高三数学一轮复习典型题训练:导数及其应用
- 格式:doc
- 大小:2.75 MB
- 文档页数:31
第 1 页 共 2 页 江苏省13大市数学试题分类汇编-导数及其应用1、(南通市2013届高三期末)曲线2(1)1()e (0)e 2x f f x f x x '=-+在点(1,f (1))处的切线方程为 . 2、(苏州市2013届高三期末)过坐标原点作函数ln y x =图像的切线,则切线斜率为 .3、(泰州市2013届高三期末)曲线y=2lnx 在点(e,2)处的切线与y 轴交点的坐标为4、(扬州市2013届高三期末)已知函数x m x x f -=ln )((R m ∈)在区间],1[e 上取得最小值4,则=m .5、(常州市2013届高三期末)第八届中国花博会将于2013年9月在常州举办,展览园指挥中心所用地块的形状是大小一定的矩形ABCD ,BC a =,CD b =.a ,b 为常数且满足b a <.组委会决定从该矩形地块中划出一个直角三角形地块AEF 建游客休息区(点E ,F 分别在线段AB ,AD 上),且该直角三角形AEF 的周长为(2l b >),如图.设AE x =,△AEF 的面积为S .(1)求S 关于x 的函数关系式;(2)试确定点E 的位置,使得直角三角形地块AEF 的面积S 最大,并求出S 的最大值.6、(连云港市2013届高三期末)某单位决定对本单位职工实行年医疗费用报销制度,拟制定年医疗总费用在2万元至10万元(包括2万元和10万元)的报销方案,该方案要求同时具备下列三个条件:①报销的医疗费用y (万元)随医疗总费用x (万元)增加而增加;②报销的医疗费用不得低于医疗总费用的50%;③报销的医疗费用不得超过8万元.(1)请你分析该单位能否采用函数模型y =0.05(x 2+4x +8)作为报销方案;(2)若该单位决定采用函数模型y =x -2ln x +a (a 为常数)作为报销方案,请你确定整数a 的值.(参考数据:ln2≈0.69,ln10≈2.3)7、(南京市、盐城市2013届高三期末)对于定义在区间D 上的函数()f x , 若任给0x D ∈, 均有0()f x D ∈, 则称函数()f x 在区间D 上封闭.试判断()1f x x =-在区间[2,1]-上是否封闭, 并说明理由; 若函数3()1x a g x x +=+在区间[3,10]上封闭, 求实数a 的取值范围; 若函数3()3h x x x =-在区间[,](,)a b a b Z ∈上封闭, 求,a b 的值.8、(南通市2013届高三期末)某公司为一家制冷设备厂设计生产一种长方形薄板,其周长为4米,这种薄板须沿其对角线折叠后使用.如图所示,()ABCD AB AD >为长方形薄板,沿AC 折叠后,AB '交DC 于点P .当△ADP 的面积最大时最节能,凹多边形ACB PD '的面积最大时制冷效果最好.(1)设AB =x 米,用x 表示图中DP 的长度,并写出x 的取值范围;A BC D (第17题) B ' P第 2 页 共 2 页 (2)若要求最节能,应怎样设计薄板的长和宽?(3)若要求制冷效果最好,应怎样设计薄板的长和宽?9、(徐州、淮安、宿迁市2013届高三期末)已知函数).1,0(ln )(2≠>-+=a a a x x a x f x(1) 求函数)(x f 在点))0(,0(f 处的切线方程;(2) 求函数)(x f 单调区间;(3) 若存在]1,1[,21-∈x x ,使得e e x f x f (1)()(21-≥-是自然对数的底数),求实数a 的取值范围.10、(泰州市2013届高三期末)已知函数f(x)=(x-a)2()x b -,a,b 为常数,(1)若a b ≠,求证:函数f(x)存在极大值和极小值(2)设(1)中 f(x) 取得极大值、极小值时自变量的分别为12,x x ,令点A 11(,()x f x ),B 22(,()x f x ),如果直线AB 的斜率为12-,求函数f(x)和/()f x 的公共递减区间的长度 (3)若/()()f x mf x ≥对于一切x R ∈ 恒成立,求实数m,a,b 满足的条件11、(无锡市2013届高三期末)已知函数f (x )=ax 2+1,g (x )=x 3+bx ,其中a>0,b>0.(Ⅰ)若曲线y=f (x )与曲线y=g (x )在它们的交点P (2,c )处有相同的切线(P 为切点), 求a ,b 的值;(Ⅱ)令h (x )=f (x )+g (x ),若函数h (x )的单调递减区间为[,23a b --],求:(1)函数h (x )在区间(一∞,-1]上的最大值M (a );(2)若|h (x )|≤3,在x ∈[-2,0]上恒成立,求a 的取值范围。
高考数学一轮复习 第三章 3.7 利用导数研究函数零点 题型一 数形结合法研究函数零点例1 (2020·全国Ⅰ)已知函数f (x )=e x -a (x +2). (1)当a =1时,讨论f (x )的单调性; (2)若f (x )有两个零点,求a 的取值范围. 解 (1)当a =1时,f (x )=e x -(x +2),f ′(x )=e x -1,令f ′(x )<0,解得x <0,令f ′(x )>0,解得x >0,所以f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. (2)令f (x )=0,得e x =a (x +2),即1a =x +2ex ,所以函数y =1a 的图象与函数φ(x )=x +2e x 的图象有两个交点,φ′(x )=-x -1e x ,当x ∈(-∞,-1)时,φ′(x )>0; 当x ∈(-1,+∞)时,φ′(x )<0, 所以φ(x )在(-∞,-1)上单调递增, 在(-1,+∞)上单调递减,所以φ(x )max =φ(-1)=e ,且x →-∞时, φ(x )→-∞;x →+∞时,φ(x )→0, 所以0<1a <e ,解得a >1e .所以a 的取值范围是⎝⎛⎭⎫1e ,+∞. 教师备选已知函数f (x )=x e x +e x .(1)求函数f (x )的单调区间和极值;(2)讨论函数g (x )=f (x )-a (a ∈R )的零点的个数. 解 (1)函数f (x )的定义域为R , 且f ′(x )=(x +2)e x ,令f ′(x )=0得x =-2,则f ′(x ),f (x )的变化情况如表所示:x (-∞,-2)-2 (-2,+∞)f ′(x ) - 0 + f (x )单调递减-1e2 单调递增∴f (x )的单调递减区间是(-∞,-2),单调递增区间是(-2,+∞). 当x =-2时,f (x )有极小值为f (-2)=-1e 2,无极大值.(2)令f (x )=0,得x =-1, 当x <-1时,f (x )<0;当x >-1时,f (x )>0,且f (x )的图象经过点⎝⎛⎭⎫-2,-1e 2,(-1,0),(0,1). 当x →-∞时,与一次函数相比,指数函数y =e -x 增长更快,从而f (x )=x +1e -x →0;当x →+∞时,f (x )→+∞,f ′(x )→+∞,根据以上信息,画出f (x )大致图象如图所示.函数g (x )=f (x )-a (a ∈R )的零点的个数为y =f (x )的图象与直线y =a 的交点个数. 当x =-2时,f (x )有极小值f (-2)=-1e2.∴关于函数g (x )=f (x )-a (a ∈R )的零点个数有如下结论:当a <-1e 2时,零点的个数为0;当a =-1e 2或a ≥0时,零点的个数为1;当-1e2<a <0时,零点的个数为2.思维升华 含参数的函数零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,用x 表示参数的函数,作出该函数的图象,根据图象特征求参数的范围. 跟踪训练1 设函数f (x )=ln x +mx,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数.解 (1)当m =e 时,f (x )=ln x +ex ,f (x )的定义域为(0,+∞), f ′(x )=1x -e x 2=x -e x 2.令f ′(x )=0,得x =e. 当x ∈(0,e)时,f ′(x )<0; 当x ∈(e ,+∞)时,f ′(x )>0,∴f (x )在(0,e)上单调递减,在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=2. (2)由题意知g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1).当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减. ∴x =1是φ(x )的唯一极值点,且是极大值点, ∴x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.结合y =φ(x )的图象(如图)可知,①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型二 利用函数性质研究函数零点例2 (12分)(2021·全国甲卷)设函数f (x )=a 2x 2+ax -3ln x +1,其中a >0. (1)讨论f (x )的单调性; [切入点:判断f ′(x )的正负](2)若y =f (x )的图象与x 轴没有公共点,求a 的取值范围. [关键点:f (x )>0且f (x )有最小值]教师备选已知函数f (x )=x sin x +cos x ,g (x )=x 2+4. (1)讨论f (x )在[-π,π]上的单调性;(2)令h (x )=g (x )-4f (x ),试证明h (x )在R 上有且仅有三个零点. (1)解 f ′(x )=sin x +x cos x -sin x =x cos x . 当x ∈⎝⎛⎭⎫-π,-π2∪⎝⎛⎭⎫0,π2时,f ′(x )>0; 当x ∈⎝⎛⎭⎫-π2,0∪⎝⎛⎭⎫π2,π时,f ′(x )<0, ∴f (x )在⎝⎛⎭⎫-π,-π2,⎝⎛⎭⎫0,π2上单调递增,在⎝⎛⎭⎫-π2,0,⎝⎛⎭⎫π2,π上单调递减. (2)证明 h (x )=x 2+4-4x sin x -4cos x , ∵h (-x )=x 2+4-4x sin x -4cos x =h (x ), ∴h (x )为偶函数. 又∵h (0)=0,∴x =0为函数h (x )的零点.下面讨论h (x )在(0,+∞)上的零点个数: h (x )=x 2+4-4x sin x -4cos x =x (x -4sin x )+4(1-cos x ). 当x ∈[4,+∞)时, x -4sin x >0,4(1-cos x )≥0, ∴h (x )>0, ∴h (x )无零点; 当x ∈(0,4)时,h ′(x )=2x -4x cos x =2x (1-2cos x ), 当x ∈⎝⎛⎭⎫0,π3时,h ′(x )<0; 当x ∈⎝⎛⎭⎫π3,4时,h ′(x )>0,∴h (x )在⎝⎛⎭⎫0,π3上单调递减,在⎝⎛⎭⎫π3,4上单调递增, ∴h (x )min =h ⎝⎛⎭⎫π3=π29+4-4π3sin π3-4cos π3=π29+2-23π3<0,又h (0)=0,且h (4)=20-16sin 4-4cos 4>0, ∴h (x )在⎝⎛⎭⎫0,π3上无零点,在⎝⎛⎭⎫π3,4上有唯一零点. 综上,h (x )在(0,+∞)上有唯一零点, 又h (0)=0且h (x )为偶函数, 故h (x )在R 上有且仅有三个零点.思维升华 利用函数性质研究函数的零点,主要是根据函数单调性、奇偶性、最值或极值的符号确定函数零点的个数,此类问题在求解过程中可以通过数形结合的方法确定函数存在零点的条件.跟踪训练2 已知函数f (x )=13x 3-a (x 2+x +1).(1)若a =3,求f (x )的单调区间;(2)证明:f (x )只有一个零点.(1)解 当a =3时,f (x )=13x 3-3x 2-3x -3,f ′(x )=x 2-6x -3.令f ′(x )=0,解得x =3-23或x =3+2 3. 当x ∈(-∞,3-23)∪(3+23,+∞)时, f ′(x )>0;当x ∈(3-23,3+23)时,f ′(x )<0.故f (x )的单调递增区间为(-∞,3-23),(3+23,+∞), 单调递减区间为(3-23,3+23). (2)证明 因为x 2+x +1>0在R 上恒成立, 所以f (x )=0等价于x 3x 2+x +1-3a =0.设g (x )=x 3x 2+x +1-3a ,则g ′(x )=x 2x 2+2x +3x 2+x +12≥0在R 上恒成立,当且仅当x =0时,g ′(x )=0, 所以g (x )在(-∞,+∞)上单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点. 又f (3a -1)=-6a 2+2a -13=-6⎝⎛⎭⎫a -162-16<0, f (3a +1)=13>0,故f (x )有一个零点.综上所述,f (x )只有一个零点.题型三 构造函数法研究函数的零点例3 (2021·全国甲卷)已知a >0且a ≠1,函数f (x )=x aa x (x >0).(1)当a =2时,求f (x )的单调区间;(2)若曲线y =f (x )与直线y =1有且仅有两个交点,求a 的取值范围. 解 (1)当a =2时,f (x )=x 22x (x >0),f ′(x )=x 2-x ln 22x(x >0),令f ′(x )>0,则0<x <2ln 2,此时函数f (x )单调递增,令f ′(x )<0, 则x >2ln 2,此时函数f (x )单调递减, 所以函数f (x )的单调递增区间为⎝⎛⎭⎫0,2ln 2,单调递减区间为⎝⎛⎭⎫2ln 2,+∞. (2)曲线y =f (x )与直线y =1有且仅有两个交点,可转化为方程x a a x =1(x >0)有两个不同的解,即方程ln x x =ln aa 有两个不同的解.设g (x )=ln xx (x >0),则g ′(x )=1-ln xx 2(x >0),令g ′(x )=1-ln xx 2=0,得x =e ,当0<x <e 时,g ′(x )>0,函数g (x )单调递增, 当x >e 时,g ′(x )<0,函数g (x )单调递减, 故g (x )max =g (e)=1e ,且当x >e 时,g (x )∈⎝⎛⎭⎫0,1e , 又g (1)=0,所以0<ln a a <1e ,所以a >1且a ≠e ,即a 的取值范围为(1,e)∪(e ,+∞). 教师备选(2022·南阳质检)已知f (x )=13x 3+32x 2+2x ,f ′(x )是f (x )的导函数.(1)求f (x )的极值;(2)令g (x )=f ′(x )+k e x -1,若y =g (x )的函数图象与x 轴有三个不同的交点,求实数k 的取值范围.解 (1)因为f ′(x )=x 2+3x +2=(x +1)(x +2), 令f ′(x )=0,得x 1=-1,x 2=-2, 当x 变化时,f ′(x ),f (x )的变化如表所示:x (-∞,-2)-2 (-2,-1)-1 (-1,+∞)f ′(x ) + 0 - 0 + f (x )↗极大值↘极小值↗由表可知,函数f (x )的极大值为f (-2)=-23,极小值为f (-1)=-56.(2)由(1)知g (x )=x 2+3x +2+k e x -1=x 2+3x +1+k e x , 由题知需x 2+3x +1+k e x =0有三个不同的解,即k =-x 2+3x +1e x有三个不同的解.设h (x )=-x 2+3x +1e x,则h ′(x )=x 2+x -2e x =x +2x -1e x ,当x ∈(-∞,-2)时,h ′(x )>0,h (x )单调递增, 当x ∈(-2,1)时,h ′(x )<0,h (x )单调递减, 当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增,又当x →-∞时,h (x )→-∞, 当x →+∞时,h (x )→0且h (x )<0, 且h (-2)=e 2,h (1)=-5e .作出函数h (x )的简图如图,数形结合可知,-5e<k <0.思维升华 涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围.跟踪训练3 设函数f (x )=12x 2-m ln x ,g (x )=x 2-(m +1)x ,m >0.(1)求函数f (x )的单调区间;(2)当m ≥1时,讨论f (x )与g (x )图象的交点个数. 解 (1)函数f (x )的定义域为(0,+∞), f ′(x )=x +mx -mx .当0<x <m 时,f ′(x )<0,函数f (x )单调递减; 当x >m 时,f ′(x )>0,函数f (x )单调递增.综上,函数f (x )的单调递增区间是(m ,+∞),单调递减区间是(0,m ). (2)令F (x )=f (x )-g (x )=-12x 2+(m +1)x -m ln x ,x >0,题中问题等价于求函数F (x )的零点个数.F ′(x )=-x -1x -m x ,当m =1时,F ′(x )≤0,函数F (x )为减函数,因为F (1)=32>0,F (4)=-ln 4<0, 所以F (x )有唯一零点;当m >1时,0<x <1或x >m 时,F ′(x )<0;1<x <m 时,F ′(x )>0,所以函数F (x )在(0,1)和(m ,+∞)上单调递减,在(1,m )上单调递增,因为F (1)=m +12>0, F (2m +2)=-m ln(2m +2)<0,所以F (x )有唯一零点.综上,函数F (x )有唯一零点,即函数f (x )与g (x )的图象总有一个交点.课时精练1.(2022·贵阳模拟)已知函数f (x )=13x 3-12ax 2(a ≠0). (1)讨论f (x )的单调性;(2)当a =1时,g (x )=f (x )-2x +b ,讨论g (x )的零点个数.解 (1)f (x )的定义域为R ,f ′(x )=x 2-ax =x (x -a ),若a >0,当x ∈(-∞,0)∪(a ,+∞)时,f ′(x )>0,当x ∈(0,a )时,f ′(x )<0,若a <0,当x ∈(-∞,a )∪(0,+∞)时,f ′(x )>0,当x ∈(a,0)时,f ′(x )<0,综上,当a >0时,f (x )在(-∞,0),(a ,+∞)上单调递增,在(0,a )上单调递减, 当a <0时,f (x )在(-∞,a ),(0,+∞)上单调递增,在(a,0)上单调递减.(2)g (x )=13x 3-12x 2-2x +b , 令g (x )=0,所以b =-13x 3+12x 2+2x , 令h (x )=-13x 3+12x 2+2x , 则h ′(x )=-x 2+x +2=-(x -2)(x +1),所以h ′(2)=0,h ′(-1)=0,且当x <-1时,h ′(x )<0;当-1<x <2时,h ′(x )>0;当x >2时,h ′(x )<0,所以h (x )极小值=h (-1)=13+12-2=-76, h (x )极大值=h (2)=-13×8+12×4+4=103, 如图,当b <-76或b >103时,函数g (x )有1个零点; 当b =-76或b =103时,函数g (x )有2个零点; 当-76<b <103时,函数g (x )有3个零点.2.已知函数f (x )=e x (ax +1),曲线y =f (x )在x =1处的切线方程为y =bx -e.(1)求a ,b 的值;(2)若函数g (x )=f (x )-3e x -m 有两个零点,求实数m 的取值范围.解 (1)f (x )=e x (ax +1),则f ′(x )=e x (ax +1)+e x ·a =e x (ax +1+a ),由题意知⎩⎪⎨⎪⎧ f ′1=e 2a +1=b ,f 1=e a +1=b -e ,解得⎩⎪⎨⎪⎧a =1,b =3e , ∴a =1,b =3e.(2)g (x )=f (x )-3e x -m =e x (x -2)-m ,函数g (x )=e x (x -2)-m 有两个零点,相当于函数u (x )=e x ·(x -2)的图象与直线y =m 有两个交点,u ′(x )=e x ·(x -2)+e x =e x (x -1),当x ∈(-∞,1)时,u ′(x )<0,∴u (x )在(-∞,1)上单调递减;当x ∈(1,+∞)时,u ′(x )>0,∴u (x )在(1,+∞)上单调递增,∴当x =1时,u (x )取得极小值u (1)=-e.又当x →+∞时,u (x )→+∞,当x <2时,u (x )<0,∴-e<m <0,∴实数m 的取值范围为(-e,0).3.已知函数f (x )=e x +ax -a (a ∈R 且a ≠0).(1)若函数f (x )在x =0处取得极值,求实数a 的值,并求此时f (x )在[-2,1]上的最大值;(2)若函数f (x )不存在零点,求实数a 的取值范围.解 (1)由f (x )=e x +ax -a ,得f ′(x )=e x +a .∵函数f (x )在x =0处取得极值,∴f ′(0)=e 0+a =0,∴a =-1,∴f (x )=e x -x +1,f ′(x )=e x -1.∴当x ∈(-∞,0)时,f ′(x )<0,f (x )单调递减;当x ∈(0,+∞)时,f ′(x )>0,f (x )单调递增.易知f (x )在[-2,0)上单调递减,在(0,1]上单调递增,且f (-2)=1e 2+3,f (1)=e ,f (-2)>f (1), ∴f (x )在[-2,1]上的最大值是1e 2+3. (2)f ′(x )=e x +a .①当a >0时,f ′(x )>0,f (x )在R 上单调递增,且当x >1时,f (x )=e x +a (x -1)>0,当x <0时,取x =-1a, 则f ⎝⎛⎭⎫-1a <1+a ⎝⎛⎭⎫-1a -1=-a <0, ∴函数f (x )存在零点,不满足题意.②当a <0时,令f ′(x )=e x +a =0,则x =ln(-a ).当x ∈(-∞,ln(-a ))时,f ′(x )<0,f (x )单调递减;当x ∈(ln(-a ),+∞)时,f ′(x )>0,f (x )单调递增.∴当x =ln(-a )时,f (x )取得极小值,也是最小值.当x →-∞时,f (x )→+∞,当x →+∞时,f (x )→+∞,函数f (x )不存在零点,等价于f (ln(-a ))=e ln(-a )+a ln(-a )-a =-2a +a ln(-a )>0,解得-e 2<a <0.综上所述,所求实数a 的取值范围是(-e 2,0).4.(2022·潍坊模拟)已知函数f (x )=x 2-a sin x -2(a ∈R ). (1)若曲线y =f (x )在点⎝⎛⎭⎫π2,f ⎝⎛⎭⎫π2处的切线经过坐标原点,求实数a ; (2)当a >0时,判断函数f (x )在x ∈(0,π)上的零点个数,并说明理由.解 (1)f ′(x )=2x sin x -x 2-a cos x sin 2x, f ′⎝⎛⎭⎫π2=π,所以f (x )在点⎝⎛⎭⎫π2,f ⎝⎛⎭⎫π2处的切线方程为y =πx ,所以f ⎝⎛⎭⎫π2=π22, 即π24-a -2=π22,a =-π24-2. (2)因为x ∈(0,π),所以sin x >0,所以x 2-a sin x -2=0可转化为x 2-a -2sin x =0, 设g (x )=x 2-a -2sin x ,则g ′(x )=2x -2cos x ,当x ∈⎣⎡⎭⎫π2,π时,g ′(x )>0,所以g (x )在区间⎣⎡⎭⎫π2,π上单调递增.当x ∈⎝⎛⎭⎫0,π2时, 设h (x )=g ′(x )=2x -2cos x ,此时h ′(x )=2+2sin x >0,所以g ′(x )在x ∈⎝⎛⎭⎫0,π2上单调递增, 又 g ′(0)=-2<0,g ′⎝⎛⎭⎫π2=π>0,所以存在x 0∈⎝⎛⎭⎫0,π2使得g ′(x )=0且x ∈(0,x 0)时g (x )单调递减, x ∈⎣⎡⎭⎫x 0,π2时g (x )单调递增. 综上,对于连续函数g (x ),当x ∈(0,x 0)时,g (x )单调递减, 当x ∈(x 0,π)时,g (x )单调递增.又因为g (0)=-a <0,所以当g (π)=π2-a >0,即a <π2时,函数g (x )在区间(x 0,π)上有唯一零点,当g (π)=π2-a ≤0,即a ≥π2时,函数g (x )在区间(0,π)上无零点, 综上可知,当0<a <π2时,函数f (x )在(0,π)上有1个零点; 当a ≥π2时,函数f (x )在(0,π)上没有零点.。
