2015新湘教版八年级数学下册各单元练习试题
- 格式:doc
- 大小:169.72 KB
- 文档页数:4
1.将直线y=2x向上平移两个单位,所得的直线是() A.y=2x+2 B.y=2x-2C.y=2(x-2) D.y=2(x+2)2.[2011·张家界]关于x的一次函数y=kx+k2+1的图象可能正确的是()A B C D图4-3-93.[2013·大庆]对于函数y=-3x+1,下列结论正确的是() A.它的图象必经过点(-1,3)B.它的图象经过第一、二、三象限C.当x>1时,y<0D.y的值随x值的增大而增大4.[2013·莆田]如图4-3-10,一次函数y=(m-2)x-1的图象经过第二、三、四象限,则m的取值范围是()A.m>0 B.m<0C.m>2 D.m<25.[2012·泉州]若y=kx-4的函数值y随x的增大而增大,则k的值可能是下列的()A.-4 B.-1 2C.0 D.36.[2013·广州]一次函数y=(m+2)x+1中y随x的增大而增大,则m的取值范围是________.7.已知函数y=(2m+1)x+m-1的图象经过原点,将此函数图象向下平移3个单位.(1)写出平移后的函数表达式;(2)请在如图4-3-11所示的坐标系中画出平移后的函数图象,并指出此时函数值y随着x的增大而________.图4-3-118.已知一次函数y=-2x+2.(1)在所给的平面直角坐标系中画出它的图象;(2)根据图象回答问题:①图象与x轴的交点坐标是________,与y轴的交点坐标是________;②当x________时,y>0.9.[2013·菏泽]一条直线y=kx+b,其中k+b=-5、kb=6,那么该直线经过()A.第二、四象限B.第一、二、三象限C.第一、三象限D.第二、三、四象限10.[2013·镇江]已知点P(a,b)在一次函数y=4x+3的图象上,则代数式4a-b -2的值等于________.11.已知一次函数y=(4m+1)x-(m+1).(1)m为何值时,y随x的增大而减小?(2)m为何值时,直线与y轴的交点在x轴下方?(3)m为何值时,直线位于第二、三、四象限?(4)m为何值时,图象经过坐标原点?12.[2013·济南]若直线y=kx与四条直线x=1,x=2,y=1,y=2围成的正方形有公共点,则k的取值范围是________.答案解析1.A3.C【解析】将点(-1,3)代入原函数,得y=-3×(-1)+1=4≠3,故选项A错误;因为k=-3<0,b=1>0,所以图象经过一、二、四象限,y 随x的增大而减小,故选项B,D错误.当x>1时,y<-2<0,选项C正确.故本题应选C.4.D【解析】∵一次函数y=(m-2)x-1的图象经过第二、三、四象限,∴m-2<0,解得m<2.故选D.5.D【解析】∵y=kx-4的函数值y随x的增大而增大,∴k>0,而四个选项中,只有D符合题意,故选D.6.m>-2【解析】∵一次函数y=(m+2)x+1,中y随x的增大而增大,∴m+2>0,解得m>-2.7.解:(1)∵y=(2m+1)x+m-1的图象经过原点,∴m-1=0,∴m=1.∴y=3x.将函数y=3x的图象向下平移3个单位,得y=3x-3,即平移后的函数表达式为y=3x-3.(2)画图如下.此时函数值y随着x的增大而增大.第7题答图8.解:(1)列表:描点,连线(如答图).第8题答图(2)①(1,0),(0,2);②<19.D【解析】∵k+b=-5、kb=6,∴k<0,b<0.∴直线y=kx+b经过第二、三、四象限,故选D.10.-5【解析】∵点P(a,b)在一次函数y=4x+3的图象上,∴b=4a+3,∴4a-b-2=4a-(4a+3)-2=-5,即代数式4a-b-2的值等于-5. 11.解:(1)一次函数y=(4m+1)x-(m+1),∵y随x的增大而减小,∴4m+1<0,解得m<-1 4.(2)一次函数y=(4m+1)x-(m+1),∵直线与y轴的交点在x轴下方,∴-(m+1)<0,4m+1≠0,解得m>-1且m≠-1 4.(3)一次函数y=(4m+1)x-(m+1),∵直线位于第二、三、四象限,∴4m+1<0且-(m+1)<0,解得-1<m<-1 4.(4)一次函数y=(4m+1)x-(m+1),∵直线过坐标原点,∴m +1=0,解得m =-1. 12.12≤k ≤2【解析】 如答图,∵直线y =kx 与四条直线x =1,x =2,y =1,y =2围成的正方形有公共点,∴直线y =kx 与直线x =1的交点最高为(1,2),与x =2的交点最低为(2,1),∴12≤k ≤2.第12题答图。
