功能,以确保数据的完整性和可靠性。
第六层,表示层。
表示层主要负责数据的格式化、加密和压缩等操作。
它将数据转换成适合传输的格式,并且提供了数据的安全性和可靠性。
第七层,应用层。
应用层是OSI七层模型中最高层的一层,它负责为用户提供网络服务和应用程序的接口。
常见的应用层协议有HTTP、FTP、SMTP等。
总结。
OSI七层协议将计算机网络体系结构划分为七个层次,每一层都有特定的功能,并且它们之间有着明确的界限和联系。
理解和掌握OSI七层协议对于计算机网络的学习和应用至关重要。
希望本文能够帮助读者更好地理解和运用OSI七层协议。
网络的七层协议网络的七层协议是指OSI(Open Systems Interconnection,开放式系统互联)参考模型,它将计算机网络中的通信功能划分为七个层次,每个层次负责特定的功能。
下面将对这七层协议进行详细介绍。
第一层,物理层(Physical Layer)负责网络传输媒介的传输原理,包括电压、光信号等的传输方式。
它定义了连接到网络的设备之间的物理接口。
物理层的主要功能是将比特位转化为机械、电气、能量或电磁信号,并以这些信号传输数据。
第二层,数据链路层(Data Link Layer)负责数据的传输错误检测和纠正,以及提供可靠的数据传输服务。
它分为两个子层,即逻辑链路控制子层(Logical Link Control,LLC)和媒体访问控制子层(Media Access Control,MAC)。
第三层,网络层(Network Layer)负责数据包的传输和路由选择。
它的主要任务是通过选择合适的路径,将数据包从源主机发送到目标主机。
网络层使用IP(Internet Protocol,互联网协议)地址来寻址和识别各种设备。
第四层,传输层(Transport Layer)负责在源和目的地之间建立端到端的连接并提供可靠的数据传输。
它通过TCP (Transmission Control Protocol,传输控制协议)和UDP (User Datagram Protocol,用户数据报协议)来实现数据的可靠传输和流量控制。
第五层,会话层(Session Layer)负责建立、管理和终止会话。
它允许用户在网络中的不同主机之间建立会话,并对会话进行管理,如会话的开始、暂停和终止。
第六层,表示层(Presentation Layer)负责将数据从网络格式转换为应用程序能够理解的格式,以及将应用程序的数据转换为网络格式。
它处理数据的加密、解密和压缩,确保数据格式的兼容性。
第七层,应用层(Application Layer)负责为用户提供各种应用程序,如电子邮件、文件传输和远程登录等。
计算机七层协议计算机网络是由多个网络设备相互连接而成的,为了使得不同设备之间能够正常通信,需要遵循一定的通信规则和协议。
而计算机七层协议就是一种通信协议的层次模型,它将整个通信过程划分为七个不同的层次,每个层次负责不同的功能,以实现可靠的数据传输和通信。
第一层:物理层物理层是计算机七层协议中最底层的层次,主要负责将原始的二进制数据转化为适合在物理介质上传输的信号。
物理层关注的是电气特性、物理连接以及机械特性等。
在物理层上,数据以比特(bit)的形式进行传输,通过传输介质如网线或无线信号进行传输。
第二层:数据链路层数据链路层的主要作用是在相邻节点之间提供可靠的数据传输。
它将物理层传输的比特流组织成数据帧,通过物理的连接将数据从一个节点传输到相邻节点。
数据链路层还负责校验传输的数据是否出错,并提供差错检测和纠正的功能。
第三层:网络层网络层的主要功能是实现不同网络之间的数据传输。
它负责将数据包从源节点传输到目标节点,通过路由选择和转发来实现数据的传输。
网络层使用IP协议来寻址和路由,确保数据能够在不同的网络之间正确地传输。
第四层:传输层传输层主要负责将数据从源端到目的端的可靠传输。
它定义了传输数据的协议和端口号,提供端到端的通信服务,确保数据能够按照正确的顺序到达目标端点。
常见的传输层协议有TCP和UDP,它们分别提供面向连接和无连接的通信服务。
第五层:会话层会话层负责建立、管理和终止两个节点之间的会话。
它提供了会话控制和同步功能,确保数据能够按照正确的顺序进行传输。
会话层在数据传输的过程中,可以对数据进行加密解密、压缩解压缩等操作,保证数据的安全性和完整性。
第六层:表示层表示层主要负责将数据进行格式化和转换,以确保不同设备上的应用程序能够正确地解释和处理数据。