第1节 导数的概念与导数的计算考试要求 1.了解导数概念的实际背景;2。
通过函数图象直观理解导数的几何意义;3。
能根据导数的定义求函数y =c (c 为常数),y =x ,y =错误!,y =x 2,y =x 3,y =错误!的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单复合函数(仅限于形如y =f (ax +b )的复合函数)的导数.知 识 梳 理1。
函数y =f (x )在x =x 0处的导数(1)定义:称函数y =f (x )在x =x 0处的瞬时变化率0lim x ∆→错误!=0lim x ∆→ 错误!为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0lim x ∆→ 错误!=0lim x ∆→ 错误!。
(2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率。
相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).2。
函数y =f (x )的导函数如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f (x )在开区间内的导函数.记作f ′(x )或y ′。
3。
基本初等函数的导数公式 基本初等函数 导函数f (x )=c (c 为常数) f ′(x )=04.导数的运算法则若f′(x),g′(x)存在,则有:(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)错误!′=错误!(g(x)≠0)。
5.复合函数的导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y x′=y u′·u x′,即y对x的导数等于y对u的导数与u对x的导数的乘积。
2024届全国高考数学一轮复习好题专项(导数的综合应用)练习一、基础练习1.(2021ꞏ沙坪坝区ꞏ重庆一中高三其他模拟)已知e 为自然对数的底数,a ,b 为实数,且不等式()ln 310x e a x b +-++≤对任意()0,x ∈+∞恒成立,则当3b a+取最大值时,实数a 的值为( ) A .3eB .31e +C .4eD .41e +2.(2021ꞏ湖南高三其他模拟)已知函数()e ax f x =a 的取值范围是( ) A .0,2e ⎛⎫ ⎪⎝⎭B .,2e ⎛⎫+∞⎪⎝⎭C .10,2e ⎛⎫ ⎪⎝⎭D .1,2e ⎛⎫+∞⎪⎝⎭3.(2021ꞏ四川遂宁市ꞏ高三三模(理))已知函数()()2xh x x e =-,()212a a g x x x =-,又当()0h x ≥时,()()h x g x ≥恒成立,则实数a 的取值范围是( )A .(2,e ⎤-∞⎦B .(],e -∞C .(20,e ⎤⎦D .(]0,e4.(2021ꞏ全国高三其他模拟)已知f (x )是定义在区间[﹣2,2]上的偶函数,当x ∈[0,2]时,f (x )=xxe ,若关于x 的方程2f 2(x )+(2a ﹣1)f (x )﹣a =0有且只有2个实数根,则实数a 的取值范围是( )A .[﹣1e ,﹣22e ] B .[﹣1e ,﹣22e ) C .(﹣22e,0)D .(﹣22e ,0)∪{﹣1e}5.(2021ꞏ宁夏银川市ꞏ高三其他模拟(理))平行于x 轴的直线与函数ln ,0,(),0,x x f x e x x>⎧⎪=⎨-<⎪⎩的图像交于,A B 两点,则线段AB 长度的最小值为( ) A .1e e-B .1e e+C .eD .2e6.(2021ꞏ正阳县高级中学高三其他模拟(理))已知2m <-,若关于x 的不等式22e 2x mx n x +<+恒成立,则实数n 的取值范围为( ) A .[)3e,+∞B .)2e ,⎡+∞⎣C .[)e,+∞D .[)2e,+∞7.【多选题】(2021ꞏ河北衡水中学高三其他模拟)已知函数()3e exxx a f x x -=-+-,则下列结论中正确的是( )A .若()f x 在区间[]1,1-上的最大值与最小值分别为M ,m ,则0M m +=B .曲线()y f x =与直线y ax =-相切C .若()f x 为增函数,则a 的取值范围为(],2-∞D .()f x 在R 上最多有3个零点8.(2021ꞏ黑龙江大庆市ꞏ高三一模(理))用总长11m 的钢条制作一个长方体容器的框架,如果所制容器底面一条边比另一条边长1m ,则该容器容积的最大值为________m 3(不计损耗). 9.(2021ꞏ湖南高三其他模拟)中国最早的化妆水是1896年在香港开设的广生行生产的花露水,其具有保湿、滋润、健康皮肤的功效.已知该化妆水容器由一个半球和一个圆柱组成(其中上半球是容器的盖子,化妆水储存在圆柱中),容器轴截面如图所示,上部分是半圆形,中间区域是矩形,其外周长为12cm .则当圆柱的底面半径r =___________时,该容器的容积最大,最大值为___________.10.(2021ꞏ全国高三其他模拟)若函数ln ()1xxf x ae x=--只有一个零点,则实数a 的取值范围是 ________. 二、提升练习1.(2021ꞏ全国高三其他模拟)若不等式ln x ax b ≤+恒成立,则2a b +的最小值为( ) A .2B .3C .ln 2D .52.(2021ꞏ北京高考真题)已知函数()lg 2f x x kx =--,给出下列四个结论: ①若0k =,则()f x 有两个零点; ②0k ∃<,使得()f x 有一个零点; ③0k ∃<,使得()f x 有三个零点; ④0k ∃>,使得()f x 有三个零点. 以上正确结论得序号是_______.3.(2021ꞏ四川省绵阳南山中学高三其他模拟(文))设函数()()222ln xf x x x e aex e x =-+-,其中e 为自然对数的底数,曲线()y f x =在()()22f ,处切线的倾斜角的正切值为2322e e +.(1)求a 的值; (2)证明:()0f x >.4.(2021ꞏ全国高三其他模拟(理))已知函数()()ln e xf x x m x -=+-.(1)若()f x 的图象在点()()1,1f 处的切线与直线20x y -=平行,求m 的值; (2)在(1)的条件下,证明:当0x >时,()0f x >; (3)当1m >时,求()f x 的零点个数.5.(2021ꞏ黑龙江哈尔滨市ꞏ哈尔滨三中高三其他模拟(文))已知函数2211()(1)ln (0)22f x x a x a x a a =-+++>. (1)讨论()f x 的单调性;(2)若函数()y f x =只有一个零点,求实数a 的取值范围.6.(2021ꞏ河北高三其他模拟)已知函数2ln 1()(ln )()2k x f x x k x+=+∈R . (1)当0k =时,求证:()1f x ≤; (2)当0k ≠时,讨论()f x 零点的个数.7.(2021ꞏ重庆市育才中学高三二模)已知函数()x f x e =,()1g x ax =+. (1)已知()()f x g x ≥恒成立,求a 的值;(2)若(0,1)x ∈,求证:21ln 11()x x f x x-+-<. 8.(2021ꞏ全国高三其他模拟)已知函数()()ln x a f x a x+=+,()0,x ∈+∞.(1)当0a =时,讨论函数()f x 的单调性; (2)若函数()f x 存在极大值M ,证明:12M e≤<.9.(2021ꞏ重庆高三二模)已知函数()ln ()f x ax x a R =+∈在1x =处取得极值. (1)若对(0,),()1x f x bx ∀∈+∞≤-恒成立,求实数b 的取值范围;(2)设()()(2)x g x f x x e =+-,记函数()y g x =在1,14⎡⎤⎢⎥⎣⎦上的最大值为m ,证明:(4)(3)0m m ++<. 10.(2021ꞏ江苏南通市ꞏ高三一模)已知函数()()21ln 22f x ax ax x =+-,0a >. (1)求函数()f x 的增区间;(2)设1x ,2x 是函数()f x 的两个极值点,且12x x <,求证:122x x +>. 三、真题练习1.(2021ꞏ全国高考真题(文))设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图像与x 轴没有公共点,求a 的取值范围.2.(2021ꞏ全国高考真题(理))设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点. (1)求a ; (2)设函数()()()x f x g x xf x +=.证明:()1g x <.3.(2021ꞏ全国高考真题)已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 4.(2020·山东海南省高考真题)已知函数1()e ln ln x f x a x a -=-+.(1)当a e =时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若f (x )≥1,求a 的取值范围.5.(2020·浙江省高考真题)已知12a <≤,函数()e xf x x a =--,其中e =2.71828…为自然对数的底数.(Ⅰ)证明:函数()y f x =在(0)+∞,上有唯一零点;(Ⅱ)记x 0为函数()y f x =在(0)+∞,上的零点,证明:0x ≤≤; (ⅱ)00(e )(e 1)(1)x x f a a ≥--.6.(2019·全国高考真题(理))已知函数.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线的切线.()11ln x f x x x -=-+e x y =参考答案一、基础练习1.(2021ꞏ沙坪坝区ꞏ重庆一中高三其他模拟)已知e 为自然对数的底数,a ,b 为实数,且不等式()ln 310x e a x b +-++≤对任意()0,x ∈+∞恒成立,则当3b a+取最大值时,实数a 的值为( ) A .3e B .31e +C .4eD .41e +【答案】C 【答案解析】不等式(3)10lnx e a x b +-++…对任意(0,)x ∈+∞恒成立,化为不等式31lnx ex ax b +--…对任意(0,)x ∈+∞恒成立,必然有0a >.令1=x e,化为:31b a e +….令4a e =,1b =.利用导数研究函数的单调性极值最值即可得出结论. 【答案详解】解:不等式(3)10lnx e a x b +-++…对任意(0,)x ∈+∞恒成立, 则不等式31lnx ex ax b +--…对任意(0,)x ∈+∞恒成立, 则0a >. 令1=x e,则131a b e -+--…,化为:31b a e +…. 令4a e =,1b =.不等式31lnx ex ax b +--…对任意(0,)x ∈+∞恒成立,即不等式20lnx ex -+…对任意(0,)x ∈+∞恒成立, 令()2f x lnx ex =-+,则1()1()e x e f x e x x --'=-=,可得:1=x e 时,函数()f x 取得极大值即最大值,1(1120f e=--+=, 满足题意.可以验证其他值不成立. 故选:C .2.(2021ꞏ湖南高三其他模拟)已知函数()e ax f x =a 的取值范围是( ) A .0,2e ⎛⎫ ⎪⎝⎭B .,2e ⎛⎫+∞⎪⎝⎭C .10,2e ⎛⎫ ⎪⎝⎭D .1,2e ⎛⎫+∞ ⎪⎝⎭【答案】C 【答案解析】函数零点即方程ax e =的解,2ax e x =(0x >),取对数得2ln ax x =,此方程有两个解,引入函数()ln 2g x x ax =-,利用导数求得函数的单调性,函数的变化趋势,然后由零点存在定理可得结论.【答案详解】显然(0)1f =,()e ax f x =有两个零点,即方程ax e =,2ax e x =在(0,)+∞上有两个解,两边取对数得到2ln ax x =,令()ln 2g x x ax =-,1()2g x a x '=-,()g x 在10,2a ⎛⎫ ⎪⎝⎭单调递增,在1,2a ⎛⎫+∞ ⎪⎝⎭单调递减,又当0x →时,()g x →-∞,当x →+∞时,()g x →-∞, 因为()g x 有两个零点,则11ln 1022g a a ⎛⎫=->⎪⎝⎭, 解得12e a <.所以正数a 的取值范围是10,2e ⎛⎫⎪⎝⎭. 故选:C .3.(2021ꞏ四川遂宁市ꞏ高三三模(理))已知函数()()2xh x x e =-,()212a a g x x x =-,又当()0h x ≥时,()()h x g x ≥恒成立,则实数a 的取值范围是( )A .(2,e ⎤-∞⎦B .(],e -∞C .(20,e ⎤⎦D .(]0,e【答案】A 【答案解析】首先根据()0h x ≥求出2x ≥,进而参变分离解决恒成立的问题即可. 【答案详解】因为()()2xh x x e =-,所以()0h x ≥,即2x ≥,所以当2x ≥时,()()h x g x ≥恒成立,即()2122xa a x e x x -≥-, 即()()1222xx e x ax -≥-, 当2x =时,()()1222xx e x ax -≥-恒成立,符合题意;当()2,x ∈+∞时,有12xe ax ≥,即2xe xa ≥,令()2x e m x x =,则()()2210x e x m x x-'=>,所以()m x 在()2,x ∈+∞上单调递增,而()22m e =,所以2e a ≥,故选:A.4.(2021ꞏ全国高三其他模拟)已知f (x )是定义在区间[﹣2,2]上的偶函数,当x ∈[0,2]时,f (x )=xxe ,若关于x 的方程2f 2(x )+(2a ﹣1)f (x )﹣a =0有且只有2个实数根,则实数a 的取值范围是( )A .[﹣1e ,﹣22e ]B .[﹣1e ,﹣22e ) C .(﹣22e,0)D .(﹣22e ,0)∪{﹣1e}【答案】D 【答案解析】利用导数研究函数在定义域上的单调性,得出1()f x e≤;结合题意得出()f x 在[]02,有且仅有1个解,计算(0)(2)f f 、的值即可. 【答案详解】当[]02x ∈,时()xxf x e =, 则1()x xf x e-'=令()=0f x ',解得1x =,所以当[]01x ∈,时()0f x '>,()f x 单调递增; 当[]12x ∈,时()0f x '<,()f x 单调递减, 所以max 1()(1)f x f e==,故1()f x e≤在定义域上恒成立,由22()(21)()0f x a f x a +--=有且只有2个实数根, 得方程[]12()()02f x a f x ⎡⎤+-=⎢⎥⎣⎦有2个解,又1()f x e≤,所以111()022f x e -≤-<,则()f x 在[]02,有且仅有1个解, 因为22(0)0(2)f f e ==,,则220a e <-<或1a e-=, 所以220a e-<<或1a e =-,即实数的取值范围是2210e e ⎛⎫⎧⎫--⎨⎬ ⎪⎝⎭⎩⎭,, 故选:D5.(2021ꞏ宁夏银川市ꞏ高三其他模拟(理))平行于x 轴的直线与函数ln ,0,(),0,x x f x e x x>⎧⎪=⎨-<⎪⎩的图像交于,A B 两点,则线段AB 长度的最小值为( ) A .1e e-B .1e e+C .eD .2e【答案】D 【答案解析】画出函数图像,数形结合构造函数,利用导数判断函数单调性并求函数最值即可. 【答案详解】根据题意,画出()f x 的图象如下所示:令()f x t =,(0)t >,故可得lnx t =,解得t x e =;e t x -=,解得e x t=-.故可得(),,,te A e t B t t ⎛⎫- ⎪⎝⎭,(0)t >, 故()teAB g t e t==+,(0)t >, 故可得()2te g t e t ='-,()30te g t e t'=+>'恒成立, 故()g t '是单调递增函数,且()10g '=,关于()0g t '<在()0,1成立,()0g t '>在()1,+∞成立, 故()g t 在()0,1单调递减,在()1,+∞单调递增, 故()()12min g t g e e e ==+=. 即||AB 的最小值为2e . 故选:D6.(2021ꞏ正阳县高级中学高三其他模拟(理))已知2m <-,若关于x 的不等式22e 2x mx n x +<+恒成立,则实数n 的取值范围为( ) A .[)3e,+∞ B .)2e ,⎡+∞⎣C .[)e,+∞D .[)2e,+∞【答案】D 【答案解析】参变分离可得222e x mx x n +-<,研究函数()222exmx xf x +-=,根据导函数()()22e x m x x m f x ⎛⎫--- ⎪⎝⎭'=以及2m <-,可得函数()f x 的极大值为22222e 0e m m f m -⎛⎫==> ⎪⎝⎭,当2x >,()2220ex mx x f x -+=<,所以()2max 2e m f x -⎡⎤=⎣⎦,根据()f x 的最大值的范围即可得解. 【答案详解】由22e 2xmx n x +<+,得222exmx x n +-<, 令()222exmx xf x +-=,则()()22e xm x x m f x ⎛⎫--- ⎪⎝⎭'=,当2m <-时,210m-<<, 函数()f x 在2,m ⎛⎫-∞ ⎪⎝⎭,()2,+∞上单调递增,在2,2m ⎛⎫⎪⎝⎭上单调递减,故函数()f x 的极大值为22222e 0e mm f m -⎛⎫==> ⎪⎝⎭,极小值为()24220e m f -=<, 且2x >时,()2220ex mx x f x -+=<,所以()2max 2e m f x -⎡⎤=⎣⎦,由2m <-, 得22e 2e m -<,由()f x n <恒成立,得2e n ≥, 故选:D .7.【多选题】(2021ꞏ河北衡水中学高三其他模拟)已知函数()3e exxx a f x x -=-+-,则下列结论中正确的是( )A .若()f x 在区间[]1,1-上的最大值与最小值分别为M ,m ,则0M m +=B .曲线()y f x =与直线y ax =-相切C .若()f x 为增函数,则a 的取值范围为(],2-∞D .()f x 在R 上最多有3个零点 【答案】ACD 【答案解析】由定义法确定函数的奇偶性,再求导数判断函数的单调性与切线斜率,以及零点情况. 【答案详解】因为对于任意x ∈R ,都有()()()()3e e x x x x a xf x f -=-+---=--, 所以()f x 为奇函数,其图象关于原点对称,故A 正确.又()2e e 3xxx a f x =++-',令()f x a '=-,得2e e 30x x x -++=(*),因为e 0x >,e 0x ->,所以方程(*)无实数解,即曲线()y f x =的所有切线的斜率都不可能为a -,故B 错误.若()f x 为增函数,则()f x ¢大于等于0,即2e e 3x x a x -≤++,2e e 32x x x -++≥, 当且仅当0x =时等号成立,所以2a ≤,故C 正确.令()0f x =,得0x =或2e e x x x a x --+=(0x ≠).设()2e e x x g x x x--=+,则()()()21e 1e 2x x x x x x g x -'=-+++,令()()()1e 1e x xx x t x -=-++,则()()e exxx x t -='-.当0x >时,()0t x '>,当0x =时,()0t x '=,当0x <时,()0t x '>,所以函数()t x 为增函数,且()00t =,所以当0x >时,()0t x >,从而()0g x ¢>,()g x 单调递增.又因为对于任意0x ≠,都有()()g x g x -=,所以()g x 为偶函数,其图象关于y 轴对称. 综上,()g x 在(),0-?上单调递减,在()0,+?上单调递增,则直线y a =与()y g x =最多有2个交点,所以()f x 在R 上最多有3个零点,故D 正确. 故选ACD .8.(2021ꞏ黑龙江大庆市ꞏ高三一模(理))用总长11m 的钢条制作一个长方体容器的框架,如果所制容器底面一条边比另一条边长1m ,则该容器容积的最大值为________m 3(不计损耗). 【答案】916. 【答案解析】设长方体的底面边长为,a b ,高为h ,由题可得3217244V b b b =--+,求出函数导数,判断单调性,即可求出最值. 【答案详解】设长方体的底面边长为,a b ,高为h ,则由题可得1a b =+,()411a b h ++=,则可得784b h -=,则708b <<, 则该容器容积()32781712444b V abh b b b b b -==+⋅⋅=--+,217176624212V b b b b ⎛⎫⎛⎫'=--+=--+ ⎪⎪⎝⎭⎝⎭,当10,2b ⎛⎫∈ ⎪⎝⎭时,0V '>,V 单调递增;当17,28b ⎛⎫∈ ⎪⎝⎭时,0V '<,V 单调递减, ∴当12b =时,max 916V =,即该容器容积的最大值为916. 故答案为:916.9.(2021ꞏ湖南高三其他模拟)中国最早的化妆水是1896年在香港开设的广生行生产的花露水,其具有保湿、滋润、健康皮肤的功效.已知该化妆水容器由一个半球和一个圆柱组成(其中上半球是容器的盖子,化妆水储存在圆柱中),容器轴截面如图所示,上部分是半圆形,中间区域是矩形,其外周长为12cm .则当圆柱的底面半径r =___________时,该容器的容积最大,最大值为___________.【答案】8 c m 2π+ ()32128 c m 2ππ+ 【答案解析】设圆柱的底面半径为r ,圆柱的高为h ,根据已知条件可得出262h r π+=-,根据柱体的体积公式可得()23262V r r πππ+=-,利用导数可求得V 的最大值及其对应的r 的值,即为所求.【答案详解】设圆柱的底面半径为r ,圆柱的高为h . 则由题意可得2212r h r π++=,所以()1222622r h r ππ-++==-.