2B . 2D . 5第二章 四边形一、单选题1.如果一个多边形的内角和是 1800°,这个多边形是()A .八边形B .十四边形C .十边形D .十二边形2.如图,平行四边形 ABCD 的周长为 36,对角线 AC 、BD 相交于点 O ,点 E 是 CD 的中点,BD=12,则△DOE 的周长为()A .15B .18C .21D .243.下列命题中,真命题的个数有()①对角线互相平分的四边形是平行四边形;②两组对角分别相等的四边形是平行四边形;③一组对边平行,另一组对边相等的四边形是平行四边形.A .3 个B .2 个C .1 个D .0 个4.下列图案中,既是轴对称图形又是中心对称图形的是()A .B .C .D .5.如图,在四边形ABCD 中,∠C =90°,E 、F 分别为 AB 、AD 的中点,BC =2,CD =则 EF 的长为()3 2,A . 554 C .546.矩形纸片 ABCD 中, AB = 4 , BC = 6 ,将 VABC 沿 AC 折叠,使点 B 落在点 E 处,CE 交 AD 于点 F ,则 DF 的长等于()5B .53C .73D . 5P . 、 ,A .347△.如图,在 ABC 中,AB=3,AC=4,BC=5, 为边 BC 上一动点,PE ⊥AB 于 E ,PF ⊥AC 于 F ,M 为 EF 中点,则 AM 的最小值为()A .1B .1.3C .1.2D .1.58.如图,有一块菱形纸片 ABCD ,沿高 DE 剪下后拼成一个矩形,矩形的相邻两边 DC 和DE 的长分别是 5,3.则 EB 的长是()A .0.5B .1C .1.5D .29 如图,平行四边形 ABCD 中,对角线 AC BD 相交于点 O 则下列结论中不正确的是( )A .OA=OC ,OB=ODC .当 AC=BD 时,它是矩形B .当 AC ⊥BD 时,它是菱形D .当 AC 垂直平分 BD 时,它是正方形10.如图,正方形 ABCD 与正三角形 AEF 的顶点 A 重合,将△AEF 绕顶点 A 旋转,在旋转过程中,当 BE=DF 时,∠BAE 的大小可以是().1A .15°B .165°C .15°或 165°D .90°二、填空题11.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=__________度.12.在平面直角坐标系中,点 P 2(m ,n )与 P (- 2,3 2) 关于原点成中心对称,则 m + n =__________.13.如图, DE 为 ∆ABC 的中位线,点 F 在 DE 上,且 ∠AFC 为直角,若 AC = 6cm ,BC = 8cm ,则 DF 的长为_____.14.如图,将边长为 8cm 的正方形 ABCD 折叠,使点 D 落在 BC 边的中点 E 处,点 A 落在F 处,折痕为 MN .连接 FN ,并求 FN 的长__________.三、解答题15.一个多边形的每一个内角都相等,并且每个外角都等于和它相邻的内角的一半.∠1)求这个多边形是几边形;∠2)求这个多边形的每一个内角的度数.16.已知,如图,在四边形A BCD中,AB=DC,∠ABC+∠C=180︒,点E、F分别在边BC,AD上,AF=CE,EF与对角线BD交于O,求证:O是BD的中点.17.已知:平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG 的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.18.EF是平行四边ABCD的对角线BD的垂直平分线,EF与边AD,BC分别交于点E,F.(1)求证:四边形BFDE是菱形;(2)若ED=5,BD=8,求菱形BFDE的面积.19.如图,在∆ABC中,∠C=90︒,D为边BC上一点,E为边AB的中点,过点A作AF//BC,交DE的延长线于点F,连结BF.(1)求证:四边形ADBF是平行四边形;(2)若点D为边BC的中点,当线段BC与线段AC满足什么数量关系时,四边形ACDF 为正方形.答案1.D 2.A 3.B 4.B 5.D 6.B 7.C 8.B 9.D 10.C 11.360°12.22 13.1cm.14.8915.∠1)设内角为x,则外角为1 x, 2由题意得,x+1x=180°, 2解得:x=120°, 12x=60°,这个多边形的边数为:360 60=6,答:这个多边形是六边形,∠2)设内角为x,则外角为1 x, 2由题意得:x+12x=180°,解得:x=120°,答:这个多边形的每一个内角的度数是120度.