表示层的功能包括数据的加密解密、数据的压缩解压缩、数据的编码解码等。
第七层:应用层应用层是计算机七层协议中最高层的层次,它直接面向用户,提供用户与网络之间的接口。
七层协议及其功能七层协议是指网络协议分层标准中的七个层次,对应着计算机网络中不同的功能。
每一层协议负责着特定的功能,从物理传输到应用程序,这些协议决定着数据在网络中如何进行传输和处理。
七层协议包括物理层、数据链路层、网络层、传输层、会话层、表示层和应用层,每层协议的功能不同,但都与数据传输相关,具体介绍如下:1.物理层物理层是网络协议的第一层,负责着网络中的物理传输和数据的电子信号传输。
物理层协议的主要功能是传输基于电流、电压和光强度的数据信号,以及处理传输过程中的噪声和干扰问题。
2.数据链路层数据链路层在网络协议分层标准中是第二层,主要负责着数据帧的传输和错误处理。
数据链路层协议的主要功能是将数据加上头部和尾部的标识,组成帧,传输到目标设备,同时在传输过程中校验数据的完整性。
3.网络层网络层是网络协议的第三层,负责着不同网络之间的数据传输和路由选择。
网络层协议的主要功能是将数据报发送到目标网络,同时决定路由的选择,通过网络地址识别和管理数据报。
4.传输层传输层是网络协议的第四层,负责着数据传输和错误处理,同时也决定着数据的传输速度和可靠性。
传输层协议的主要功能是提供可靠的端到端的传输服务,数据的分段传输,同时也提供错误控制和流量控制。
5.会话层会话层是网络协议的第五层,负责着网络中不同设备之间的通信。
会话层协议的主要功能是确定通信中的对话过程,确保设备之间的通信顺序和顺畅性,同时维护连接状态和恢复失去连接的恢复。
6.表示层表示层是网络协议的第六层,定义了不同设备之间的数据表示方法、加密和解密技术以及数据的压缩和解压技术。
表示层协议的主要功能是将不同设备之间的数据格式和编码进行转换和匹配,确保数据在不同设备间顺畅传输。
7.应用层应用层是网络协议分层标准的最高层,主要负责着网络应用的数据交换和处理。
应用层协议的主要功能是为应用程序提供网络服务、数据处理和交换服务,包括电子邮件、文件传输、网页浏览等。
网络七层协议计算机网络中的七层协议:OSI是一个开放性的通行系统互连参考模型,他是一个定义的非常好的协议规范。
OSI模型有7层结构,每层都可以有几个子层。
下面我简单的介绍一下这7层及其功能。
OSI的7层从上到下分别是7 应用层6 表示层5 会话层4 传输层3 网络层2 数据链路层1 物理层其中高层,既7、6、5、4层定义了应用程序的功能,下面3层,既3、2、1层主要面向通过网络的端到端的数据流。
下面我给大家介绍一下这7层的功能:(1)应用层:与其他计算机进行通讯的一个应用,它是对应应用程序的通信服务的。
例如,一个没有通信功能的字处理程序就不能执行通信的代码,从事字处理工作的程序员也不关心OSI的第7层。
但是,如果添加了一个传输文件的选项,那么字处理器的程序员就需要实现OSI的第7层。
示例:telnet,HTTP,FTP,WWW,NFS,SMTP等。
(2)表示层:这一层的主要功能是定义数据格式及加密。
例如,FTP 允许你选择以二进制或ASCII格式传输。
如果选择二进制,那么发送方和接收方不改变文件的内容。
如果选择ASCII格式,发送方将把文本从发送方的字符集转换成标准的ASCII后发送数据。
在接收方将标准的ASCII转换成接收方计算机的字符集。
示例:加密,ASCII等。
(3)会话层:他定义了如何开始、控制和结束一个会话,包括对多个双向小时的控制和管理,以便在只完成连续消息的一部分时可以通知应用,从而使表示层看到的数据是连续的,在某些情况下,如果表示层收到了所有的数据,则用数据代表表示层。
示例:RPC,SQL等。
(4)传输层:这层的功能包括是否选择差错恢复协议还是无差错恢复协议,及在同一主机上对不同应用的数据流的输入进行复用,还包括对收到的顺序不对的数据包的重新排序功能。
示例:TCP,UDP,SPX。
(5)网络层:这层对端到端的包传输进行定义,他定义了能够标识所有结点的逻辑地址,还定义了路由实现的方式和学习的方式。
为了适应最大传输单元长度小于包长度的传输介质,网络层还定义了如何将一个包分解成更小的包的分段方法。
示例:IP,IPX等。
(6)数据链路层:他定义了在单个链路上如何传输数据。
这些协议与被讨论的各种介质有关。
示例:ATM,FDDI等。