由0h >,得122r π<+. 故容器的容积()22232212660222V r h r r r r r πππππππ++⎛⎫⎛⎫==-=-<< ⎪ ⎪+⎝⎭⎝⎭,容易忽略上半球是容器的盖子,化妆水储存在圆柱中.()232122V r r πππ+'=-,令0V '=,解得0r =(舍)或82r π=+. 显然当80,2r π⎛⎫∈ ⎪+⎝⎭时,0V '>,函数()23262V r r πππ+=-单调递增; 当812,22r ππ⎛⎫∈⎪++⎝⎭时,0V '<,函数()23262V r r πππ+=-单调递减. 所以当8cm 2r π=+时,V 取得最大值, 此时2862cm 22h ππ+=-⨯=+,()23281282cm 22V ππππ⎛⎫=⨯= ⎪+⎝⎭+. 故答案为:8 c m 2π+;()32128 c m 2ππ+. 10.(2021ꞏ全国高三其他模拟)若函数ln ()1xxf x ae x=--只有一个零点,则实数a 的取值范围是 ________. 【答案】0a ≤或1a e= 【答案解析】将函数的零点转化为方程ln (0)x x x a x xe +=>的根,令ln ()xx xg x xe +=,利用导数研究函数的图象特征,即可得到答案; 【答案详解】ln ln 10(0)x x x x xae a x x xe +--=⇔=>, 令ln ()xx x g x xe+=,则'2()(1ln )()x x x x g x x e +--=, ''()01ln 0,()01ln 0,g x x x g x x x >⇔--><⇔--<令()1ln u x x x =--,则'1()10u x x=--<在0x >恒成立, ∴()1ln u x x x =--在(0,)+∞单调递减,且(1)0u =, ∴''()001,()01g x x g x x >⇒<<<⇒>,∴()g x 在(0,1)单调递增,在(1,)+∞单调递减,且1(1)g e=,当x →+∞时,()0g x →, 如图所示,可得当0a ≤或1a e =时,直线y a =与ln xx x y xe +=有且仅有一个交点, 故答案为:0a ≤或1a e=1.(2021ꞏ全国高三其他模拟)若不等式ln x ax b ≤+恒成立,则2a b +的最小值为( ) A .2 B .3C .ln 2D .5【答案】C 【答案解析】构造函数()ln f x ax x b =-+,根据函数的单调性及最值可得ln 1b a ≥--,故22ln 1a b a a +≥--,再构造()2ln 1g x x x =--,求得函数()g x 的最小值即可. 【答案详解】由ln x ax b ≤+恒成立,得ln 0ax x b -+≥, 设()ln f x ax x b =-+,()1f x a x'=-, 当0a ≤时,()0f x ¢<,()f x 在()0,+?上单调递减,不成立;当0a >时,令()0f x ¢=,解得1x a=,故函数()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增, 故()10f x f a ⎛⎫≥≥⎪⎝⎭,即11ln 0a b a a ⎛⎫⋅-+≥ ⎪⎝⎭,ln 1b a ≥--,练提升22ln 1a b a a +≥--,设()2ln 1g x x x =--,()12g x x'=-, 令()0g x ¢=,12x =, 故()g x 在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增, 故()1112ln 1ln 2222g x g ⎛⎫⎛⎫≥=⨯--=⎪ ⎪⎝⎭⎝⎭, 即2ln 2a b +≥, 故选:C.2.(2021ꞏ北京高考真题)已知函数()lg 2f x x kx =--,给出下列四个结论: ①若0k =,则()f x 有两个零点; ②0k ∃<,使得()f x 有一个零点; ③0k ∃<,使得()f x 有三个零点; ④0k ∃>,使得()f x 有三个零点. 以上正确结论得序号是_______. 【答案】①②④ 【答案解析】由()0f x =可得出lg 2x kx =+,考查直线2y kx =+与曲线()lg g x x =的左、右支分别相切的情形,利用方程思想以及数形结合可判断各选项的正误. 【答案详解】对于①,当0k =时,由()lg 20f x x =-=,可得1100x =或100x =,①正确; 对于②,考查直线2y kx =+与曲线()lg 01y x x =-<<相切于点(),lg P t t -,对函数lg y x =-求导得1ln10y x '=-,由题意可得2lg 1ln10kt t k t +=-⎧⎪⎨=-⎪⎩,解得100100lg e t k e e ⎧=⎪⎪⎨⎪=-⎪⎩, 所以,存在100lg 0k e e=-<,使得()f x 只有一个零点,②正确; 对于③,当直线2y kx =+过点()1,0时,20k +=,解得2k =-,所以,当100lg 2e k e-<<-时,直线2y kx =+与曲线()lg 01y x x =-<<有两个交点, 若函数()f x 有三个零点,则直线2y kx =+与曲线()lg 01y x x =-<<有两个交点,直线2y kx =+与曲线()lg 1y x x =>有一个交点,所以,100lg 220e k ek ⎧-<<-⎪⎨⎪+>⎩,此不等式无解, 因此,不存在0k <,使得函数()f x 有三个零点,③错误;对于④,考查直线2y kx =+与曲线()lg 1y x x =>相切于点(),lg P t t ,对函数lg y x =求导得1ln10y x '=,由题意可得2lg 1ln10kt t k t +=⎧⎪⎨=⎪⎩,解得100lg 100t ee k e =⎧⎪⎨=⎪⎩,所以,当lg 0100ek e<<时,函数()f x 有三个零点,④正确.故答案为:①②④.3.(2021ꞏ四川省绵阳南山中学高三其他模拟(文))设函数()()222ln xf x x x e aex e x =-+-,其中e 为自然对数的底数,曲线()y f x =在()()22f ,处切线的倾斜角的正切值为2322e e +. (1)求a 的值; (2)证明:()0f x >.【答案】(1)2a =;(2)证明见答案解析. 【答案解析】(1)求出函数的导函数,再代入计算可得;(2)依题意即证()()2222ln 0xf x x x e ex e x =-+->,即()12ln 2x x x e e x--+>,构造函数()()222x g x x e e-=-+,()ln xh x x =,利用导数说明其单调性与最值,即可得到()()>g x h x ,从而得证; 【答案详解】解:(1)因为()()222ln xf x x x e aex e x =-+-,所以()()222xef x x e ae x'=-+-,()22332222e ef ae e =+=+',解得2a =.(2)由(1)可得()()2222ln xf x x x e ex e x =-+-即证()()()2212ln 22ln 02x x x f x x x e ex e x x e e x-=-+->⇔-+>. 令()()222x g x x e e-=-+,()()21x g x x e -=-',于是()g x 在()0,1上是减函数,在()1,+∞上是增函数,所以()()11g x g e≥=(1x =取等号). 又令()ln x h x x =,则()21ln xh x x -'=,于是()h x 在()0,e 上是增函数,在(),e +∞上是减函数,所以()()1h x h e e≤=(x e =时取等号).所以()()>g x h x ,即()0f x >.4.(2021ꞏ全国高三其他模拟(理))已知函数()()ln e xf x x m x -=+-.(1)若()f x 的图象在点()()1,1f 处的切线与直线20x y -=平行,求m 的值; (2)在(1)的条件下,证明:当0x >时,()0f x >; (3)当1m >时,求()f x 的零点个数.【答案】(1)1m =;(2)证明见答案解析;(3)有一个零点. 【答案解析】(1)利用导数的几何意义求解即可(2)利用导数,得到()f x 在()0,∞+上单调递增,由()00f =,即可证明()0f x >在()0,∞+上恒成立 (3)由(2)可知当1m >且0x >时,()()ln 1e0xf x x x ->+->,即()f x 在()0,∞+上没有零点,再根据,0x m +>,得到x m >-, 对(),0x m ∈-进行讨论,即可求解 【答案详解】解:(1)因为()f x 的图象在点()()1,1f 处的切线与直线20x y -=平行,所以()112f '=, 因为()()11e x f x x x m -+-'=+, 所以()11112f m ='=+,解得1m =. (2)由(1)得当1m =时,()()()21e 11e 11ex xx x f x x x x -+-=+-=++', 当0x >时,因为()0f x '>,所以()f x 在()0,∞+上单调递增, 因为()00f =,所以()0f x >在()0,∞+上恒成立. (3)由(2)可知当1m >且0x >时,()()ln 1e 0xf x x x ->+->,即()f x 在()0,∞+上没有零点,当(),0x m ∈-时,()()()()2e 111e e x xxx m x m f x x x m x m -++--=+-=++',令()()2e 1xg x x m x m =++--,(),0x m ∈-,则()e 21xg x x m =++-'单调递增,且()e21e 10mm g m m m m ---=-+-=--<',()00g m '=>,所以()g x '在(),0m -上存在唯一零点,记为0x ,且()0,x m x ∈-时,()0g x '<,()0,0x x ∈时,()0g x '>, 所以()g x 在()0,m x -上单调递减,在()0,0x 上单调递增, 因为1m >, 所以()e0mg m --=>,()010g m =-<,因为()()00g x g <,所以()00g x <,所以()g x 在()0,m x -上存在唯一零点1x ,且在()0,0x 上恒小于零, 故()1,x m x ∈-时,()0g x >;()1,0x x ∈时,()0g x <,所以()f x 在()1,m x -上单调递增,在()1,0x 上单调递减,且()0ln 0f m =>, 所以()f x 在(),0m -上至多有一个零点, 取()e 2e ,0mm x m m -=-+∈-, 则有()()22ln e 0mf x x m m <++=,所以由零点存在定理可知()f x 在(),0m -上只有一个零点, 又f (0)不为0,所以()f x 在(),m -+∞上只有一个零点.5.(2021ꞏ黑龙江哈尔滨市ꞏ哈尔滨三中高三其他模拟(文))已知函数2211()(1)ln (0)22f x x a x a x a a =-+++>. (1)讨论()f x 的单调性;(2)若函数()y f x =只有一个零点,求实数a 的取值范围.【答案】(1)答案见答案解析;(2)01a <<+或a e >.【答案解析】 (1)求得()'fx ,对a 进行分类讨论,由此求得()f x 的单调区间.(2)根据(1)的结论,结合函数的极值以及零点个数,求得a 的取值范围. 【答案详解】 (1)()()()'1x x a f x x--=,当01a <<时,由()'00f x x a >⇒<<或1x >,所以()f x 在()0,a ,()1,+∞单调递增,由()'01fx a x <⇒<<,所以()f x 在(),1a 单调递减;当1a >时,由()'001fx x >⇒<<或x a >,所以()f x 在()0,1,(),a +∞单调递增,由()'01f x x a <⇒<<,所以()f x 在()1,a 单调递减;当1a =时,()()2'10x f x x-=≥⇒()f x 在()0,∞+单调递增.(2)1(1)(1(12f a a ⎡⎤⎡⎤=--⎣⎦⎣⎦,()(ln 1)f a a a =-, 由(1)知当01a <<时,()f x 在x a =处,有极大值,且()0f a <,此时函数有一个零点; 当1a =时,()f x 在()0,∞+单调递增,且()10f <,此时函数有一个零点;当1a >时,()0,1,(),a +∞单调递增,()1,a 单调递减,()f x 在x a =处,有极小值,()f x 在1x =处,有极大值,则当()10f <,或()0f a >时函数有一个零点,有11a <<或a e >.综上:01a <<+或a e >.6.(2021ꞏ河北高三其他模拟)已知函数2ln 1()(ln )()2k x f x x k x+=+∈R . (1)当0k =时,求证:()1f x ≤; (2)当0k ≠时,讨论()f x 零点的个数.【答案】(1)证明过程见解答;(2)当0k <时,()f x 有两个零点,当0k >时,()f x 有一个零点. 【答案解析】(1)将0k =代入,对()f x 求导,得到其单调性,判断其最值,即可得证;(2)令t lnx =,则()0f x =即为2102t k t t e ++=,显然0t ≠,进一步转化为212t k t t e +-=,令21()(0)t t h t t t e+=≠,利用导数作出()h t 的大致图象,进而图象判断方程解的情况,进而得到函数()f x 零点情况. 【答案详解】(1)证明:当0k =时,1()(0)lnx f x x x +=>,则2()lnxf x x'=-, ∴当(0,1)x ∈时,()0f x '>,()f x 单增,当(1,)x ∈+∞时,()0f x '<,()f x 单减,()f x f ∴…(1)1=,即得证;(2)令t lnx =,则()0f x =即为2102t k t t e++=,当0t =,即1x =时,该方程不成立,故1x =不是()f x 的零点; 接下来讨论0t ≠时的情况,当0t ≠时,方程可化为212tk t t e +-=, 令21()(0)t t h t t t e +=≠,则222()tt th t t e++'=-,当0t <时,22220t t ++-=-<…,当且仅当t =当0t >时,22220t t +++=+>…,当且仅当t =时取等号,∴当0t <时,()0h t '>,()h t 单增,当0t >时,()0h t '<,()h t 单减,且当0t →时,()h t →+∞,(1)0h -=,当1t <-时,()0h t <,当0t >时,()0h t >, 函数()h t 的大致图象如下:由图象可知,当02k -<,即0k >时,212t k t t e +-=只有一个解,则()f x 有一个零点,当02k ->,即0k <时,212tk t t e +-=有两个解,则()f x 有两个零点. 综上,当0k <时,()f x 有两个零点,当0k >时,()f x 有一个零点. 7.(2021ꞏ重庆市育才中学高三二模)已知函数()x f x e =,()1g x ax =+. (1)已知()()f x g x ≥恒成立,求a 的值;(2)若(0,1)x ∈,求证:21ln 11()x x f x x-+-<. 【答案】(1)1a =;(2)证明见答案解析. 【答案解析】(1)作差,设()()()1x h x f x g x e ax =-=--,利用导数求出()h x 的最小值为(ln )ln 10h a a a a =--≥,只需1ln 10a a +-≤;设1()ln 1a a aϕ=+-,利用导数求出min ()(1)0a ϕϕ==,解出1a =; (2)利用1x e x >+把原不等式转化为证明1ln 111x x x x -+-<+,即证:21ln 10x x x-++>, 设21()ln 1F x x x x=-++,利用导数求出最小值,即可证明.【答案详解】(1)设()()()1x h x f x g x e ax =-=--,()x h x e a '=-,当0a ≤时,()0x h x e a '=->,()h x 单增,当,()x h x →-∞→-∞,不满足恒成立 当0a >,()h x 在(,ln )x a ∈-∞单减,()h x 在(ln ,)x a ∈+∞单增, 所以()h x 的最小值为(ln )ln 10h a a a a =--≥,即11ln 0a a --≥,即1ln 10a a+-≤ 设1()ln 1a a a ϕ=+-,21()a a aϕ-'=,所以()ϕx 在(0,1)x ∈单减,()ϕx 在(1,)+∞单增, 即min()(1)0a ϕϕ==,故1ln 10a a+-≤的解只有1a =,综上1a =(2)先证当(0,1)x ∈时,1x e x >+恒成立.令()1x h x e x =--,求导()10x h x e '=->,所以()h x 在(0,1)x ∈上单调递增,()(0)0h x h >=,所以1x e x >+所以要证1ln 11x x x e x -+-<,即证1ln 111x x x x-+-<+, 即证211ln 1x x x x x x +-++-<+,即证:21ln 10x x x -++>, 设21()ln 1F x x x x=-++,求导22111()2(1)20F x x x x x x x '=--=--<,所以()F x 在(0,1)上单调递减,所以()(1)10F x F >=>,即原不等式成立.所以当(0,1)x ∈时,如1ln 11()x x f x x-+-<成立. 8.(2021ꞏ全国高三其他模拟)已知函数()()ln x a f x a x+=+,()0,x ∈+∞.(1)当0a =时,讨论函数()f x 的单调性; (2)若函数()f x 存在极大值M ,证明:12M e≤<. 【答案】(1)当()0,x e ∈时,()f x 单调递增;当(),x e ∈+∞时,()f x 单调递减;(2)证明见答案解析. 【答案解析】(1)将0a =代入函数,并求导即可分析单调性;(2)求导函数,讨论当0a =,01a <<与1a ≥时分析单调性,并判断是否有极大值,再求解极大值,即可证明.【答案详解】(1)()f x 的定义域是()0,∞+ 当0a =时,()ln x f x x =,()21ln xf x x -'=, 令()0f x '=,得x e =,所以当()0,x e ∈时,()0f x '>,()f x 单调递增; 当(),x e ∈+∞时,()0f x '<,()f x 单调递减;(2)()()()()()22ln ln xx a x x a x ax a f x x x x a -+-+++'==+, 令()()()()ln ,0,g x x x a x a x =-++∈+∞, 则()()ln g x x a '=-+,由()f x 的定义域是()0,∞+,易得0a ≥,当0a =时,由(1)知,()f x 在x e =处取得极大值,所以()1==M f e e. 当1a ≥时,()0g x '<在()0,x ∈+∞上恒成立,所以()g x 在()0,∞+上单调递减,()ln 0g x a a <-<,所以()0f x '<,故()f x 没有极值. 当01a <<时,令()0g x '=,得1x a =-,所以当()0,1x a ∈-时,()0g x '>,()g x 单调递增;当()1,x a ∈-+∞时,()0g x '<,()g x 单调递减. 所以当()0,1x a ∈-时,()ln 0g x a a >->,又()110g a a -=->,()0-=-<g e a a ,且1-<-e a a ,所以存在唯一()01,∈--x a e a ,使得()()()0000ln g x x x a x a =-+⋅+,当()00,x x ∈时,()0g x >,即()0f x '>,()f x 单调递增;当()0,x x ∈+∞时,()0g x <,即()0f x '<,()f x 单调递减.所以当0x x =时,()f x 取得极大值,所以()()000ln x a M f x a x +==+,所以()()()()000000011ln M x a x x a x a x a x a x a=++-=++-+⋅+++. 令0x a t +=,则()1,t e ∈,设()1ln h t t t t t=+-,()1,t e ∈, 则()21ln 0h t t t'=--<, 所以()h t 在()1,e 上单调递减, 所以()12<<h t e ,所以12<<M e. 综上,若函数()f x 存在极大值M ,则12M e≤<. 9.(2021ꞏ重庆高三二模)已知函数()ln ()f x ax x a R =+∈在1x =处取得极值. (1)若对(0,),()1x f x bx ∀∈+∞≤-恒成立,求实数b 的取值范围;(2)设()()(2)x g x f x x e =+-,记函数()y g x =在1,14⎡⎤⎢⎥⎣⎦上的最大值为m ,证明:(4)(3)0m m ++<. 【答案】(1)211b e -≤;(2)证明见答案解析. 【答案解析】(1)由条件求出a ,然后由()1f x bx ≤-可得1ln 1+x b x x≤-,然后用导数求出右边对应函数的最小值即可;(2)11()(1)e 1(1)(xx g x x x e x x'=--+=--,令()1e x h x x =-,然后可得存在01(,1)2x ∈使得()00h x =,即01ex x =,即00ln x x =-,然后可得0max 000000000012()()(2)ln (2)12x m g x g x x e x x x x x x x x ===--+=---=--,然后判断出函数2()12G x x x=--的单调性即可. 【答案详解】 (1)∵1()f x a x'=+,(1)10f a '=+=,∴1a =-,由已知()1f x bx ≤-,即ln 1x x bx -≤-,即1ln 1+x b x x≤-对()0,x ∀∈+∞恒成立, 令1ln ()1x t x x x =+-,则22211ln ln 2()x x t x x x x --'=--=,易得()t x 在2(0,)e 上单调递减,在2(,)e +∞上单调递增, ∴2min 21()()1t x t e e==-,即211b e -≤. (2)()()(2)e (2)e ln x x g x f x x x x x =+-=--+,则11()(1)e 1(1)(xx g x x x e x x'=--+=--. 当114x <<时,10x -<,令()1e xh x x=-, 则21()e 0xh x x'=+>,所以()h x 在1[,1]4上单调递增.∵121(()e 202h h x ==-<,(1)10h e =->,∴存在01(,1)2x ∈使得()00h x =,即01ex x =,即00ln x x =-. ∴当01(,)4x x ∈时,()0h x <,此时()0g x '>; 当0(,1)x x ∈时,()0h x >,此时()0g x '<; 即()g x 在01(,)4x 上单调递增,在0(),1x 上单调递减,则0max 000000000012()()(2)ln (2)12xm g x g x x e x x x x x x x x ===--+=---=--. 令2()12G x x x =--,1(,1)2x ∈,则22222(1)()20x G x x x '-=-=>,∴()G x 在1(,1)2x ∈上单调递增,则1()(42G x G >=-,()(1)3G x G <=-, ∴43m -<<-.