内角和=∠6∠2∠×180°=720°∠16.证明:连接FB,DE.Q∠ABC+∠C=180︒,∴AB//CD,且AB=DC,∴四边形ABCD是平行四边形.∴AD//B C,AD=BC,且AF=CE,∴FD=AD-AF=BC-CE=BE,∴FD//B E且FD=BE,∴四边形BFDE是平行四边形,∴BO=OD,即O是BD中点.17.(1)证明:∵四边形ABCD是平行四边形,∴BE∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=CF.(2)解:结论:四边形ACDF是矩形.理由:∵AF=CD,AF∥CD,∴四边形ACDF是平行四边形,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∴∠FAG=60°,∵AB=AG=AF,∴△AFG是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四边形ACDF是矩形.18(1)∵四边形ABCD是平行四边形∴AD∥BC2⎨∠AEF =∠BED , ⎪ AE =BE ∴∠EDO=∠FBO ,∠DEO=∠BFO∵EF 是 BD 的垂直平分线∴DO=BO ,EF∠BD∴△EOD∠∠FOB(AAS)∠EO=OF∵BO=OD ,EF∠BD∴四边形 BFDE 是菱形(2)∵四边形 BFDE 是菱形,BD=8∴BO=OD=4∵ED=5,EF∠BD∴在 Rt∠EOD 中,EO=3∴OF=3,∴EF=6∴ S 菱形EBFD = 1⨯ 6 ⨯ 8 = 2419(1)证明:∵AF ∥BC ,∴∠AFE=∠BDE ,Q E 为 AB 的中点,∴ AE = BE ,在△AEF 与△BED 中,⎧ ∠AFE =∠BDE ⎪⎩∴△AEF≌△BED,∴AF=BD,∵AF∥BD,∴四边形ADBF是平行四边形;(2)BC=2A C,理由如下:Q D为BC的中点,∴CD=DB,Q AE=BE,∴DE∥AC,Q∠C=90︒,∴∠FDB=∠C=90°,∵AF∥BC,∴∠AFD=∠FDB=90°,∴∠C=∠CDF=∠AFD=90°,∴四边形ACDF是矩形,∵BC=2AC,CD=BD,∴CA=CD,∴四边形ACDF是正方形。
湘教版数学八年级测试题全套第一章《因式分解》测试题一、填空题. 把下列各式因式分解(30分)1、a2—b2 =2、a2+ a =3、—5 a2+ 25a =4、3 a2b4—6a b2c =5、 a (a —3)—5(a —3)=6、 4a 2—b 2=7、 y (y —5)—7(5—y ) =8、 16x 2— 925y 2= 9、 (a+b )(a —c )2—(a —b )(c —a )2 =10、 — 6a b 2(x+y )+12 a 2b (x+y ) =二.把下列各式因式分解(要求写出解题过程)(30分)11.m 3n 2— m 5 12. x 2— 0、01y 2 13. a 2—5a +42514.x 4—6 x 2+ 9 15.—25 a 2+20ab —4 b 2三.解答题 (20分) 16.当n为正整数时,下列各式能被4整的除是( ) A .n2 B .2n C .(2n+1)2-1 D . 2n+117.已知:x -x 1=3, 则x 2 +21x 等于( ) A .-1 B .1 C .3 D .918.当 x=2,y=21时 求代数式:(x+y )(x —y )+(x —y )2—(x 2—3xy )的值四.解答下列各题(20分)19. 因式分解:6x —6y —x2+ y220.因式分解:1+x+x(1+x)+x(1+x)221.解方程:x2—5x=022. 在边长为a 厘米的正方形的四个角,各剪去一个边长为b厘米的小正方形。
当a=12.4厘米. b=3.8厘米时求剩余部分的面积.第二章《分式》测验卷一、填空题(20分)1.用科学记数法表示,0.00009=2.填写适当的多项式,y x yx 02.05.03.01.0-+= yx -253.当x 时,分式32+-x x 有意义. 4. 当x 时,分式4162--x x =0.5.计算: 4-(-2)2--32÷(-2)0=6.化简 222ba ab a -+ = 7. 分式()712+-a x 的最大值为 8.化简 x ·y 1 ÷ y ·y1=9.计算 x 4y ·(x 2-y )3-÷(y1)2= 10.我们知道:87是没有意义的, 请你写出一个一定有意义的分式二,选择题 (30分)把答案填在下表中11.