(7)物理层:OSI的物理层规范是有关传输介质的特性标准,这些规范通常也参考了其他组织制定的标准。
连接头、针、针的使用、电流、电流、编码及光调制等都属于各种物理层规范中的内容。
物理层常用多个规范完成对所有细节的定义。
示例:Rj45,802.3等。
OSI分层的优点:(1)人们可以很容易的讨论和学习协议的规范细节。
(2)层间的标准接口方便了工程模块化。
(3)创建了一个更好的互连环境。
(4)降低了复杂度,使程序更容易修改,产品开发的速度更快。
(5)每层利用紧邻的下层服务,更容易记住个层的功能。
大多数的计算机网络都采用层次式结构,即将一个计算机网络分为若干层次,处在高层次的系统仅是利用较低层次的系统提供的接口和功能,不需了解低层实现该功能所采用的算法和协议;较低层次也仅是使用从高层系统传送来的参数,这就是层次间的无关性。
因为有了这种无关性,层次间的每个模块可以用一个新的模块取代,只要新的模块与旧的模块具有相同的功能和接口,即使它们使用的算法和协议都不一样。
网络中的计算机与终端间要想正确的传送信息和数据,必须在数据传输的顺序、数据的格式及内容等方面有一个约定或规则,这种约定或规则称做协议。
网络协议主要有三个组成部分:1、语义:是对协议元素的含义进行解释,不同类型的协议元素所规定的语义是不同的。
例如需要发出何种控制信息、完成何种动作及得到的响应等。
2、语法:将若干个协议元素和数据组合在一起用来表达一个完整的内容所应遵循的格式,也就是对信息的数据结构做一种规定。
例如用户数据与控制信息的结构与格式等。
3、时序:对事件实现顺序的详细说明。
例如在双方进行通信时,发送点发出一个数据报文,如果目标点正确收到,则回答源点接收正确;若接收到错误的信息,则要求源点重发一次。
70年代以来,国外一些主要计算机生产厂家先后推出了各自的网络体系结构,但它们都属于专用的。
为使不同计算机厂家的计算机能够互相通信,以便在更大的范围内建立计算机网络,有必要建立一个国际范围的网络体系结构标准。
国际标准化组织ISO 于1981年正式推荐了一个网络系统结构----七层参考模型,叫做开放系统互连模型(Open System Interconnection,OS I)。
由于这个标准模型的建立,使得各种计算机网络向它靠拢, 大大推动了网络通信的发展。
OSI 参考模型将整个网络通信的功能划分为七个层次,见图1。
它们由低到高分别是物理层(PH)、链路层(DL)、网络层(N)、传输层(T)、会议层(S)、表示层(P)、应用层(A)。
每层完成一定的功能,每层都直接为其上层提供服务,并且所有层次都互相支持。
第四层到第七层主要负责互操作性,而一层到三层则用于创造两个网络设备间的物理连接.1.物理层物理层是OSI的第一层,它虽然处于最底层,却是整个开放系统的基础。
物理层为设备之间的数据通信提供传输媒体及互连设备,为数据传输提供可靠的环境。
1.1媒体和互连设备物理层的媒体包括架空明线、平衡电缆、光纤、无线信道等。
通信用的互连设备指DTE和DCE间的互连设备。
DTE既数据终端设备,又称物理设备,如计算机、终端等都包括在内。
而DCE则是数据通信设备或电路连接设备,如调制解调器等。
数据传输通常是经过DTE——DCE,再经过DCE——DTE的路径。
互连设备指将DTE、DCE连接起来的装置,如各种插头、插座。
LAN中的各种粗、细同轴电缆、T型接、插头,接收器,发送器,中继器等都属物理层的媒体和连接器。
1.2物理层的主要功能1.2.1为数据端设备提供传送数据的通路,数据通路可以是一个物理媒体,也可以是多个物理媒体连接而成.一次完整的数据传输,包括激活物理连接,传送数据,终止物理连接.所谓激活,就是不管有多少物理媒体参与,都要在通信的两个数据终端设备间连接起来,形成一条通路.1.2.2传输数据.物理层要形成适合数据传输需要的实体,为数据传送服务.一是要保证数据能在其上正确通过,二是要提供足够的带宽(带宽是指每秒钟内能通过的比特(BIT)数),以减少信道上的拥塞.传输数据的方式能满足点到点,一点到多点,串行或并行,半双工或全双工,同步或异步传输的需要.1.3物理层的一些重要标准物理层的一些标准和协议早在OSI/TC97/C16 分技术委员会成立之前就已制定并在应用了,OSI也制定了一些标准并采用了一些已有的成果.下面将一些重要的标准列出,以便读者查阅.ISO2110:称为"数据通信----25芯DTE/DCE接口连接器和插针分配".它与EIA(美国电子工业协会)的"RS-232-C"基本兼容。