∴()()430m m ++<.10.(2021ꞏ江苏南通市ꞏ高三一模)已知函数()()21ln 22f x ax ax x =+-,0a >. (1)求函数()f x 的增区间;(2)设1x ,2x 是函数()f x 的两个极值点,且12x x <,求证:122x x +>.【答案】(1)答案见答案解析;(2)证明见答案解析. 【答案解析】(1)求函数的导数,分类讨论,解不等式即可求解;(2)根据极值点可转化为1x ,2x 是方程2210-+=ax x 的两个不相等的正实数根,可得12x >且1x ≠,要证122x x +>,只要证212x x >-,利用构造函数的单调性证明即可. 【答案详解】(1)由题意得()21212ax ax x f x x x-+=+='-(0x >). 令()0f x '>,则2210ax x -+>.①当()2240a ∆=--≤,即1a ≥时,2210ax x -+>在()0,∞+上恒成立,即()f x 的增区间为()0,∞+;②当()2240a ∆=-->,即01a <<时,10x a -<<或1x a+>,即()f x 的增区间为10,a ⎛⎫ ⎪ ⎪⎝⎭和1,a ⎛⎫++∞ ⎪ ⎪⎝⎭.综上,当1a ≥时,()f x 的增区间为()0,∞+;当01a <<时,()f x 的增区间为10,a ⎛⎫- ⎪ ⎪⎝⎭和1,a ⎛⎫++∞ ⎪ ⎪⎝⎭. (2)因为()221x x ax xf -+'=(0x >),()f x 有两个极值点1x ,2x , 所以1x ,2x 是方程2210-+=ax x 的两个不相等的正实数根,可求出 从而()2240a ∆=-->,0a >,解得01a <<. 由2210-+=ax x 得221x a x -=. 因为01a <<,所以12x >且1x ≠.令()221x g x x -=,12x >且1x ≠,则()()321x g x x-'=,所以当112x <<时,()0g x '>,从而()g x 单调递增;当1x >时,()0g x '<,从而()g x 单调递减, 于是1222122121x x a x x --==(12112x x <<<). 要证122x x +>,只要证212x x >-,只要证明()()212g x g x <-. 因为()()12g x g x =,所以只要证()()112g x g x <-. 令()()()()()1111122112212122x x F x g x g x x x ---=--=-- 则()()()()1113311212212x x F x xx --⎡⎤-⎣⎦'=+-()()()11331121212x x x x --=+- ()()1331111212x x x ⎡⎤=--⎢⎥-⎢⎥⎣⎦()()()()22211111331141222x x x x x x x ⎡⎤--+-+⎣⎦=-.因为1112x <<, 所以()10F x '>,即()1F x 在1,12⎛⎫⎪⎝⎭上单调递增,所以()()110F x F <=,即()()112g x g x <-, 所以212x x >-,即122x x +>.1.(2021ꞏ全国高考真题(文))设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图像与x 轴没有公共点,求a 的取值范围. 【答案】(1)()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭;(2)1a e >. 练真题(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)根据()10f >及(1)的单调性性可得()min 0f x >,从而可求a 的取值范围. 【答案详解】(1)函数的定义域为()0,∞+,又()23(1)()ax ax f x x+-'=,因为0,0a x >>,故230ax +>, 当10x a <<时,()0f x '<;当1x a>时,()0f x '>; 所以()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭.(2)因为()2110f a a =++>且()y f x =的图与x 轴没有公共点, 所以()y f x =的图象在x 轴的上方, 由(1)中函数的单调性可得()min 1133ln 33ln f x f a a a ⎛⎫==-=+ ⎪⎝⎭, 故33ln 0a +>即1a e>. 2.(2021ꞏ全国高考真题(理))设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点. (1)求a ; (2)设函数()()()x f x g x xf x +=.证明:()1g x <.【答案】1;证明见答案详解 【答案解析】(1)由题意求出'y ,由极值点处导数为0即可求解出参数a ; (2)由(1)得()()ln 1()ln 1x x g x x x +-=-,1x <且0x ≠,分类讨论()0,1x ∈和(),0x ∈-∞,可等价转化为要证()1g x <,即证()()ln 1ln 1x x x x +->-在()0,1x ∈和(),0x ∈-∞上恒成立,结合导数和换元法即可求解(1)由()()()n 1'l a f x a x f x x ⇒==--,()()'ln xy a x x ay xf x ⇒=-=+-, 又0x =是函数()y xf x =的极值点,所以()'0ln 0y a ==,解得1a =; (2)由(1)得()()ln 1f x x =-,()()ln 1()()()ln 1x x x f x g x xf x x x +-+==-,1x <且0x ≠,当 ()0,1x ∈时,要证()()ln 1()1ln 1x x g x x x +-=<-,()0,ln 10x x >-< , ()ln 10x x ∴-<,即证()()ln 1ln 1x x x x +->-,化简得()()1ln 10x x x +-->;同理,当(),0x ∈-∞时,要证()()ln 1()1ln 1x x g x x x +-=<-,()0,ln 10x x <-> , ()ln 10x x ∴-<,即证()()ln 1ln 1x x x x +->-,化简得()()1ln 10x x x +-->;令()()()1ln 1h x x x x =+--,再令1t x =-,则()()0,11,t ∈+∞ ,1x t =-, 令()1ln g t t t t =-+,()'1ln 1ln g t t t =-++=,当()0,1t ∈时,()'0g x <,()g x 单减,假设()1g 能取到,则()10g =,故()()10g t g >=; 当()1,t ∈+∞时,()'0g x >,()g x 单增,假设()1g 能取到,则()10g =,故()()10g t g >=; 综上所述,()()ln 1()1ln 1x x g x x x +-=<-在()(),00,1x ∈-∞ 恒成立3.(2021ꞏ全国高考真题)已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 【答案】(1)()f x 的递增区间为()0,1,递减区间为()1,+∞;(2)证明见答案解析. 【答案解析】(1)求出函数的导数,判断其符号可得函数的单调区间; (2)设1211,x x a b==,原不等式等价于122x x e <+<,前者可构建新函数,利用极值点偏移可证,后者可设21x tx =,从而把12x x e +<转化为()()1ln 1ln 0t t t t -+-<在()1,+∞上的恒成立问题,利用导数可。
一元函数的导数及其应用(时间:120分钟 满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020福建福州模拟,理7)已知函数f (x )为偶函数,当x<0时,f (x )=x 2-ln(-x ),则曲线y=f (x )在x=1处的切线方程为( ) A.x-y=0 B.x-y-2=0 C.x+y-2=0 D.3x-y-2=02.设函数f (x )在R 上可导,其导函数为f'(x ),若函数f (x )在x=1处取得极大值,则函数y=-xf'(x )的图像可能是( )3.已知函数f (x )=x+1,g (x )=ln x ,若f (x 1)=g (x 2),则x 2-x 1的最小值为( ) A.1 B.2+ln 2 C.2-ln 2 D.24.已知定义在(0,+∞)上的函数f (x )满足xf'(x )-f (x )<0,且f (2)=2,则f (e x )-e x >0的解集是( )A.(-∞,ln 2)B.(ln 2,+∞)C.(0,e 2)D.(e 2,+∞) 5.(2020北京房山区二模,5)函数f (x )=e x -x 2的零点个数为( )A.0B.1C.2D.36.(2020山东青岛5月模拟,8)已知函数f (x )=lnx x 2,若f (x )<m-1x2在(0,+∞)上恒成立,e 为自然对数的底数,则实数m 的取值范围是( ) A.m>e B.m>e2 C.m>1D.m>√e7.已知函数f (x )=x 2+|x-a|,g (x )=(2a-1)x+a ln x ,若函数y=f (x )与函数y=g (x )的图像恰好有两个不同的交点,则实数a 的取值范围为( ) A.(1,+∞)B.(-∞,1)C.(0,+∞)D.(-∞,0)8.(2020河南新乡三模,理12)已知函数f (x )=x 2-ax (x ∈[1e ,e])与g (x )=e x 的图像上存在两对关于直线y=x 对称的点,则实数a 的取值范围是( ) A.[e -1e ,e] B.(1,e -1e ] C.[1,e -1e ]D.[1,e +1e ]二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.(2020山东潍坊临朐模拟二,12)已知函数f (x )=x ln x+x 2,x 0是函数f (x )的极值点,以下结论中正确的是( ) A.0<x 0<1eB.x 0>1eC.f (x 0)+2x 0<0D.f (x 0)+2x 0>010.(2020山东聊城二模,10)下列关于函数f (x )=x 3-3x 2+2x 的叙述正确的是( ) A.函数f (x )有三个零点B.点(1,0)是函数f (x )图像的对称中心C.函数f (x )的极大值点为x=1-√33D.存在实数a ,使得函数g (x )=[f (x )]2+af (x )在R 上为增函数11.(2020海南天一大联考第三次模拟,12)已知函数f (x )=x 3+ax+b ,其中a ,b ∈R ,则下列选项中的条件使得f (x )仅有一个零点的有( ) A.a<b ,f (x )为奇函数 B.a=ln(b 2+1) C.a=-3,b 2-4≥0D.a<0,b 2+a36>012.(2020山东师大附中月考,12)设函数f (x )={|lnx |,x >0,e x (x +1),x ≤0,若方程[f (x )]2-af (x )+116=0有六个不等的实数根,则实数a 可能的取值是( )A.12B.23C.1D.2三、填空题:本题共4小题,每小题5分,共20分.13.(2020山东、海南两省4月模拟,13)函数f (x )=alnxe x 在点P (1,f (1))处的切线与直线2x+y-3=0垂直,则a= .14.设f (x )=e x (ln x-a ),若函数f (x )在区间1e,e 上单调递减,则实数a 的取值范围为 .15.已知函数f (x )=log 2x ,g (x )=√x +√a -x (a>0),若对∀x 1∈{x|g (x )=√x +√a -x },∃x 2∈[4,16],使g (x 1)=f (x 2)成立,则实数a 的取值范围是 .16.已知函数f (x )=2ln x ,g (x )=ax 2-x-12(a>0).若直线y=2x-b 与函数y=f (x ),y=g (x )的图像均相切,则a 的值为 ;若总存在直线与函数y=f (x ),y=g (x )的图像均相切,则a 的取值范围是 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(2020河南郑州质量预测二,理21)已知函数f (x )=lnx a ,g (x )=x+1x(x>0). (1)当a=1时,求曲线y=f (x )g (x )在x=1处的切线方程; (2)讨论函数F (x )=f (x )-1g (x )在(0,+∞)上的单调性.18.(12分)(2020河南开封三模,理20)已知函数f (x )=ax e x -ln x+b (a ,b ∈R )在x=1处的切线方程为y=(2e -1)x-e . (1)求a ,b 值;(2)若f (x )≥mx 恒成立,求实数m 的取值范围.19.(12分)(2020陕西宝鸡三模,文21)已知函数f(x)=ln x+ax2-(2a+1)x,a∈R,f'(x)为f(x)的导函数.(1)讨论f(x)的单调性;(2)若g(x)=f(x)+a+1,当a>12时,求证:g(x)有两个零点.20.(12分)(2020辽宁大连一中6月模拟,文20)已知函数f(x)=x ln x-1,g(x)=(k-1)x-k(k∈R).(1)若直线y=g(x)是曲线y=f(x)的一条切线,求k的值;(2)当x>1时,直线y=g(x)与曲线y=f(x)+1无交点,求整数k的最大值.21.(12分)(2020天津,20)已知函数f(x)=x3+k ln x(k∈R),f'(x)为f(x)的导函数.(1)当k=6时,(ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(ⅱ)求函数g(x)=f(x)-f'(x)+9x的单调区间和极值.(2)当k≥-3时,求证:对任意的x1,x2∈[1,+∞),且x1>x2,有f'(x1)+f'(x2)2>f(x1)-f(x2)x1-x2.22.(12分)(2020浙江,22)已知1<a≤2,函数f(x)=e x-x-a,其中e=2.718 28…是自然对数的底数.(1)证明:函数y=f(x)在(0,+∞)上有唯一零点.(2)记x0为函数y=f(x)在(0,+∞)上的零点,证明:①√a-1≤x0≤√2(a-1);②x0f(e x0)≥(e-1)(a-1)a.参考答案单元质检卷三一元函数的导数及其应用1.A当x>0时,-x<0,f(-x)=x2-ln x,又函数f(x)为偶函数,所以f(x)=x2-ln x,f(1)=1,所以,f'(1)=1,故切线方程为y-1=x-1,即x-y=0.故选A.f'(x)=2x-1x2.B因为函数f(x)在R上可导且f(x)在x=1处取得极大值,所以当x>1时,f'(x)<0;当x=1时,f'(x)=0;当x<1时,f'(x)>0.所以当x<0时,y=-xf'(x)>0,当0<x<1时,y=-xf'(x)<0,当x=0或x=1时,y=-xf'(x)=0,当x>1时,y=-xf'(x)>0,可知选项B符合题意.故选B.3.D设f(x1)=g(x2)=t,所以x1=t-1,x2=e t,所以x2-x1=e t-t+1,令h(t)=e t-t+1,则h'(t)=e t-1,所以h(t)在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以h(t)min=h(0)=2.4.A 令g (x )=f (x )x ,g'(x )=xf '(x )-f (x )x 2<0,则g (x )在(0,+∞)上单调递减,且g (2)=f (2)2=1,故f (e x )-ex>0等价为f (e x )e x>f (2)2,即g (e x )>g (2),故e x <2,即x<ln 2,则所求的解集为(-∞,ln 2).故选A .5.B 令f (x )=e x -x 2=0,得e x =x 2,分别画出y=e x 和y=x 2的图像,如图所示,当x<0时,函数y=e x 和y=x 2有一个交点. 当x>0时,f'(x )=e x -2x ,令g (x )=e x -2x ,则g'(x )=e x -2,当g'(x )=0时,可得x=ln 2.当x ∈(0,ln 2)时,g'(x )<0,g (x )单调递减,当x ∈(ln 2,+∞)时,g'(x )>0,g (x )单调递增.所以g (x )min =g (ln 2)=e ln 2-2ln 2=2-ln 4>0,所以f (x )在(0,+∞)上单调递增.又因为f (0)=1,所以当x ∈(0,+∞)时,f (x )>0.故f (x )在(0,+∞)上无零点. 综上,函数f (x )=e x -x 2的零点个数为1.故选B . 6.B 若f (x )<m-1x 2在(0,+∞)上恒成立,即f (x )+1x 2<m 在(0,+∞)上恒成立,令g (x )=f (x )+1x 2=lnx+1x 2,故只需g (x )max <m 即可,g'(x )=1x ·x 2-(lnx+1)·2x x 4=-2lnx -1x 3,令g'(x )=0,得x=e-12,当0<x<e-12时,g'(x )>0;当x>e-12时,g'(x )<0,所以g (x )在(0,e-12)上单调递增,在(e -12,+∞)上单调递减,所以g (x )max =g (e-12)=e 2,所以实数m 的取值范围是m>e2. 故选B . 7.A当a ≠0时函数g (x )的定义域为(0,+∞),所以只研究这两个函数在x ∈(0,+∞)上的图像,当a ≤0时,f (x )单调递增,又g (x )单调递减,两者的图像最多只有一个交点,不符合题意.当a>0时,设φ(x )=f (x )-g (x ),即φ(x )={x 2-2ax -alnx +a ,0<x <a ,x 2+(2-2a )x -alnx -a ,x ≥a ,因为φ'(x )={2(x -a )-ax <0,0<x <a ,2(x -a )+2x -ax>0,x ≥a ,所以φ(x )在(0,a )上单调递减,(a ,+∞)上单调递增,所以φ(x )min =-a 2-a ln a+a ,因为x →0,x →+∞时,φ(x )→+∞,所以φ(x )有两个零点,当且仅当φ(x )min =-a 2-a ln a+a<0,解得a>1,即a 的取值范围为(1,+∞).8.B ∵f (x )与g (x )的图像在x ∈[1e ,e]上存在两对关于直线y=x 对称的点,则函数f (x )与函数φ(x )=ln x 的图像在x ∈[1e ,e]上有两个交点,∴ln x=x 2-ax 在x ∈[1e ,e]上有两个实数解,即a=x-lnx x 在x ∈[1e ,e]上有两个实数解,令h (x )=x-lnxx ,则h'(x )=x 2+lnx -1x 2.令k (x )=x 2+ln x-1,k (x )在x ∈[1e ,e]上单调递增,且k (1)=0,∴当x ∈[1e ,1]时,h'(x )<0,h (x )单调递减;当x ∈(1,e]时,h'(x )>0,h (x )单调递增.∴h (x )min =h (1)=1.对g 1e =e +1e ,g (e)=e -1e ,∴a 的取值范围是1,e -1e . 9.AD ∵函数f (x )=x ln x+x 2(x>0),∴f'(x )=ln x+1+2x.∵x 0是函数f (x )的极值点, ∴f'(x 0)=0,即ln x 0+1+2x 0=0,∵f'(x )在(0,+∞)上单调递增,且f'(1e )=2e >0,又x →0,f'(x )→-∞,∴0<x 0<1e ,即选项A 正确,选项B 不正确;f (x 0)+2x 0=x 0ln x 0+x 02+2x 0=x 0(ln x 0+x 0+2)=x 0(1-x 0)>0,即选项D 正确,选项C 不正确.故选AD .10.ABC 令f (x )=0,即x (x-1)(x-2)=0,解得x=0或x=1或x=2,故函数f (x )有三个零点,故选项A 正确;因为f (1+x )+f (1-x )=0,所以点(1,0)是函数f (x )图像的对称中心,故选项B 正确;令f'(x )=3x 2-6x+2=0,解得x=3±√33,故f (x )在-∞,3-√33上单调递增,在3-√33,3+√33上单调递减,在3+√33,+∞上单调递增,函数f (x )的极大值点为x=1-√33,故选项C 正确;因为f (x )在R 上不单调,所以不存在实数a ,使得函数g (x )=[f (x )]2+af (x )在R 上为增函数,故D 错误.故选ABC .11.BD 由题知f'(x )=3x 2+a.对于A,由f (x )是奇函数,知b=0,因为a<0,所以f (x )存在两个极值点,易知f (x )有三个零点,故A 错误;对于B,因为b 2+1≥1,所以a ≥0,f'(x )≥0,所以f (x )单调递增,则f (x )仅有一个零点,故B 正确;对于C,若取b=2,则f (x )的极大值为f (-1)=4,极小值为f (1)=0,此时f (x )有两个零点,故C 错误;对于D,f (x )的极大值为f -√-a3=b-2a3√-a3,极小值为f√-a 3=b+2a 3√-a3.因为a<0,所以b2+4a 327>b 2+a 36>0,所以b 2>-4a 327,则b>-2a 3√-a3或b<2a3√-a3,从而f -√-a3>0,f √-a3>0或f -√-a3<0,f √-a3<0,可知f (x )仅有一个零点,故D 正确.12.BC 当x ≤0时,f (x )=e x (x+1),则f'(x )=e x (x+1)+e x =e x (x+2).由f'(x )<0得,x+2<0,即x<-2,此时f (x )单调递减, 由f'(x )>0得,x+2>0,即-2<x ≤0,此时f (x )单调递增,即当x=-2时,f (x )取得极小值f (-2)=-1e 2,作出f (x )的图像如图:由图像可知当0<f (x )≤1时,有三个不同的x 的取值与f (x )对应. 设t=f (x ),因为方程[f (x )]2-af (x )+116=0有六个不等的实数根, 所以t 2-at+116=0在t ∈(0,1]内有两个不等的实数根, 设g (t )=t 2-at+116.则{g (0)>0,g (1)≥0,Δ>0,0<a 2<1,即{116>0,1-a +116≥0,a 2-4×116>0,0<a 2<1, 解得12<a ≤1716.结合选项可知实数a 可能是23或1,故选BC .13.e2由题意,得f'(x)=ax ex-ae x lnx(e x)2=ax-alnxe x.又切线斜率k=12.∴f'(1)=ae=12,∴a=e2.14.[e-1,+∞)由题意可得f'(x)=e x ln x+1x -a≤0在1e,e上恒成立.因为e x>0,所以只需lnx+1x-a≤0,即a≥ln x+1x在1e,e上恒成立.令g(x)=ln x+1x.因为g'(x)=1x−1x2=x-1x2.由g'(x)=0,得x=1.则g(x)在1e,1上单调递减,在(1,e)上单调递增,g1e =ln1e+e=e-1,g(e)=1+1e,因为e-1>1+1e,所以g(x)max=g1e=e-1.故a的取值范围为[e-1,+∞).15.