若方程21--x x = xa-2 有增根,则a 的值为( ) A .-1 B .1 C .2 D .-212.下列各式变形正确的是( )A .y x =xy x 2B .a b = (a b )2C .y x =2yxyD .a3·a2=a613.下列各数中是质数的是( )A .35B .36C .37D .3814.将分式: 6232_2-++x x x x × 31+x 1- 化简的结果是( )A .623++-x x B .()()()()2312-+--x x x x C .31+-x x D .x -115.若()()113-+-x x x =1+x A +1-x B 则A、B 的值分别为( )A .1、3B .2、-1 C.-1、-3 D .-2、-316.下列正确的是( )A .0a =1B .3-2=-9C .5.6×10-2=560D .(51)-2=25 17.已知:M=442-a ,N=21+a +a -21则 M、N 的关系是( )A .M=NB .M×N=1 C.M+N=0 D.不能确定三.计算题(30分)18. ba 522×32a b 19.ba b a 123287--20.xy y x -+2+yx y --xy x -2 21.xy x y -++xy x y +-22.112--x x -x +1 23.22+-x x +442-x x÷412-x四.解下列方程(10分)24.x1+11+x =225+x 25.11-x =122-x五.化简求值:(5分)2222ab b a b a --÷1+abb a 222+ 其中x =-3,y =2六.某项工程,甲、乙两队合作8天可以完成。
初二数学下册练习题湘教版数学是一门需要不断练习的学科,通过练习题可以帮助我们巩固和提高数学知识。
下面是初二数学下册湘教版的一些练习题,希望能够帮助大家更好地掌握数学知识。
一、填空题1. 已知一条直角边长为3,求斜边的长度为______。
2. 一只青蛙在一个深度为20米的井里,白天它每次往上跳3米,夜晚会下滑2米,问它需要跳多少次才能跳出井口?3. 小明家的电费是每度0.5元,上个月共用电100度,应缴纳的电费为______元。
4. 甲、乙两个数的和为75,乙数是甲数的2倍减去10,求甲、乙两个数各是多少?5. 一个正方形的边长为4厘米,它的周长为______厘米。
二、选择题1. 已知点A(2,3),点B(x,5),若AB的距离等于5,则x的值为:A. -1B. 1C. 3D. 72. 一个数减去它的四分之一等于15,这个数是:A. 10B. 20C. 25D. 303. 一个数的一半加上它的四分之一等于15,这个数是:A. 10B. 15C. 20D. 304. 一个长方形的长是宽的2倍,它的周长是24,求长方形的长和宽分别是多少?A. 长:6,宽:12B. 长:4,宽:6C. 长:8,宽:4D. 长:12,宽:65. A、B两个数的和为100,若B大于A,则A、B两个数可能是:A. 20、80B. 30、70C. 40、60D. 50、50三、解答题1. 用竖式计算:(1)345 + 78 = ________(2)789 - 256 = ________(3)23 × 4 = ________(4)78 ÷ 6 = ________(5)136 ÷ 17 = ________(结果保留一位小数)2. 小明每天步行上学,来回共需用时1小时40分钟,若小明来回步行时间的比为5:8,那么小明步行去学校的时间是多少分钟?3. 一个线段长14米,将它分成3段,第一段、第二段和第三段的长度之比为2:3:4,求第一段的长度。
湘教版数学八年级下册第一单元测试题(时间:120分钟 分值:120分)一、选择题(每小题3分,共30分)1.下列长度的三条线段能组成直角三角形的是( )A .4,5,6B .2,3,4C .1,1,2D .1,2,22.若三角形三个内角的比为1∶2∶3,则它的最长边与最短边的比为( ) A .3∶1 B .2∶1 C .3∶2 D .4∶1 3) A .3 B .4 C .5 D .无法求出第3题图第4题图4 ) A.833mB 5PQ A.3B .2 C .3 D .2 3第5题图第6题图6.,E ,AE =A .1 7.如图,在△ABC 中,∠ACB =90°,AC =12,BC =5,AM =AC ,BN =BC ,则MN 的长为( )A .2B .2.6C .3D .48.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( ) A .8 B .6 C .4 D .2第7题图第8题图第10题图9.