ISO2593:称为"数据通信----34芯DT E/DCE----接口连接器和插针分配"。
ISO4092:称为"数据通信----37芯DTE /DEC----接口连接器和插针分配".与EIARS-449兼容。
CCITT V.24:称为"数据终端设备(DTE)和数据电路终接设备之间的接口电路定义表".其功能与EIARS-232-C及RS-449兼容于100序列线上.2.数据链路层数据链路可以粗略地理解为数据通道。
物理层要为终端设备间的数据通信提供传输媒体及其连接.媒体是长期的,连接是有生存期的.在连接生存期内,收发两端可以进行不等的一次或多次数据通信.每次通信都要经过建立通信联络和拆除通信联络两过程.这种建立起来的数据收发关系就叫作数据链路.而在物理媒体上传输的数据难免受到各种不可靠因素的影响而产生差错,为了弥补物理层上的不足,为上层提供无差错的数据传输,就要能对数据进行检错和纠错.数据链路的建立,拆除,对数据的检错,纠错是数据链路层的基本任务。
2.1链路层的主要功能链路层是为网络层提供数据传送服务的,这种服务要依靠本层具备的功能来实现。
链路层应具备如下功能:2.1.1链路连接的建立,拆除,分离。
2.1.2帧定界和帧同步。
链路层的数据传输单元是帧,协议不同,帧的长短和界面也有差别,但无论如何必须对帧进行定界。
2.1.3顺序控制,指对帧的收发顺序的控制。
2.1.4差错检测和恢复。
还有链路标识,流量控制等等.差错检测多用方阵码校验和循环码校验来检测信道上数据的误码,而帧丢失等用序号检测.各种错误的恢复则常靠反馈重发技术来完成。
2.2数据链路层的主要协议数据链路层协议是为发对等实体间保持一致而制定的,也为了顺利完成对网络层的服务。
主要协议如下:2.2.1ISO1745--1975:"数据通信系统的基本型控制规程".这是一种面向字符的标准,利用10个控制字符完成链路的建立,拆除及数据交换.对帧的收发情况及差错恢复也是靠这些字符来完成.ISO1155, ISO1177, ISO2 626, ISO2629等标准的配合使用可形成多种链路控制和数据传输方式.2.2.2ISO3309--1984:称为"HDLC 帧结构".ISO4335--1984:称为"HDLC 规程要素".ISO7809--1984:称为"HDLC 规程类型汇编".这3个标准都是为面向比特的数据传输控制而制定的.有人习惯上把这3个标准组合称为高级链路控制规程.2.2.3ISO7776:称为"DTE数据链路层规程".与CCITT X.25LAB"平衡型链路访问规程"相兼容.2.3链路层产品独立的链路产品中最常见的当属网卡,网桥也是链路产品。
MODEM的某些功能有人认为属于链路层,对些还有争议.数据链路层将本质上不可靠的传输媒体变成可靠的传输通路提供给网络层。
在IEEE802.3情况下,数据链路层分成了两个子层,一个是逻辑链路控制,另一个是媒体访问控制。
下图所示为IEEE802.3LAN体系结构。
AUI=连接单元接口PMA=物理媒体连接MAU=媒体连接单元PLS=物理信令MDI=媒体相关接口3.网络层网络层的产生也是网络发展的结果.在联机系统和线路交换的环境中,网络层的功能没有太大意义.当数据终端增多时.它们之间有中继设备相连.此时会出现一台终端要求不只是与唯一的一台而是能和多台终端通信的情况,这就是产生了把任意两台数据终端设备的数据链接起来的问题,也就是路由或者叫寻径.另外,当一条物理信道建立之后,被一对用户使用,往往有许多空闲时间被浪费掉.人们自然会希望让多对用户共用一条链路,为解决这一问题就出现了逻辑信道技术和虚拟电路技术.3.1网络层主要功能网络层为建立网络连接和为上层提供服务,应具备以下主要功能:3.1.1路由选择和中继.3.1.2激活,终止网络连接.3.1.3在一条数据链路上复用多条网络连接,多采取分时复用技术.3.1.4差错检测与恢复.3.1.5排序,流量控制.3.1.6服务选择.3.1.7网络管理.3.2网络层标准简介网络层的一些主要标准如下:3.2.1 ISO.DIS8208:称为"DTE用的X.25分组级协议"3.2.2 ISO.DIS8348:称为"CO 网络服务定义"(面向连接)3.2.3 ISO.DIS8349:称为"CL 网络服务定义"(面向无连接)3.2.4 ISO.DIS8473:称为"CL 网络协议"3.2.5 ISO.DIS8348:称为"网络层寻址"3.2.6 除上述标准外,还有许多标准。