[4,8]结合题意可得log24=2≤f(x)≤log216=4,要使得对∀x1∈{x|g(x)=√x+√a-x},∃x2∈[4,16],使g(x1)=f(x2)成立,则要求g(x)的值域在[2,4]上,对g(x)求导得g'(x)=√a-x-√x2√x·√a-x,令g'(x)>0,解得x<a2,结合该函数的定义域为[0,a],可知g(x)在0,a2上单调递增,在a2,a上单调递减,故g(x)在x=a2取到最大值,在x=0取到最小值,所以需要满足g a2≤4,且g(0)≥2,得到{√a2+√a2≤4,√a≥2,解得a∈[4,8].16.32[32,+∞)由题意,f'(x)=2x,g'(x)=2ax-1,因为直线y=2x-b与函数y=f(x),y=g(x)的图像均相切,所以{2x=2,2ax-1=2,解得x=1,a=32.设直线l与y=f(x)的图像相切于点P1(x1,y1),x1>0,则切线方程为y-2ln x1=2x1(x-x1),代入g(x)=ax2-x-12(a>0),得2x1x-2+2ln x1=ax2-x-1 2,即ax2-(1+2x1)x+(32-2ln x1)=0.所以Δ=(1+2x1)2-4a×(32-2ln x1)=0.所以a=(x 1+2)22x 12(3-4ln x 1)(x 1>0). 令y=(x 1+2)22x 12(3-4ln x 1)(x 1>0), 则y'=2(x 1+2)(4ln x 1+x 1-1)x 13(3-4ln x 1)2.令y'=0,解得x 1=1.当x 1>1时,y'>0,y 单调递增,当0<x 1<1时,y'<0,y 单调递减,因此y ≥(1+2)22×12(3-4ln1)=32,即a ≥32.17.解 (1)当a=1时,y=f (x )g (x )=xlnxx+1,y'=(1+lnx )(x+1)-xlnx(x+1)2=lnx+x+1(x+1)2,所以y'|x=1=ln1+1+1(1+1)2=12,即当x=1时,切线的斜率为12,又切线过点(1,0),所以切线方程为x-2y-1=0.(2)f'(x )=1ax ,(1g (x ))'=1(x+1)2,F'(x )=f'(x )-(1g (x ))'=1ax −1(x+1)2=(x+1)2-ax ax (x+1)2,当a<0时,F'(x )<0,函数F (x )在(0,+∞)上单调递减; 当a>0时,令h (x )=1a x 2+(2a -1)x+1a ,Δ=1-4a ,当Δ≤0,即0<a ≤4时,h (x )≥0,此时F'(x )≥0,函数F (x )在(0,+∞)上单调递增; 当Δ>0,即a>4时,方程1a x 2+(2a -1)x+1a =0有两个不等实数根x 1,x 2,设x 1<x 2,则x 1=a -2-√a 2-4a 2,x 2=a -2+√a 2-4a 2,所以0<x 1<1<x 2,此时,函数F (x )在(0,x 1),(x 2,+∞)上单调递增,在(x 1,x 2)上单调递减. 综上所述,当a<0时,F (x )的单调递减区间是(0,+∞); 当a>4时,F (x )的单调递减区间是(a -2-√a 2-4a 2,a -2+√a 2-4a2),单调递增区间是0,a -2-√a 2-4a2,a -2+√a 2-4a2,+∞.当0<a ≤4时,F (x )的单调递增区间是(0,+∞). 18.解 (1)f'(x )=a e x +ax e x -1x .因为函数f (x )=ax e x -ln x+b 在x=1处的切线为y=(2e -1)x-e, 所以{f (1)=ae +b =e -1,f '(1)=2ae -1=2e -1,解得a=1,b=-1.(2)由f (x )≥mx 得,x e x-ln x-1≥mx (x>0),即m ≤xe x -lnx -1x. 令φ(x )=xe x -lnx -1x ,则φ'(x )=x 2e x +lnxx 2.令h (x )=x 2e x +ln x ,h (x )在(0,+∞)上单调递增,则h 1e=1e 2e 1e -1<e 2e 2-1=0,h (1)=e >0.所以h (x )在1e ,1上存在零点x 0,即h (x 0)=x 02e x 0+ln x 0=0,即x 0e x 0=-ln x0x 0=ln 1x 0(eln1x 0).由于y=x e x 在(0,+∞)上单调递增,故x 0=ln 1x 0=-ln x 0,即e x 0=1x 0.因为φ(x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,所以φ(x )min =x 0e x 0-ln x 0-1x 0=1+x 0-1x 0=1. 所以m ≤1.实数m 的取值范围为(-∞,1]. 19.(1)解 f'(x )=1x +2ax-(2a+1)=(x -1)(2ax -1)x(x>0). ①当a ≤0时,令f'(x )>0,得0<x<1;令f'(x )<0,得x>1.所以f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.②当a>0时,令f'(x )=0,得x 1=1,x 2=12a . (ⅰ)当a=12时,f'(x )=(x -1)2x ≥0,所以f (x )在(0,+∞)上单调递增.(ⅱ)当a>12时,令f'(x )>0,得0<x<12a 或x>1; 令f'(x )<0,得12a <x<1.所以f (x )在0,12a 和(1,+∞)上单调递增,在12a ,1上单调递减. (ⅲ)当0<a<12时,令f'(x )>0,得0<x<1或x>12a ; 令f'(x )<0,得1<x<12a .所以f (x )在(0,1)和12a ,+∞上单调递增,在1,12a 上单调递减.综上,当a ≤0时,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当a=12时,f (x )在(0,+∞)上单调递增;当a>12时,f (x )在0,12a 和(1,+∞)上单调递增,在12a ,1上单调递减; 当0<a<12时,f (x )在(0,1)和12a ,+∞上单调递增,在1,12a 上单调递减.(2)证明 由(1)知,当a>12时,f (x )在0,12a 和(1,+∞)上单调递增,在12a ,1上单调递减.则g (x )在0,12a 和(1,+∞)上单调递增,在12a ,1上单调递减.因为g (1)=0,所以1是函数g (x )的一个零点,且g 12a >0.当x ∈0,12a 时,取0<x 0<e -a-1且x 0<12a ,则a x 02-(2a+1)x 0+a+1=a x 02-x 0-2ax 0+a+1<a+1,g (x 0)<-a-1+a+1=0.所以g 12a ·g (x 0)<0,所以g (x )在0,12a 上恰有一个零点,所以g (x )在区间(0,+∞)上有两个零点.20.解 (1)由题意知f'(x )=ln x+1(x>0),设切点为P (x 0,x 0ln x 0-1),在点P 处的切线方程为y-(x 0ln x 0-1)=(1+ln x 0)(x-x 0).整理得y=(1+ln x 0)x-(x 0+1).由{1+ln x 0=k -1,k =x 0+1,即{ln x 0=k -2,x 0=k -1,得ln x 0=x 0-1.令h (x )=ln x-x+1,则h'(x )=1x -1=1-xx .当0<x<1时,h'(x )>0,h (x )在(0,1)上单调递增; 当x>1时,h'(x )<0,h (x )在(1,+∞)上单调递减. 所以h (x )的最大值为h (1)=0,即x 0=1,故k=2.(2)令F (x )=f (x )-g (x )=x ln x-(k-1)x+k ,则F'(x )=ln x+2-k=ln x-(k-2)(x>1). ①当k-2≤0时,F'(x )>0,所以f (x )在(1,+∞)上单调递增.所以F (x )>F (1)=1,即F (x )在(1,+∞)上无零点. ②当k-2>0时,由F'(x )=0,得x=e k-2.当1<x<e k-2时,F'(x )<0,所以F (x )在(1,e k-2)上单调递减; 当x>e k-2时,F'(x )>0,所以F (x )在(e k-2,+∞)上单调递增. F (x )的最小值为F (e k-2)=(k-1)e k-2-k (e k-2-1)=k-e k-2.令m (k )=k-e k-2,则m'(k )=1-e k-2<0,所以m (k )在(2,+∞)上单调递减,而m (2)=2-1=1,m (3)=3-e >0,m (4)=4-e 2<0,因此k 的最大值为3.21.(1)解 (ⅰ)当k=6时,f (x )=x 3+6ln x ,故f'(x )=3x 2+6x .可得f (1)=1,f'(1)=9,所以曲线y=f (x )在点(1,f (1))处的切线方程为y-1=9(x-1),即9x-y-8=0.(ⅱ)依题意,g (x )=x 3-3x 2+6ln x+3x ,x ∈(0,+∞).从而可得g'(x )=3x 2-6x+6x −3x 2,整理可得g'(x )=3(x -1)3(x+1)x 2.令g'(x )=0,解得x=1.当x 变化时,g'(x ),g (x )的变化情况如下表:所以,函数g (x )的单调递减区间为(0,1),单调递增区间为(1,+∞);g (x )的极小值为g (1)=1,无极大值.(2)证明 由f (x )=x 3+k ln x ,得f'(x )=3x 2+k x .对任意的x 1,x 2∈[1,+∞),且x 1>x 2,令x1x 2=t (t>1),则(x 1-x 2)[f'(x 1)+f'(x 2)]-2[f (x 1)-f (x 2)]=(x 1-x 2)3x 12+k x 1+3x 22+k x 2-2x 13−x 23+k ln x1x 2=x 13−x 23-3x 12x 2+3x 1x 22+k x 1x 2−x 2x 1-2k ln x 1x 2=x 23(t 3-3t 2+3t-1)+k t-1t -2ln t .①令h (x )=x-1x -2ln x ,x ∈(1,+∞). 当x>1时,h'(x )=1+1x 2−2x=(1-1x )2>0,由此可得h (x )在(1,+∞)上单调递增, 所以当t>1时,h (t )>h (1),即t-1t -2ln t>0. 因为x 2≥1,t 3-3t 2+3t-1=(t-1)3>0,k ≥-3,所以,x 23(t 3-3t 2+3t-1)+k t-1t -2ln t ≥(t 3-3t 2+3t-1)-3t-1t -2ln t =t 3-3t 2+6ln t+3t -1.② 由(1)(ⅱ)可知,当t>1时,g (t )>g (1),即t 3-3t 2+6ln t+3t >1,故t 3-3t 2+6ln t+3t -1>0. ③由①②③可得(x 1-x 2)[f'(x 1)+f'(x 2)]-2[f (x 1)-f (x 2)]>0. 所以,当k ≥-3时,对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有f '(x 1)+f '(x 2)2>f (x 1)-f (x 2)x 1-x 2. 22.证明 (1)因为f (0)=1-a<0,f (2)=e 2-2-a ≥e 2-4>0,所以y=f (x )在(0,+∞)上存在零点.因为f'(x )=e x -1,所以当x>0时,f'(x )>0,故函数f (x )在[0,+∞)上单调递增,所以函数y=f (x )在(0,+∞)上有唯一零点.(2)①令g(x)=e x-1x2-x-1(x≥0),g'(x)=e x-x-1=f(x)+a-1,由①知函数2g'(x)在[0,+∞)上单调递增,故当x>0时,g'(x)>g'(0)=0,所以函数g(x)在[0,+∞)上单调递增,故g(x)≥g(0)=0.由g(√2(a-1))≥0,得f(√2(a-1))=e√2(a-1)−√2(a-1)-a≥0=f(x0), 因为f(x)在[0,+∞)上单调递增,故√2(a-1)≥x0.令h(x)=e x-x2-x-1(0≤x≤1),h'(x)=e x-2x-1,令h1(x)=e x-2x-1(0≤x≤1),h'1(x)=e x-2,所以故当0<x<1时,h1(x)<0,即h'(x)<0,所以h(x)在[0,1]上单调递减,因此当0≤x≤1时,h(x)≤h(0)=0.由h(√a-1)≤0,得f(√a-1)=e√a-1−√a-1-a≤0=f(x0),因为f(x)在[0,+∞)上单调递增,故√a-1≤x0.综上,√a-1≤x0≤√2(a-1).②令u(x)=e x-(e-1)x-1,u'(x)=e x-(e-1),所以当x>1时,u'(x)>0,故函数u(x)在区间[1,+∞)上单调递增,因此u(x)≥u(1)=0.由e x0=x0+a可得x0f(e x0)=x0f(x0+a)=(e a-1)x02+a(e a-2)x0≥(e-1)a x02,由x0≥√a-1,得x0f(e x0)≥(e-1)(a-1)a.。
课时提升作业九幂函数与二次函数(25分钟50分)一、选择题(每小题5分,共35分)1.(2016·岳阳模拟)已知幂函数y=f(x)的图象过点错误!未找到引用源。
,则log2f(2)的值为( )A.错误!未找到引用源。
B.-错误!未找到引用源。
C.2D.-2【解析】选 A.设f(x)=xα,则错误!未找到引用源。
=错误!未找到引用源。
,所以α=错误!未找到引用源。
,f(2)=错误!未找到引用源。
,log2f(2)=log2错误!未找到引用源。
=错误!未找到引用源。
.2.已知函数y=x2-2x+3在闭区间[0,m]上有最大值3,最小值2.则m的取值范围是( )A.[1,+∞)B.[0,2]C.[1,2]D.(-∞,2]【解析】选C.y=(x-1)2+2,由x2-2x+3=3得x=0或x=2,所以1≤m≤2.3.(2016·郑州模拟)设abc>0,二次函数f(x)=ax2+bx+c的图象可能是( )【解析】选D. A项,因为a<0,-错误!未找到引用源。
<0,所以b<0.又因为abc>0,所以c>0,由图知f(0)=c<0,故A错;B项,因为a<0,-错误!未找到引用源。
>0,所以b>0,又因为abc>0,所以c<0,而f(0)=c>0,故B错;C 项,因为a>0,-错误!未找到引用源。
<0,所以b>0,又因为abc>0,所以c>0,而f(0)=c<0,故C错;D项,因为a>0,-错误!未找到引用源。
>0,所以b<0,又因为abc>0,所以c<0,由图知f(0)=c<0.【加固训练】设b>0,二次函数y=ax2+bx+a2-1的图象为下列之一,则a的值为( )A.错误!未找到引用源。
B.错误!未找到引用源。
C.1D.-1【解析】选D.因为b>0,故对称轴不可能为y轴,由给出的图可知对称轴在y轴右侧,故a<0,所以二次函数的图象为第三个图,图象过原点,故a2-1=0,a=±1,又a<0,所以a=-1.4.若a<0,则下列不等式成立的是( )A.2a>错误!未找到引用源。
导数及其应用(1)导数、导数的计算A1、已知点P 在曲线4e 1x y =+上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A. π0,4⎡⎫⎪⎢⎣⎭ B. ππ,42⎡⎫⎪⎢⎣⎭ C. π3π,24⎛⎤ ⎥⎝⎦ D. 3π,π4⎡⎫⎪⎢⎣⎭2、设曲线11x y x +=-在点()3,2处的切线与直线30ax y ++=垂直,则a =( ) A.2 B.2- C.12 D.12- 3、设()00f x '=,则曲线()y f x =在点()()00,x f x 处的切线( )A.不存在B.与x 轴平行或重合C.与x 轴垂直D.与x 轴斜交4、已知曲线()y f x =在点()()00,P x f x 处的切线方程为210x y ++=,则( )A. ()00f x '=B. ()00f x '<C. ()00f x '>D. ()0f x '不确定 5、若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A. 430x y --=B. 450x y +-=C. 430x y -+=D. 430x y ++=6、已知曲线3:3S y x x =-及点()2,2,P 则过点P 可向S 引切线,其切线条数为( ) A.0 B.1 C.2 D.37、设函数()()2f x g x x =+,曲线()y g x =在点()()1,1g 处的切线方程为21y x =+,则曲线(x)y f =在点()()1,1f 处切线的斜率为( ) A. 4 B. 14-C. 2D. 12- 8、设曲线11x y x +=-在点()3,2处的切线与直线10ax y ++=垂直,则a =( )A.2B.2-C.12-D.12 9、曲线2x y x =-在点()1,1-处的切线方程为( ) A. 2y x =-B. 32y x =-+C. 23y x =-D. 21y x =-+ 10、函数()ln f x x ax =-在点()1,P b 处的切线与320x y +-=垂直,则2a b +等于( )A .2B .0C . -1D .-211、在曲线323610y x x x =++-的所有切线中,斜率最小的切线方程是__________.12、若曲线()1y x R αα=+∈在点()1,2处的切线经过坐标原点,则α=__________. 13、已知函数()y f x =的图象在()()1,1M f 处的切线方程是122y x =+,则()()1'1f f +=__________.14、在曲线3()4f x x x =-的所有切线中,斜率最小的切线方程为____________ . 15、函数1()ln 2x f x x x-=+的导函数是'()f x ,则'(1)f =______. 16、已知函数3()3f x x x =-,其图象在点(1,2)处的切线方程是 ,它的单调递增区间为 .17、设曲线ln(1)y x a x =-+在点(0,0)处的切线方程为2y x =,则a =______.18、正弦函数sin y x =在π6x =处的切线方程为____________.答案以及解析1答案及解析:答案:D 解析:因为24e 44tan '1([0,π))1(e 1)4e 2x x x x y eαα---===≥=-∈+++,所以3ππ4α≤<,选D.2答案及解析:答案:B解析:函数的导函数为()22'1y x -=-,所以函数在()3,2处的切线斜率为12k =-,直线30ax y ++=的斜率为a -,所以112a ⎛⎫-⋅-=- ⎪⎝⎭,解得2a =-,选B.3答案及解析:答案:B解析:4答案及解析:答案:B解析:曲线在某点处的切线的斜率为负,说明函数在该点处的导数也为负.5答案及解析:答案:A解析:∵l 与直线480x y +-=垂直,∴l 的斜率为4.∵3'4y x =,∴由切线l 的斜率是4,得344x =,∴1x =.∴切点坐标为()1,1.∴切线方程为()141y x -=-,即430x y --=.故选A.6答案及解析:答案:D解析:显然P 不在S 上,设切点为()00,x y ,由233y x '=-,得02033|x x y x ='=-.切线方程为()()()320000333.y x x x x x --=-- ∵()2,2P 在切线上,∴()()()3200023332,x x x x --=-- 即3200320x x -+=. ∴()2000(1220)x x x ---=. 由010x -=,得01x =.由200220x x --=,得01x =∵有三个切点,∴由P 向S 作切线可以作3条.7答案及解析:答案:A解析:依题意得()()()()2,1124f x g x x f g '='+'='+=,选A.8答案及解析:答案:B解析:9答案及解析:答案:D解析:10答案及解析:答案:D解析:11答案及解析:答案:3110x y --=解析:()22'366311,y x x x ⎡⎤=++=++⎣⎦当1x =-时, y '取得最小值3,即斜率最小值为3,又当1x =-时, 14,y =-所以斜率最小的切线方程为()1431,y x +=+即3110.x y --=12答案及解析:答案:2解析:1y xαα-'=, ∴1|x y α='=.曲线在点()1,2处的切线方程为()21y x α-=-,将点()0,0代入方程,得2α=.13答案及解析:答案:3解析:点()()1,1M f 既在函数()y f x =的图象上,又在切线122y x =+上, 所以()151222f =+=.又()1'12f =, 所以()()511'1322f f +=+=.14答案及解析:答案:4y x =-(或40x y +=)解析:15答案及解析: 答案:12解析:222(1)'22(1)1222111'()(2)42x x x x x f x x x x x x x -⋅----++=+=-, 111'(1)122f =-=.16答案及解析:答案:2;(1,1)y =-解析:17答案及解析:答案:1-解析:18答案及解析:答案:1260y -+=解析:。
导数及其应用训练题一、选择题:1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x -D .0 3.下列求导运算正确的是( )A .(x +211)1x x +=' B .(log 2x )'=2ln 1x C .(3x )'=3x log 3e D .(x 2cos x )'=-2x sin x 4.函数3y x x =+的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞5.已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的取值范围是( ) A .),3[]3,(+∞--∞ B .]3,3[- C .),3()3,(+∞--∞ D .)3,3(-6.在1[,2]2x ∈上,函数2()f x x Px q =++与33()22x g x x=+在同一点取得相同的最小值,那么()f x 在1[,2]2x ∈上的最大值是( )A .134B .4C .8D .547.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0 8.函数()323922y x x x x =---<<有( )A .极大值5,极小值27-B .极大值5,极小值11-C .极大值5,无极小值D .极小值27-,无极大值9.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++=10.曲线3()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( )A .(1,0)B .(2,8)C .(1,0)和(1,4)--D .(2,8)和(1,4)--11.已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时,()0()0f x g x ''>>,,则0x <时( )A .()0()0f x g x ''>>,B .()0()0f x g x ''><,C .()0()0f x g x ''<>,D .()0()0f x g x ''<<,12.()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足''()()f x g x =,则()f x 与()g x 满足( )A .()f x =()g x B .()f x -()g x 为常数函数C .()f x =()0g x =D .()f x +()g x 为常数函数13.函数x x y ln =的最大值为( )A .1-e B .e C .2e D .310 14.对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有( )A . (0)(2)2(1)f f f +< B. (0)(2)2(1)f f f +≤ C. (0)(2)2(1)f f f +≥ D. (0)(2)2(1)f f f +>15.以下四图,都是同一坐标系中三次函数及其导函数的图像,其中一定不正确的序号是A .①、②B .①、③C .③、④D .①、④16.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )17.若函数2()f x x bx c =++的图象的顶点在第四象限,则函数'()f x 的图象是( )二、填空题:18.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________;19.已知函数3()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为,M m ,则M m -=20.函数()ln (0)f x x x x =>的单调递增区间是____.21.函数2cos y x x =+在区间[0,]2π上的最大值是 。
第二章 第 1 节 函数的概念及其表示[基础训练组]1.(导学号14577082)已知a 、b 为实数,集合M =⎩⎨⎧⎭⎬⎫ba,1,N ={a,0},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .-1B .0C .1D .±1解析:C [a =1,b =0,∴a +b =1.]2.(导学号14577083)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )解析:B [可以根据函数的概念进行排除,使用筛选法得到答案.]3.(导学号14577084)(理科)(2018·某某市一模)函数y =-x 2-x +2ln x 的定义域为( )A .(-2,1)B .[-2,1]C .(0,1)D .(0,1]解析:C [由题意得⎩⎪⎨⎪⎧-x 2-x +2≥0x >0且ln x ≠0,解得0<x <1.故选C.]3.(导学号14577085)(文科)(2016·高考新课标全国卷Ⅱ)下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x解析:D [函数y =10lg x的定义域和值域均为(0,+∞);函数y =x 的定义域和值域均为R ,不满足要求;函数y =lg x 的定义域为(0,+∞),值域为R ,不满足要求;函数y =2x的定义域为R ,值域为(0,+∞),不满足要求;函数y =1x的定义域和值域均为(0,+∞),满足要求.故选D.] [学生用书 课时冲关四 文P251 理P290][基础训练组]1.(导学号14577082)已知a 、b 为实数,集合M =⎩⎨⎧⎭⎬⎫b a,1,N ={a,0},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .-1B .0C .1D .±1解析:C [a =1,b =0,∴a +b =1.]2.(导学号14577083)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )解析:B [可以根据函数的概念进行排除,使用筛选法得到答案.]3.(导学号14577084)(理科)(2018·某某市一模)函数y =-x 2-x +2ln x 的定义域为( )A .(-2,1)B .[-2,1]C .(0,1)D .(0,1]解析:C [由题意得⎩⎪⎨⎪⎧-x 2-x +2≥0x >0且ln x ≠0,解得0<x <1.故选C.]3.(导学号14577085)(文科)(2016·高考新课标全国卷Ⅱ)下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x解析:D [函数y =10lg x的定义域和值域均为(0,+∞);函数y =x 的定义域和值域均为R ,不满足要求;函数y =lg x 的定义域为(0,+∞),值域为R ,不满足要求;函数y =2x的定义域为R ,值域为(0,+∞),不满足要求;函数y =1x的定义域和值域均为(0,+∞),满足要求.故选D.]4.(导学号14577086)已知f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x ,则f (x )=( )A .(x +1)2(x ≠1) B .(x -1)2(x ≠1) C .x 2-x +1(x ≠1)D .x 2+x +1(x ≠1) 解析:C [f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x =x +12x 2-x +1x +1,令x +1x=t ,得f (t )=t 2-t +1(t ≠1),即f (x )=x 2-x +1(x ≠1).故选C.]5.(导学号14577087)已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈2,5],则方程f (x )=1的解是( )A.2或2B.2或3C.2或4D .±2或4解析:C [当x ∈[-1,2]时,由3-x 2=1⇒x = 2. 当x ∈(2,5]时,由x -3=1⇒x =4. 综上所述,f (x )=1的解为2或4.故选C.]6.(导学号14577090)(2015·高考新课标卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2x +1,x >1,且f (a )=-3,则f (6-a )=( )A .-74B .-54C .-34D .-14解析:A [当a ≤1时,2a -1-2=-3,无解;当a >1时,-log 2(a +1)=-3,得a =7,所以f (6-a )=f (-1)=2-2-2=-74,故选A.]7.(导学号14577088)图中的图象所表示的函数的解析式f (x )= ________ .解析:由图象知每段为线段.设f (x )=ax +b ,把(0,0),⎝ ⎛⎭⎪⎫1,32和⎝ ⎛⎭⎪⎫1,32,(2,0)分别代入求解⎩⎪⎨⎪⎧a =32,b =0,⎩⎪⎨⎪⎧a =-32,b =3.答案:f (x )=⎩⎪⎨⎪⎧32x ,0≤x ≤13-32x ,1<x ≤28.(导学号14577089)若函数y =f (x )的值域是[1,3],则函数F (x )=1-2f (x +3)的值域是 ________ .解析:∵1≤f (x )≤3,∴-6≤-2f (x +3)≤-2, ∴-5≤1-2f (x +3)≤-1,即F (x )的值域为[-5,-1]. 答案: [-5,-1]9.(导学号14577091)二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x .∴2ax +a +b =2x . ∴a =1,b =-1. ∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4或x <-1}.10.(导学号14577092)已知函数f (x )=x ·|x |-2x . (1)求函数f (x )=0时x 的值;(2)画出y =f (x )的图象,并结合图象写出f (x )=m 有三个不同实根时,实数m 的取值X 围.解:(1)由f (x )=0可解得x =0,x =±2,所以函数f (x )=0时x 的值为-2,0,2. (2)f (x )=x |x |-2x ,即f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0.图象如图,由图象可得实数m ∈(-1,1).[能力提升组]11.(导学号14577093)(2018·某某市一模)若函数y =f (x )的定义域是[-1,1],则函数y =f (log 2x )的定义域是( )A .[-1,1] B.⎣⎢⎡⎦⎥⎤12,2 C .[2,4]D .[1,4]解析:B [∵y =f (x )的定义域是[-1,1],∴函数y =f (log 2x )有意义⇔-1≤log 2x ≤1,∴12≤x ≤2.∴函数y =f (log 2x )的定义域是{x |12≤x ≤2}.故选B.]12.(导学号14577094)已知f (x )=⎩⎪⎨⎪⎧1x +2,-1≤x ≤0,x 2-2x ,0<x ≤1,若f (2m -1)<12,则m 的取值X 围是( )A .m >12B .m <12C .0≤m <12 D.12<m ≤1解析:D [由题得⎩⎪⎨⎪⎧ -1≤2m -1≤0,12m +1<12,或⎩⎪⎨⎪⎧0<2m -1≤1,2m -12-22m -1<12,解得12<m ≤1,故选D.]13.(导学号14577095)若函数f (x )=x 2+2ax -a 的定义域为R ,则a 的取值X 围为 ________ .解析:由题意知x 2+2ax -a ≥0恒成立, ∴Δ=4a 2+4a ≤0,∴-1≤a ≤0. 答案:[-1,0]14.(导学号14577096)行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度. 解:(1)由题意及函数图象,得⎩⎪⎨⎪⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x ≥0, ∴0≤x ≤70.故行驶的最大速度是70千米/时.[学生用书 课时冲关四 文P251 理P290][基础训练组]1.(导学号14577082)已知a 、b 为实数,集合M =⎩⎨⎧⎭⎬⎫b a ,1,N ={a,0},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .-1B .0C .1D .±1解析:C [a =1,b =0,∴a +b =1.]2.(导学号14577083)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )解析:B [可以根据函数的概念进行排除,使用筛选法得到答案.]3.(导学号14577084)(理科)(2018·某某市一模)函数y =-x 2-x +2ln x 的定义域为( )A .(-2,1)B .[-2,1]C .(0,1)D .(0,1]解析:C [由题意得⎩⎪⎨⎪⎧-x 2-x +2≥0x >0且ln x ≠0,解得0<x <1.故选C.]3.(导学号14577085)(文科)(2016·高考新课标全国卷Ⅱ)下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x解析:D [函数y =10lg x的定义域和值域均为(0,+∞);函数y =x 的定义域和值域均为R ,不满足要求;函数y =lg x 的定义域为(0,+∞),值域为R ,不满足要求;函数y =2x的定义域为R ,值域为(0,+∞),不满足要求;函数y =1x的定义域和值域均为(0,+∞),满足要求.故选D.]4.(导学号14577086)已知f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x ,则f (x )=( )A .(x +1)2(x ≠1) B .(x -1)2(x ≠1) C .x 2-x +1(x ≠1)D .x 2+x +1(x ≠1) 解析:C [f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x =x +12x 2-x +1x +1,令x +1x=t ,得f (t )=t 2-t +1(t ≠1),即f (x )=x 2-x +1(x ≠1).故选C.]5.(导学号14577087)已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈2,5],则方程f (x )=1的解是( )A.2或2B.2或3C.2或4D .±2或4解析:C [当x ∈[-1,2]时,由3-x 2=1⇒x = 2. 当x ∈(2,5]时,由x -3=1⇒x =4. 综上所述,f (x )=1的解为2或4.故选C.]6.(导学号14577090)(2015·高考新课标卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2x +1,x >1,且f (a )=-3,则f (6-a )=( )A .-74B .-54C .-34D .-14解析:A [当a ≤1时,2a -1-2=-3,无解;当a >1时,-log 2(a +1)=-3,得a =7,所以f (6-a )=f (-1)=2-2-2=-74,故选A.]7.(导学号14577088)图中的图象所表示的函数的解析式f (x )= ________ .解析:由图象知每段为线段.设f (x )=ax +b ,把(0,0),⎝ ⎛⎭⎪⎫1,32和⎝ ⎛⎭⎪⎫1,32,(2,0)分别代入求解⎩⎪⎨⎪⎧a =32,b =0,⎩⎪⎨⎪⎧a =-32,b =3.答案:f (x )=⎩⎪⎨⎪⎧32x ,0≤x ≤13-32x ,1<x ≤28.(导学号14577089)若函数y =f (x )的值域是[1,3],则函数F (x )=1-2f (x +3)的值域是 ________ .解析:∵1≤f (x )≤3,∴-6≤-2f (x +3)≤-2, ∴-5≤1-2f (x +3)≤-1,即F (x )的值域为[-5,-1]. 答案: [-5,-1]9.(导学号14577091)二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x .∴2ax +a +b =2x . ∴a =1,b =-1.∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4或x <-1}.10.(导学号14577092)已知函数f (x )=x ·|x |-2x . (1)求函数f (x )=0时x 的值;(2)画出y =f (x )的图象,并结合图象写出f (x )=m 有三个不同实根时,实数m 的取值X 围.解:(1)由f (x )=0可解得x =0,x =±2,所以函数f (x )=0时x 的值为-2,0,2. (2)f (x )=x |x |-2x ,即f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0.图象如图,由图象可得实数m ∈(-1,1).[能力提升组]11.(导学号14577093)(2018·某某市一模)若函数y =f (x )的定义域是[-1,1],则函数y =f (log 2x )的定义域是( )A .[-1,1] B.⎣⎢⎡⎦⎥⎤12,2C .[2,4]D .[1,4]解析:B [∵y =f (x )的定义域是[-1,1],∴函数y =f (log 2x )有意义⇔-1≤log 2x ≤1,∴12≤x ≤2.∴函数y =f (log 2x )的定义域是{x |12≤x ≤2}.故选B.]12.(导学号14577094)已知f (x )=⎩⎪⎨⎪⎧1x +2,-1≤x ≤0,x 2-2x ,0<x ≤1,若f (2m -1)<12,则m 的取值X 围是( )A .m >12B .m <12C .0≤m <12 D.12<m ≤1解析:D [由题得⎩⎪⎨⎪⎧ -1≤2m -1≤0,12m +1<12,或⎩⎪⎨⎪⎧0<2m -1≤1,2m -12-22m -1<12,解得12<m ≤1,故选D.]13.(导学号14577095)若函数f (x )=x 2+2ax -a 的定义域为R ,则a 的取值X 围为 ________ .解析:由题意知x 2+2ax -a ≥0恒成立, ∴Δ=4a 2+4a ≤0,∴-1≤a ≤0. 答案:[-1,0]14.(导学号14577096)行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度. 解:(1)由题意及函数图象,得⎩⎪⎨⎪⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x ≥0, ∴0≤x ≤70.故行驶的最大速度是70千米/时.4.(导学号14577086)已知f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x ,则f (x )=( )A .(x +1)2(x ≠1) B .(x -1)2(x ≠1) C .x 2-x +1(x ≠1)D .x 2+x +1(x ≠1) 解析:C [f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x =x +12x 2-x +1x +1,令x +1x=t ,得f (t )=t 2-t +1(t ≠1),即f (x )=x 2-x +1(x ≠1).故选C.]5.(导学号14577087)已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈2,5],则方程f (x )=1的解是( )A.2或2B.2或3C.2或4D .±2或4解析:C [当x ∈[-1,2]时,由3-x 2=1⇒x = 2. 当x ∈(2,5]时,由x -3=1⇒x =4. 综上所述,f (x )=1的解为2或4.故选C.]6.(导学号14577090)(2015·高考新课标卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2x +1,x >1,且f (a )=-3,则f (6-a )=( )A .-74B .-54C .-34D .-14解析:A [当a ≤1时,2a -1-2=-3,无解;当a >1时,-log 2(a +1)=-3,得a =7,所以f (6-a )=f (-1)=2-2-2=-74,故选A.]7.(导学号14577088)图中的图象所表示的函数的解析式f (x )= ________ .解析:由图象知每段为线段.设f (x )=ax +b ,把(0,0),⎝ ⎛⎭⎪⎫1,32和⎝ ⎛⎭⎪⎫1,32,(2,0)分别代入求解⎩⎪⎨⎪⎧a =32,b =0,⎩⎪⎨⎪⎧a =-32,b =3.答案:f (x )=⎩⎪⎨⎪⎧32x ,0≤x ≤13-32x ,1<x ≤28.(导学号14577089)若函数y =f (x )的值域是[1,3],则函数F (x )=1-2f (x +3)的值域是 ________ .解析:∵1≤f (x )≤3,∴-6≤-2f (x +3)≤-2, ∴-5≤1-2f (x +3)≤-1,即F (x )的值域为[-5,-1]. 答案: [-5,-1]9.(导学号14577091)二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x .∴2ax +a +b =2x . ∴a =1,b =-1. ∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4或x <-1}.10.(导学号14577092)已知函数f (x )=x ·|x |-2x . (1)求函数f (x )=0时x 的值;(2)画出y =f (x )的图象,并结合图象写出f (x )=m 有三个不同实根时,实数m 的取值X 围.解:(1)由f (x )=0可解得x =0,x =±2,所以函数f (x )=0时x 的值为-2,0,2. (2)f (x )=x |x |-2x ,即f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0.图象如图,由图象可得实数m ∈(-1,1).[能力提升组]11.(导学号14577093)(2018·某某市一模)若函数y =f (x )的定义域是[-1,1],则函数y =f (log 2x )的定义域是( )A .[-1,1] B.⎣⎢⎡⎦⎥⎤12,2C .[2,4]D .[1,4]解析:B [∵y =f (x )的定义域是[-1,1],∴函数y =f (log 2x )有意义⇔-1≤log 2x ≤1,∴12≤x ≤2.∴函数y =f (log 2x )的定义域是{x |12≤x ≤2}.故选B.]12.(导学号14577094)已知f (x )=⎩⎪⎨⎪⎧1x +2,-1≤x ≤0,x 2-2x ,0<x ≤1,若f (2m -1)<12,则m 的取值X 围是( )A .m >12B .m <12C .0≤m <12 D.12<m ≤1解析:D [由题得⎩⎪⎨⎪⎧ -1≤2m -1≤0,12m +1<12,或⎩⎪⎨⎪⎧0<2m -1≤1,2m -12-22m -1<12,解得12<m ≤1,故选D.]13.(导学号14577095)若函数f (x )=x 2+2ax -a 的定义域为R ,则a 的取值X 围为 ________ .解析:由题意知x 2+2ax -a ≥0恒成立, ∴Δ=4a 2+4a ≤0,∴-1≤a ≤0. 答案:[-1,0]14.(导学号14577096)行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度. 解:(1)由题意及函数图象,得⎩⎪⎨⎪⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x ≥0, ∴0≤x ≤70.故行驶的最大速度是70千米/时.。
强化训练 导数在函数中的应用1.函数f (x )=e x-e x ,x ∈R 的单调递增区间是( ) A.(0,+∞) B.(-∞,0) C.(-∞,1) D.(1,+∞)答案 D解析 由题意知,f ′(x )=e x-e ,令f ′(x )>0,解得x >1,故选D. 2.函数f (x )=1+x -sin x 在(0,2π)上是( ) A.增函数 B.减函数C.在(0,π)上增,在(π,2π)上减D.在(0,π)上减,在(π,2π)上增 答案 A解析 ∵f ′(x )=1-cos x >0,∴f (x )在(0,2π)上是增函数.3.f (x )为定义在R 上的可导函数,且f ′(x )>f (x ),对任意正实数a ,则下列式子成立的是( )A.f (a )<e af (0) B.f (a )>e af (0) C.f (a )<f 0eaD.f (a )>f 0ea答案 B 解析 令g (x )=f xex,∴g ′(x )=f ′x e x -f x e x ex2=f ′x -f xex>0.∴g (x )在R 上为增函数,又∵a >0, ∴g (a )>g (0),即f aea>f 0e,即f (a )>e af (0).4.函数y =xe x 在[0,2]上的最大值是( )A.1eB.2e 2C.0D.12e 答案 A解析 易知y ′=1-xex ,x ∈[0,2],令y ′>0,得0≤x <1,令y ′<0,得1<x ≤2,所以函数y=x e x 在[0,1)上单调递增,在(1,2]上单调递减,所以y =x e x 在[0,2]上的最大值是1e,故选A. 5.直线y =a 与函数y =x 3-3x 的图象有三个相异的交点,则实数a 的取值范围为( ) A.(-2,2) B.[-2,2] C.[2,+∞) D.(-∞,-2]答案 A解析 考虑数形结合,y =x 3-3x 的导数y ′=3x 2-3=3(x -1)·(x +1),令y ′>0可解得x <-1或x >1,故y =x 3-3x 在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减,函数的极大值为f (-1)=2,极小值为f (1)=-2,大致图象如图所示.而y =a 为一条水平直线,通过图象可得,y =a 介于极大值与极小值之间,则有三个相异交点.可得a ∈(-2,2).6.已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (0)=12,则不等式f (x )-12e x<0的解集为( ) A.⎝⎛⎭⎪⎫-∞,12B.(0,+∞)C.⎝ ⎛⎭⎪⎫12,+∞D.(-∞,0)答案 B解析 构造函数g (x )=f xex, 则g ′(x )=f ′x -f xex,因为f ′(x )<f (x ),所以g ′(x )<0, 故函数g (x )在R 上为减函数,又f (0)=12,所以g (0)=f 0e 0=12, 则不等式f (x )-12e x <0可化为f x e x<12, 即g (x )<12=g (0),所以x >0,即所求不等式的解集为(0,+∞).7.若函数f (x )=x 33-a 2x 2+x +1在区间⎝ ⎛⎭⎪⎫12,3上单调递减,则实数a 的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫103,+∞解析 f ′(x )=x 2-ax +1,因为函数f (x )在区间⎝ ⎛⎭⎪⎫12,3上单调递减,所以f ′(x )≤0在区间⎝ ⎛⎭⎪⎫12,3上恒成立,所以⎩⎪⎨⎪⎧f ′⎝ ⎛⎭⎪⎫12≤0,f ′3≤0,即⎩⎪⎨⎪⎧14-a 2+1≤0,9-3a +1≤0,解得a ≥103,所以实数a 的取值范围为⎣⎢⎡⎭⎪⎫103,+∞.8.若函数f (x )=x ln x -a2x 2-x +1(a >0)有两个极值点,则实数a 的取值范围为________.答案 ⎝ ⎛⎭⎪⎫0,1e 解析 因为f (x )=x ln x -a2x 2-x +1(x >0),所以f ′(x )=ln x -ax ,令h (x )=f ′(x ),则h ′(x )=1x-a =0,得f ′(x )有极大值点x =1a,由于x →0时f ′(x )→-∞;当x →+∞时,f ′(x )→-∞, 因此f (x )要有两个极值点, 只要f ′⎝ ⎛⎭⎪⎫1a =ln 1a -1>0,解得0<a <1e . 9.若函数 f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是________. 答案 [-3,0)解析 由题意,得f ′(x )=x 2+2x =x (x +2), 故f (x )在(-∞,-2),(0,+∞)上是增函数, 在(-2,0)上是减函数,作出其图象如图所示,令13x 3+x 2-23=-23,得x =0或x =-3,则结合图象可知,⎩⎪⎨⎪⎧-3≤a <0,a +5>0,解得a ∈[-3,0).10.已知函数f (x )=e x-2x +a 有零点,则实数a 的取值范围是________________. 答案 (-∞,2ln2-2]解析 由原函数有零点,可将问题转化为方程e x-2x +a =0有解问题,即方程a =2x -e x有解.令函数g (x )=2x -e x,则g ′(x )=2-e x, 令g ′(x )=0,得x =ln2,所以g (x )在(-∞,ln2)上是增函数,在(ln2,+∞)上是减函数, 所以g (x )的最大值为g (ln2)=2ln2-2, 因此,a 的取值范围就是函数g (x )的值域, 所以a ∈(-∞,2ln2-2].11.已知函数f (x )=ln x +a (1-x )在(2,+∞)上为单调函数,求实数a 的取值范围. 解 方法一 f (x )的定义域为(0,+∞),f ′(x )=1x-a .若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增;若a >0,则当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫1a,+∞时,f ′(x )<0,所以f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减,所以当a ≤0时,f (x )在(0,+∞)上单调递增,符合要求;当a >0时,f (x )在⎝ ⎛⎭⎪⎫1a,+∞上单调递减,则2≥1a ,即a ≥12.所以实数a 的取值范围是(-∞,0]∪⎣⎢⎡⎭⎪⎫12,+∞. 方法二 f (x )的定义域为(0,+∞),f ′(x )=1x-a .由题意得,当x ∈(2,+∞)时,f ′(x )≥0恒成立或f ′(x )≤0恒成立,即a ≤1x 恒成立或a ≥1x恒成立.∵x ∈(2,+∞),∴0<1x <12,∴a ≤0或a ≥12,∴实数a 的取值范围是(-∞,0]∪⎣⎢⎡⎭⎪⎫12,+∞.12.(2020·东北四校联考)已知f (x )=1x +e xe -3,F (x )=ln x +exe -3x +2.(1)判断f (x )在(0,+∞)上的单调性; (2)判断函数F (x )在(0,+∞)上零点的个数.解 (1)f ′(x )=-1x 2+e x e =x 2e x-ee x2, 令g (x )=x 2e x-e ,x >0, 则g ′(x )=e x(x 2+2x )>0, 即g (x )在(0,+∞)上单调递增,又g (1)=0,所以当0<x <1时,g (x )<g (1)=0,则f ′(x )<0,当x >1时,g (x )>0,则f ′(x )>0, 所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增. (2)F ′(x )=f (x )=1x +exe -3,且f (1)=-1<0,由(1)得∃x 1,x 2,满足0<x 1<1<x 2,使得f (x )在(0,x 1)上大于0,在(x 1,x 2)上小于0,在(x 2,+∞)上大于0, 即F (x )在(0,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增, 而F (1)=0,x →0时,F (x )→-∞,x →+∞时,F (x )→+∞,画出函数F (x )图象的草图,如图所示.故F (x )在(0,+∞)上的零点有3个.13.已知函数f (x )=sin x -13x ,x ∈[0,π],cos x 0=13,x 0∈[0,π].①f (x )的最大值为f (x 0); ②f (x )的最小值为f (x 0); ③f (x )在[0,x 0]上是减函数; ④f (x )在[x 0,π]上是减函数.那么上面命题中真命题的序号是________. 答案 ①④解析 f ′(x )=cos x -13,由f ′(x )=0,得cos x =13,即x =x 0,因为x 0∈[0,π],当0<x <x 0时,f ′(x )>0;当x 0<x <π时,f ′(x )<0,所以f (x )的最大值为f (x 0),f (x )在[x 0,π]上是减函数.14.(2019·泰安模拟)已知函数f (x )=12e 2x +(a -e)e x-a e x +b (其中e 为自然对数的底数)在x =1处取得极大值,则实数a 的取值范围是________. 答案 (-∞,-e)解析 由题意可知f ′(x )=e 2x+(a -e)e x -a e =(e x +a )·(e x-e),当a ≥0时,若x >1,则f ′(x )>0,若x <1,则f ′(x )<0,所以f (x )在x =1处取得极小值,不符合题意.当a <0时,令f ′(x )=0,得x =1或x =ln(-a ),为使f (x )在x =1处取极大值,则ln(-a )>1,即a <-e.15.(2019·贵阳、安顺模拟)不等式kx ≥sin x2+cos x (x >0)恒成立,则k 的最小值为( )A.13B.23C.14D.1 答案 A解析 令h (x )=kx -sin x2+cos x (x >0),则h ′(x )=k -1+2cos x2+cos x2,令t =cos x ,则t ∈[-1,1], 令g (t )=1+2t 2+t 2,则g ′(t )=-2t -12+t3≥0,∴g (t )在[-1,1]上单调递增, ∴g (t )的值域为⎣⎢⎡⎦⎥⎤-1,13,∴①当k ≥13时,h ′(x )≥0,此时h (x )单调递增,∴h (x )>h (0)=0,符合条件;②当k ≤0时,因为h ⎝ ⎛⎭⎪⎫π2=k ·π2-12<0,不符合条件; ③当0<k <13时,对于0<x <π2,h (x )<kx -sin x3,令F (x )=kx -sin x 3,则F ′(x )=k -cos x3,存在x 0∈⎝⎛⎭⎪⎫0,π2,使得x ∈(0,x 0)时,F ′(x )<0, ∴F (x )在(0,x 0)上单调递减, ∴F (x 0)<F (0)=0,即当x ∈(0,x 0)时,h (x )<0,不符合条件,综上,k 的取值范围为⎣⎢⎡⎭⎪⎫13,+∞, ∴k 的最小值为13.16.(2019·辽宁沈阳三校联考)已知函数f (x )=ax -ln xx,a ∈R .(1)若f (x )≥0,求a 的取值范围;(2)若y =f (x )的图象与直线y =a 相切,求a 的值. 解 (1)由题意知,函数f (x )的定义域为(0,+∞). 由f (x )≥0,得ax -ln xx≥0,所以ax ≥ln x x ,又x >0,所以a ≥ln x x2.令g (x )=ln x x 2,则g ′(x )=1-2ln x x3. 令g ′(x )>0,得0<x <e ,令g ′(x )<0,得x > e. 所以当0<x <e 时,g (x )单调递增,当x >e 时,g (x )单调递减.所以当x =e 时,g (x )取得最大值g (e)=12e ,所以a ≥12e ,即a 的取值范围是⎣⎢⎡⎭⎪⎫12e ,+∞. (2)设y =f (x )的图象与直线y =a 相切于点(t ,a ),依题意可得⎩⎪⎨⎪⎧f t=a ,f ′t =0.因为f ′(x )=a -1-ln xx2,所以⎩⎪⎨⎪⎧at -ln tt=a ,a -1-ln t t 2=0,消去a 可得t -1-(2t -1)ln t =0.(*)令h (t )=t -1-(2t -1)ln t ,则h ′(t )=1t-2ln t -1,易知h ′(t )在(0,+∞)上单调递减,且h ′(1)=0, 所以当0<t <1时,h ′(t )>0,h (t )单调递增, 当t >1时,h ′(t )<0,h (t )单调递减,所以当且仅当t =1时,h (t )=0,即(*)式成立,所以a =1-ln 112=1.。
高三数学一轮复习典型题专题训练导数及其应用一、填空题1、若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 ▲ .2、已知函数x x ee x x xf 12)(3-+-=,其中e 是自然对数的底数.若)2()1(2a f a f +-≤0.则实数a 的取值范围是 .3、已知函数32()2f x x x a =--,若存在(]0,x a ∈-∞,使0()0f x …,则实数a 的取值范围为 ▲4、已知函数()ln f x bx x =+,其中b ∈R .若过原点且斜率为k 的直线与曲线()y f x =相切,则k b -的值为 ▲ .5、若函数x x a x x f ln )3()(2+++=在区间(1,2)上存在唯一的极值点,则实数a 的取值范围为 ▲ .6、已知两曲线()2sin f x x =,()cos g x a x =,π(0)2x ∈,相交于点P .若两曲线在点P 处的切线互相垂直,则实数a 的值为 ▲ .7、若函数321()33f x x x ax a =+-+在区间[1,2]上单调递增,则实数a 的取值范围是 ▲8、已知()f x 为奇函数,当0x <时,()2x f x e x =+,则曲线()y f x =在1x =处的切线斜率为 ▲ .9、已知函数x a x x f sin )(+=在),(+∞-∞上单调递增,则实数a 的取值范围是 。
10、已知1,5x x ==是函数()()()cos 0f x x ωϕω=+>两个相邻的极值点,且()f x 在2x =处的导数()20f '<,则()0f = ▲ .11、过曲线1(0)y x x x=->上一点00(,)P x y 处的切线分别与x 轴,y 轴交于点A 、B ,O 是坐标原点,若OAB ∆的面积为13,则0x =12、曲线cos y x x =-在点22p p⎛⎫⎪⎝⎭,处的切线方程为 ▲ 二、解答题1、记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.2、已知函数1)(23+++=bx ax x x f (a >0,b ∈R )有极值,且导函数f ,)(x 的极值点是f (x )的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:b 2>3a ; (3)若f )(x ,f ,)(x 这两个函数的所有极值之和不小于﹣27,求a 的取值范围.3、已知函数()(0,0,1,1)x x f x a b a b a b =+>>≠≠.设12,2a b ==. (1)求方程()f x =2的根;(2)若对任意x R ∈,不等式(2)f()6f x m x ≥-恒成立,求实数m 的最大值;(3)若01,1a b <<>,函数()()2g x f x =-有且只有1个零点,求ab 的值。
4、已知函数f (x )=2x 3-3(a +1)x 2+6ax ,a ∈R .(1)曲线y =f (x )在x =0处的切线的斜率为3,求a 的值;(2)若对于任意x ∈(0,+∞),f (x )+f (-x )≥12ln x 恒成立,求a 的取值范围; (3)若a >1,设函数f (x )在区间[1,2]上的最大值、最小值分别为M (a )、m (a ), 记h (a )=M (a )-m (a ),求h (a )的最小值.5、已知函数f (x )=2x 3-3ax 2+3a -2(a >0),记f'(x )为f (x )的导函数. (1)若f (x )的极大值为0,求实数a 的值;(2)若函数g (x )=f (x )+6x ,求g (x )在[0,1]上取到最大值时x 的值;(3)若关于x 的不等式f (x )≥f'(x )在[a 2,a +22]上有解,求满足条件的正整数a 的集合.6、已知函数ex e x f x -=)(,a ax x g +=2)(,其中e 为自然对数的底数,R a ∈. (1)求证:0)(≥x f ;(2)若存在R x ∈0,使)()(00x g x f =,求a 的取值范围; (3)若对任意的)1,(--∞∈x ,)()(x g x f ≥恒成立,求a 的最小值.7、已知函数32()f x x ax bx c =+++,()ln g x x =.(1)若0a =,2b =-,且()()f x g x ≥恒成立,求实数c 的取值范围; (2)若3b =-,且函数()y f x =在区间(1,1)-上是单调递减函数. ①求实数a 的值;②当2c =时,求函数(),()()()(),()()f x f x g x h x g x f x g x ≥⎧=⎨<⎩的值域.8、已知函数32()1,,f x x ax bx a b =+++∈R . (1)若220,a b +=① 当0a >时,求函数()y f x =的极值(用a 表示);② 若函数()y f x =有三个相异零点,问是否存在实数a 使得这三个零点成等差数列?若存在,试求出a 的值;若不存在,请说明理由;(2)函数()y f x =图象上点A 处的切线1l 与()y f x =的图象相交于另一点B ,在点B 处的切线为2l ,直线12,l l 的斜率分别为12,k k ,且124k k =,求,a b 满足的关系式.9、已知函数()()2x f x ax x e =+,其中e 是自然对数的底数,a R ∈.(1)若/()f x '是函数()f x 的导函数,当0a >时,解关于x 的不等式()x e f x '>; (2)若()f x 在[]1,1-上是单调增函数,求a 的取值范围;(3)当0a =时,求整数k 的所有值,使方程()2f x x =+在[],1k k +上有解.10、已知函数()()2ln 1.f x x mx m R =--∈ (1)当1m =时,求()f x 的单调区间;(2)令()()g x xf x =,区间1522,D e e -⎛⎫= ⎪⎝⎭,e 为自然对数的底数。
(ⅰ)若函数()g x 在区间D 上有两个极值,求实数m 的取值范围; (ⅱ)设函数()g x 在区间D 上的两个极值分别为()1g x 和()2g x ,求证:12x x e ⋅>.11、已知函数()(1)e x f x ax =-(0a ≠,e 是自然对数的底数).(1)若函数()f x 在区间[]1,2上是单调减函数,求实数a 的取值范围; (2)求函数()f x 的极值;(3)设函数()f x 图象上任意一点处的切线为l ,求l 在x 轴上的截距的取值范围.12、对于定义在区间D 上的函数()f x ,若存在正整数k ,使不等式1()f x k k<<恒成立,则称()f x 为()D k 型函数.(1)设函数()f x a x =,定义域[][]3113D =--,,.若()f x 是(3)D 型函数,求实数a 的取值范围;(2)设函数2()xg x ex x =--,定义域(02)D =,.判断()g x 是否为(2)D 型函数,并给出证明.(参考数据:278e <<)13、已知 b > 0, 且b ≠ 1,函数 f (x ) = e x + b x ,其中 e 为自然对数的底数: (1)如果函数 f (x ) 为偶函数,求实数 b 的值,并求此时函数的最小值;(2)对满足 b > 0, 且 b ≠ 1的任意实数 b ,证明函数 y = f (x ) 的图像经过唯一定点; (3)如果关于 x 的方程 f (x ) = 2 有且只有一个解,求实数 b 的取值范围.14、已知函数2(),()ln ,2R x f x ax g x x ax a e=-=-∈.(1)解关于()R x x ∈的不等式()0f x ≤; (2)证明:()()f x g x ≥;(3)是否存在常数,a b ,使得()()f x ax b g x +≥≥对任意的0x >恒成立?若存在,求 出,a b 的值;若不存在,请说明理由.15、已知32()31(0)f x ax x a =-+>,定义{}(),()()()max (),()(),()()f x f x g x h x f x g x g x f x g x ⎧==⎨<⎩≥.(1)求函数()f x 的极值;(2)若()()g x xf x '=,且存在[1,2]x ∈使()()h x f x =,求实数a 的取值范围; (3)若()ln g x x =,试讨论函数()h x (0)x >的零点个数.16、已知()()()21,.x f x x mx m R g x e =++∈=(1)当[]0,2x ∈时,()()()F x f x g x =-为增函数,求实数m 的取值范围; (2)若()1,0m ∈-,设函数()()()()15,,44f x G x H x xg x ==-+,求证:对任意[]12,1,1x x m ∈-,()()12G x H x <恒成立.参考答案 一、填空题1、-32、[1-,5.0]3、[1,0][2,)-+∞4、1e5、 15(,6)2--6、2337、3a ≤8、12e- 9、[1,1]- 10、2211、5 12、202x y p--=二、解答题1、解:(1)函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2. 由f (x )=g (x )且f ′(x )= g ′(x ),得222122x x x x ⎧=+-⎨=+⎩,此方程组无解, 因此,f (x )与g (x )不存在“S ”点. (2)函数21f x ax =-(),()ln g x x =, 则12f x ax g x x'='=(),().设x 0为f (x )与g (x )的“S ”点,由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎪⎨=⎪⎩,(*) 得01ln 2x =-,即120e x -=,则1221e 22(e )a -==. 当e2a =时,120e x -=满足方程组(*),即0x 为f (x )与g (x )的“S ”点.因此,a 的值为e2.(3)对任意a >0,设32()3h x x x ax a =--+.因为(0)0(1)1320h a h a a =>=--+=-<,,且h (x )的图象是不间断的,所以存在0x ∈(0,1),使得0()0h x =.令03002e (1)x x b x =-,则b >0.函数2e ()()xb f x x a g x x=-+=,,则2e (1)()2()x b x f x x g x x -=-=′,′. 由f (x )=g (x )且f ′(x )=g ′(x ),得22e e (1)2xx b x a xb x x x ⎧-+=⎪⎪⎨-⎪-=⎪⎩,即00320030202e e (1)2e (1)2e (1)x x xx x x a x x x x x x x ⎧-+=⋅⎪-⎪⎨-⎪-=⋅⎪-⎩,(**) 此时,0x 满足方程组(**),即0x 是函数f (x )与g (x )在区间(0,1)内的一个“S点”.因此,对任意a >0,存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”. 2、【解答】(1)解:∵1)(23+++=bx ax x x f , ∴g (x )=f,)(x =3x 2+2ax +b ,g ,)(x =6x +2a ,令g ,)(x =0,解得x =3a-. 由于当x >3a-时g ,)(x >0,g (x )=f ,)(x 单调递增; 当x <3a-时g ,)(x <0,g (x )=f ,)(x 单调递减;∴f ,)(x 的极小值点为x =3a-,由于导函数f ,)(x 的极值点是原函数f (x )的零点, ∴0)3(=-a f ,即=b aa 3922+(a >0).∵1)(23+++=bx ax x x f (a >0,b ∈R )有极值, ∴f,)(x =3x 2+2ax +b =0有两个不等的实根,∴4a 2﹣12b >0,即aa a 93222+->0,解得a >3, ∴=b aa 3922+(a >3);(2)证明:由(1)可知22428119358143)(aa a a ab a h =+-=-=)27)(274(33--a a , 由于a >3,所以h (a )>0,即b 2>3a ; (3)解:由(1)可知f,)(x 的极小值为f,)3(a -=32a b -, 设x 1,x 2是)(x f y =的两个极值点,则3221a x x -=+,321bx x =, ∴2)()()()(212221323121++++++=+x x b x x a x x x f x f=2)(]2)[(]3))[((21212212122121+++-++-++x x b x x x x a x x x x x x=2322743+-ab a , 又∵)(x f ,f,)(x 这两个函数的所有极值之和不小于27-,∴32a b -2322743+-+ab a 932a a -=≥27-, ∵a >3,所以546323--a a ≤0, ∴)6(9)36(22-+-a a a ≤0, ∴)9122)(6(2++-a a a ≤0, 由于a >3时,91222++a a >0, ∴6-a ≤0,解得a ≤6, ∴a 的取值范围是3(,]6. 3、而2(())444()2()4()()()f x f x f x f x f x f x +=+≥∙=,且2((0))44(0)f f +=, 所以4m ≤,故实数m 的最大值为4.若00x <,则0002x x <<,于是0()(0)02x g g <=, 又log 2log 2log 2(log 2)220a a a a g a b a =+->-=,且函数()g x 在以02x 和log 2a 为端点的闭区间上的图象不间断,所以在02x 和log 2a 之间存在()g x 的零点,记为1x . 因为01a <<,所以log 20a <,又002x <,所以10x <与“0是函数()g x 的唯一零点”矛盾. 若00x >,同理可得,在02x 和log 2a 之间存在()g x 的非0的零点,矛盾. 因此,00x =. 于是ln 1ln a b-=,故ln ln 0a b +=,所以1ab =. 4、解:(1)因为f (x )=2x 3-3(a +1)x 2+6ax ,所以f ′(x )=6x 2-6(a +1)x +6a ,所以曲线y =f (x )在x =0处的切线斜率k =f ′(0)=6a ,所以6a =3,所以a =12. (2)分(2)f (x )+f (-x )=-6(a +1)x 2≥12ln x 对任意x ∈(0,+∞)恒成立,所以-(a +1)≥2ln x x 2. ………………………4分令g (x )=2ln x x 2,x >0,则g '(x )=2(1-2ln x )x 3. 令g '(x )=0,解得x =e .当x ∈(0,e)时,g '(x )>0,所以g (x )在(0,e)上单调递增;当x ∈(e ,+∞)时,g '(x )<0,所以g (x )在(e ,+∞)上单调递减.所以g (x )max =g (e)=1e, ………………………6分 所以-(a +1)≥1e ,即a ≤-1-1e, 所以a 的取值范围为(-∞,-1-1e]. ………………………8分 (3)因为f (x )=2x 3-3(a +1)x 2+6ax ,所以f ′(x )=6x 2-6(a +1)x +6a =6(x -1)(x -a ),f (1)=3a -1,f (2)=4.令f ′(x )=0,则x =1或a . ………………………10分 f (1)=3a -1,f (2)=4.①当1<a ≤53时, 当x ∈(1,a )时,f '(x )<0,所以f (x )在(1,a )上单调递减;当x ∈(a ,2)时,f '(x )>0,所以f (x )在(a ,2)上单调递增.又因为f (1)≤f (2),所以M (a )=f (2)=4,m (a )=f (a )=-a 3+3a 2,所以h (a )=M (a )-m (a )=4-(-a 3+3a 2)=a 3-3a 2+4.因为h ' (a )=3a 2-6a =3a (a -2)<0,所以h (a )在(1,53]上单调递减, 所以当a ∈(1,53]时,h (a )最小值为h (53)=827.………………………12分 ②当53<a <2时, 当x ∈(1,a )时,f '(x )<0,所以f (x )在(1,a )上单调递减;当x ∈(a ,2)时,f '(x )>0,所以f (x )在(a ,2)上单调递增.又因为f (1)>f (2),所以M (a )=f (1)=3a -1,m (a )=f (a )=-a 3+3a 2, 所以h (a )=M (a )-m (a )=3a -1-(-a 3+3a 2)=a 3-3a 2+3a -1.因为h ' (a )=3a 2-6a +3=3(a -1)2≥0.所以h (a )在(53,2)上单调递增, 所以当a ∈(53,2)时,h (a )>h (53)=827. ………………………14分 ③当a ≥2时,当x ∈(1,2)时,f '(x )<0,所以f (x )在(1,2)上单调递减,所以M (a )=f (1)=3a -1,m (a )=f (2)=4,所以h (a )=M (a )-m (a )=3a -1-4=3a -5,所以h (a )在[2,+∞)上的最小值为h (2)=1.综上,h (a )的最小值为827. ………………………16分 5、解:(1)因为f (x )=2x 3-3ax 2+3a -2(a >0),所以f'(x )=6x 2-6ax =6x (x -a ).令f'(x )=0,得x =0或a . ………………………………2分当x ∈(-∞,0)时,f'(x )>0,f (x )单调递增;当x ∈(0,a )时,f'(x )<0,f (x )单调递减;当x ∈(a ,+∞)时,f'(x )>0,f (x )单调递增.故f (x )极大值=f (0)=3a -2=0,解得a =23. ………………………………4分(2)g (x )=f (x )+6x =2x 3-3ax 2+6x +3a -2(a >0),则g ′(x )=6x 2-6ax +6=6(x 2-ax +1),x ∈[0,1].①当0<a ≤2时,△=36(a 2-4)≤0,所以g ′(x )≥0恒成立,g (x )在[0,1]上单调递增,则g (x )取得最大值时x 的值为1. ……………………………6分②当a >2时,g ′(x )的对称轴x =a 2>1,且△=36(a 2-4)>0,g ′(1)=6(2-a )<0,g ′(0)=6>0,所以g ′(x )在(0,1)上存在唯一零点x 0=a -a 2-42. 当x ∈(0,x 0)时,g ′(x )>0,g (x )单调递增,当x ∈(x 0,1)时,g ′(x )<0,g (x )单调递减,则g (x )取得最大值时x 的值为x 0=a -a 2-42. …………………………8分 综上,当0<a ≤2时,g (x )取得最大值时x 的值为1;当a >2时,g (x )取得最大值时x 的值为a -a 2-42. ………………………9分 (3)设h (x )=f (x )-f ′(x )=2x 3-3(a +2)x 2+6ax +3a -2,则h (x )≥0在[a2,a +22]有解. …………………………10分h ′(x )=6[x 2-(a +2)x +a ]=6[(x -a +22)2-a 2+44], 因为h ′(x )在(a 2,a +22)上单调递减,所以h ′(x )<h ′(a 2)=-32a 2<0,所以h (x )在(a 2,a +22)上单调递减,所以h (a 2)≥0,即a 3-3a 2-6a +4≤0. ………………………………12分设t (a )=a 3-3a 2-6a +4(a >0),则t ′ (a )=3a 2-6a -6,当a ∈(0,1+2)时,t ′ (a )<0,t (a )单调递减;当a ∈(1+2,+∞)时,t ′ (a )>0,t (a )单调递增.因为t (0)=4>0,t (1)=-4<0,所以t (a )存在一个零点m ∈(0,1), ……………14分因为t (4)=-4<0,t (5)=24>0,所以t (a )存在一个零点n ∈(4,5), 所以t (a )≤0的解集为[m ,n ],故满足条件的正整数a 的集合为{1,2,3,4}. ………………………………16分6、解:(1)令0)('=-=e e x f x ,得1=x ,且当1<x 时,0)('<x f ;当1>x 时,0)('<x f ,所以函数)(x f 在)1,(-∞上单调递减,在),1(+∞上单调递增,所以函数)(x f 在1=x 处取得最小值.因为0)1(=f ,所以0)(≥x f .…………………………………………………………………3分(2)设a ax ex e x F x ---=2)(,题设等价于函数)(x F 有零点时的a 的取值范围. ①当0≥a 时,由03)(≤-=a x F ,0)1(1>++=--a e e F ,所以)(x F 有零点. ②当02<≤-a e 时, 若0≤x ,由02≥+a e ,得0)2()(>-+-=a x a e e x F x ;若0>x ,由(1)知,0)12()(>+-=x a x F ,所以)(x F 无零点. ③当2e a -<时,01)0(>-=a F ,又存在0210<+-=ae a x ,0)2(1)(00=-+-<a x a e x F ,所以)(x F 有零点.综上,a 的取值范围是2ea -<或0≥a .…………………………………………………………9分(3)由题意,ex e x a x-≤+)12(,因为1-<x ,所以12+-≥x ex e a x . 设)1(12)(-<+-=x x ex e x G x ,其值域为A , 由于0122212)2()(<++=++-=--x ee e x ex e e x G x x ,所以2)(e x G -<. 又0)12(2)('2<+--=x e e xe x G x x ,所以)(x G 在)1,(--∞上为减函数,所以e e G x G 1)1()(--=->,记区间B e e e =---)2,1(,则B A ⊆.① 设函数B m m x G x H ∈-=,)()(, 一方面,01)1(<--=-m ee H ; 另一方面,]1)2()1[(121)]12([121)(m x m e e x x m ex e x x H x x -++--+=---+=, 存在125-<+e m ,0]4)1[(12101)25(>+--⋅++=+m e em e m H x 所以)1,25(1-+∈∃em x ,使0)(1=x H ,即m x G =)(1,所以A B ⊆.② 由①,②知,B A =,从而2e a -≥,即a 的最小值为2e -.……………………………………………………………16分 7、解:(1)函数()y g x =的定义域为(0,)+∞.当0a =,2b =-,3()2f x x x c =-+, ∵()()f xg x ≥恒成立,∴32ln x x c x -+≥恒成立,即3ln 2c x x x ≥-+.令3()ln 2x x x x ϕ=-+,则21'()32x x x ϕ=-+3123x x x +-=2(1)(133)x x x x -++=, 令'()0x ϕ≥,得1x ≤,∴()x ϕ在(0,1]上单调递增,令'()0x ϕ≤,得1x ≥,∴()x ϕ在[1,)+∞上单调递减,∴当1x =时,max [()](1)1x ϕϕ==.∴1c ≥.(2)①当3b =-时,32()3f x x ax x c =+-+,2'()323f x x ax =+-.由题意,2'()3230f x x ax =+-≤对(1,1)x ∈-恒成立,∴'(1)3230'(1)3230f a f a =+-≤⎧⎨-=--≤⎩,∴0a =,即实数a 的值为0. ②函数()y h x =的定义域为(0,)+∞.当0a =,3b =-,2c =时,3()32f x x x =-+.2'()33f x x =-,令2'()330f x x =-=,得1x =. x(0,1) 1 (1,)+∞ '()f x -0 + ()f x 极小值0∴当(0,1)x ∈时,()0f x >,当1x =时,()0f x =,当(1,)x ∈+∞时,()0f x >.对于()ln g x x =,当(0,1)x ∈时,()0g x <,当1x =时,()0g x =,当(1,)x ∈+∞时,()0g x >. ∴当(0,1)x ∈时,()()0h x f x =>,当1x =时,()0h x =,当(1,)x ∈+∞时,()0h x >. 故函数()y h x =的值域为[0,)+∞.8、9、10、11、(1)函数()f x 的导函数'()(1)e x f x ax a =-+,则'()0f x …在区间[]1,2上恒成立,且等号不恒成立,又e 0x >,所以10ax a -+…在区间[]1,2上恒成立, ·········································2分 记()1g x ax a =-+,只需(1)0(2)0g g ⎧⎨⎩……, 即21010a a -⎧⎨-⎩…3?,解得13a …. ···················4分 (2)由'()(1)e =0x f x ax a =-+,得1ax a-= , ①当0a <时,有1(,),()0a x f x a -∈-∞'>;1(,),()0ax f x a-∈+∞'<, 所以函数()f x 在1(,)a x a -∈-∞单调递增,1(,)a x a-∈+∞单调递减, 所以函数()f x 在1ax a-=取得极大值1aa a e --⋅,没有极小值.②当0a >时,有1(,),()0a x f x a -∈-∞'<;1(,),()0ax f x a-∈+∞'>, 所以函数()f x 在1(,)a x a -∈-∞单调递减,1(,)a x a-∈+∞单调递增, 所以函数()f x 在1ax a-=取得极小值1aa a e --⋅,没有极大值.综上可知: 当0a <时,函数()f x 在1ax a -=取得极大值1aa a e --⋅,没有极小值;当0a >时,函数()f x 在1ax a-=取得极小值1aa a e --⋅,没有极大值.·········································································································································10分(3)设切点为(,(1))t T t at e -,则曲线在点T 处的切线l 方程为(1)(1)()t t y at e at a x t e --=-+-,当1a t a-=时,切线l 的方程为1=(1)e =e ata y at a ---⋅,其在x 轴上的截距不存在.当1at a-≠时,令0y =,得切线l 在x 轴上的截距为 11at x t at a -=--+(1)1at a a t at a -+-=--+11at at a=-+-+1111t t a=-+-+1111211t a a t a=-++-+-+,··············································································12分 当110t a-+>时,1111211x t a a t a =-++-+-+11112(1)2=11t a a a t a -+⋅-+-+…, 当且仅当111=11t a t a-+-+,即1=t a 或1=2t a -时取等号;·····························14分 当110t a-+<时,1111211x t a a t a =-++-+-+11112[(1)]2=41(1)t a a a t a ---+⋅-+---+…, 当且仅当111=11t a t a-+-+,即1=t a 或1=2t a -时取等号. 所以切线l 在x 轴上的截距范围是11,4,a a ⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭.·····································16分12、13、解析:(1) 由f(1)=f(-1)得e+b=1e+1b,解得b=-e(舍),或b=1e,(1分)经检验f(x)=e x +1e x 为偶函数,所以b =1e .(2分)因为f(x)=e x +1e x ≥2,当且仅当x =0时取等号,(3分) 所以f(x)的最小值为2.(4分)(2) 假设y =f(x)过定点(x 0,y 0),则y 0=e x 0+bx 0对任意满足b>0,且b ≠1恒成立.(5分)令b =2得y 0=e x 0+2x 0;令b =3得y 0=e x 0+3x 0,(6分)所以2x 0=3x 0,即⎝ ⎛⎭⎪⎫32x 0=1,解得唯一解x 0=0,所以y 0=2,(7分)经检验当x =0时,f(0)=2,所以函数y =f(x)的图象经过唯一定点(0,2).(8分) (3) 令g(x)=f(x)-2=e x +b x -2为R 上的连续函数,且g (0)=0,则方程g (x )=0存在一个解.(9分)(i) 当b >0时,g (x )为增函数,此时g (x )=0只有一解.(10分)(ii) 当0<b <1时,令g ′(x )=e x+b xln b =e x(1+(b e )x ln b )=0,解得x 0=log ⎝ ⎛⎭⎪⎫e b (-ln b ).(11分)因为e x>0,0<b e <1,ln b <0,令h (x )=⎝ ⎛⎭⎪⎫1+⎝ ⎛⎭⎪⎫b e x ln b ,h (x )为单调增函数,所以当x ∈(-∞,x e )时,h (x )<0,所以g ′(x )<0,g (x )为单调减函数; 当x ∈(x 0,+∞)时,h (x )>0,所以g ′(x )>0,g (x )为单调增函数, 所以g 极小(x )=g (x 0).因为g (x )定义域为R ,所以g min (x )=g (x 0).(13分)①若x 0>0,g (x )在(-∞,x 0)上为单调减函数,g (x 0)<g (0)=0,而g (ln2)=2+b ln2-2=b ln2>0,所以当x ∈(x 0,ln2)时,g (x )至少存在另外一个零点,矛盾.(14分)②若x 0<0,g (x )在(x 0,+∞)上为单调增函数,g (x 0)<g (0)=0,而g (log b 2)=elog b 2+2-2=elog b 2>0,所以g (x )在(log b 2,x 0)上存在另外一个解,矛盾.(15分)③当x 0=log ⎝ ⎛⎭⎪⎫e b (-ln b )=0,则-ln b =1,解得b =1e ,此时方程为g (x )=e x +1e x -2=0,由(1)得,只有唯一解x 0=0,满足条件.综上所述,当b >1或b =1e 时,方程f (x )=2有且只有一个解.(16分)14、(1)当0a =时,2()2ex f x =,所以()0f x ≤的解集为{0};当0a ≠时,()()2exf x x a =-, 若0a >,则()0f x ≤的解集为[0,2e ]a ; 若0a <,则()0f x ≤的解集为[2e ,0]a . 综上所述,当0a =时,()0f x ≤的解集为{0};当0a >时,()0f x ≤的解集为[0,2e ]a ;当0a <时,()0f x ≤的解集为[2e ,0]a . ……………………4分(2)设2()()()ln 2e x h x f x g x x =-=-,则21e'()e e x x h x x x-=-=.令'()0h x =,得e x =,列表如下:x (0,e) e(e,)+∞ '()h x-+()h x↘极小值↗所以函数()h x 的最小值为(e)0h =,所以2()ln 02ex h x x =-≥,即()()f x g x ≥.…………………………………8分(3)假设存在常数a ,b 使得()()f x ax b g x +≥≥对任意的0x >恒成立,即22ln 2ex ax b x +≥≥对任意的0x >恒成立. 而当e x =时,21ln 2e 2x x ==,所以112e 22a b +≥≥,所以12e 2a b +=,则12e 2b a =-,所以221222e 0(*)2e 2e 2x x ax b ax a --=-+-≥恒成立,①当0a ≤时,12e 02a -<,所以(*)式在(0,)+∞上不恒成立; ②当0a >时,则2214(2e )0e2a a --≤,即21(2)0ea -≤,所以12ea =,则12b =-.……………………………………………………12分令11()ln 2ex x x ϕ=-+,则e '()e xx xϕ-=,令'()0x ϕ=,得e x =, 当0e x <<时,'()0x ϕ>,()x ϕ在(0,e)上单调增; 当e x >时,'()0x ϕ<,()x ϕ在(e,)+∞上单调减. 所以()x ϕ的最大值(e)0ϕ=.所以11ln 02ex x -+≤恒成立. 所以存在12ea =,12b =-符合题意.………………………………………16分15、解:(1)∵函数32()31f x ax x =-+,∴2'()363(2)f x ax x x ax =-=-. ..........1分 令'()0f x =,得10x =或22x a=,∵0a >,∴12x x <,列表如下:x(,0)-∞2(0,)a 2a 2(,)a+∞ '()f x + 0 - 0 + ()f x↗极大值↘极小值↗∴()f x 的极大值为(0)1f =,极小值为22228124()11f aa a a =-+=-........3分 (2)2363)()(x ax x f x x g -='=,∵存在[1,2]x ∈使()()h x f x =,∴()()f x g x ≥在[1,2]x ∈上有解,即32323136ax x ax x -+-≥在[1,2]x ∈上有解, 即不等式3132a x x +≤在[1,2]x ∈上有解, .............4分 设233[1,32]131()x y x x x x +∈=+=,∵2433'0x y x --=<对[1,2]x ∈恒成立, ∴313y xx =+在[1,2]x ∈上单调递减,∴当1x =时,313y x x=+的最大值为4, ∴24a ≤,即2a ≤. .........7分 (3)由(1)知,()f x 在(0,)+∞上的最小值为224()1f aa=-, ①当2410a ->,即2a >时,()0f x >在(0,)+∞上恒成立, ∴()max{(),()}h x f x g x =在(0,)+∞上无零点. .........8分②当2410a-=,即2a =时,min ()(1)0f x f ==,又(1)0g =, ∴()max{(),()}h x f x g x =在(0,)+∞上有一个零点. .........9分③当2410a-<,即02a <<时,设32()()()31ln x f x g x ax x x ϕ=-=-+-(01)x <<, ∵211'()366(1)0x ax x x x x x ϕ=--<--<,∴()x ϕ在(0,1)上单调递减,又232123(1)20,()0a e a e e e ϕϕ-=-<=+>,∴存在唯一的01(,1)x e∈,使得0()0x ϕ=. Ⅰ.当00x x <≤时,∵0()()()()0x f x g x x ϕϕ=-=≥,∴()()h x f x =且()h x 为减函数,又0000()()()ln ln10,(0)10h x f x g x x f ===<==>,∴()h x 在0(0,)x 上有一个零点; Ⅱ.当0x x >时,∵0()()()()0x f x g x x ϕϕ=-<=,∴()()h x g x =且()h x 为增函数, ∵(1)0g =,∴()h x 在0(,)x +∞上有一个零点;从而()max{(),()}h x f x g x =在(0,)+∞上有两个零点. .........15分 综上所述,当02a <<时,()h x 有两个零点;当2a =时,()h x 有一个零点;当2a >时,()h x 有无零点. ..........16分16、31。