设a,b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab的值是()A.1.5 B.2 C.2.5 D.310.如图,∠ABC=90°,AB=6,BC=8,AD=CD=7,若点P到AC的距离为5,则点P 在四边形A.0个B11.在Rt12.已知,.13________________.第13题图第14题图14线AB15.AB=80.1米,参考数据:2≈1.41,3≈1.73).第15题图第16题图1617.如图,在等腰△ABC中,AB=AC,BC边上的高AD=6cm,腰AB上的高CE=8cm,则△ABC的周长等于________cm.第17题图第18题图18.如图,AB=6,点O是AB的中点,直线l经过点O,∠1=120°,点P是直线l上一点,当△APB为直角三角形时,AP=____________.三、解答题(共66分)19.(6分)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,将△ADC沿AC边所在的直线折叠,使点D落在点E处,得到四边形ABCE.求证:EC∥AB.20.(8分)证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC,点P在OC上,______________________________________________________________________________________________.求证:________.请你补全已知和求证,并写出证明过程.21.(10分)如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.(1)Rt△ADE与Rt△BEC全等吗?并说明理由;(2)△CDE是不是直角三角形?并说明理由.22.(10分)如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于点E,点F 在AC上,BD=DF.求证:(1)CF=EB;(2)AB=AF+2EB.23.(10分)如图,一根长63的木棒(AB),斜靠在与地面(OM)垂直的墙(ON)上,与地面的倾斜角(∠ABO)为60°.当木棒A端沿墙下滑到点A′时,B端沿地面向右滑行至点B′.(1)求OB的长;(2)当AA′=1时,求BB′的长.24.(10分)如图所示,在Rt△ABC中,AB=CB,ED⊥CB,垂足为D点,且∠CED=60°,∠EAB=30°,AE=2,求CB的长.25.(12分)如图,南北方向PQ以东为我国领海,以西为公海,晚上10时28分,我国边防反偷渡巡逻101号艇在A处发现其正西方向的C处有一艘可疑船只正向我国领海靠近,便立即通知正在PQ上B处巡逻的103号艇注意其动向,经测量AC=10海里,AB=6海里,BC=8海里,若该船只的速度为12.8海里/时,则可疑船只最早何时进入我国领海?参考答案与解析1.C 2.B 3.A 4.B 5.C 6.A 7.D 8.C 9.D10.A 解析:过点D 作DE ⊥AC ,BF ⊥AC ,垂足分别为E ,F .在Rt △ABC 中,AC =AB 2+BC 2=10,BF =6×810=4.8<5;在△ACD 中,∵AD =CD ,∴AE =CE =5,DE =72-52=26<5,则点P 在四边形ABCD 边上的个数为0个.故选A. 14.2 15.2.916.3π2+1 解析:如图所示,∵无弹性的丝带从A 至C ,绕了1.5圈,∴展开后AB =1.5×2π3或33或37.19.证明:∵CD 是AB 边上的中线,且∠ACB =90°,∴CD =AD ,∴∠CAD =∠ACD .(3分)又∵△ACE 是由△ACD 沿AC 边所在的直线折叠而成,∴∠ECA =∠ACD ,∴∠ECA =∠CAD ,∴EC ∥AB .(6分)20.解:PD ⊥OA ,PE ⊥OB ,垂足分别为点D ,E (2分) PD =PE (4分) 证明如下:∵PD ⊥OA ,PE ⊥OB ,∴∠PDO =∠PEO =90°.在△PDO 和△PEO 中,⎩⎪⎨⎪⎧∠PDO =∠PEO ,∠AOC =∠BOC ,OP =OP ,∴△PDO ≌△PEO (AAS),∴PD =PE .(8分) 21.解:(1)全等.(1分)理由如下:∵∠1=∠2,∴DE =CE .∵∠A =∠B =90°,AE =BC ,∴Rt △ADE ≌Rt △BEC (HL).(5分)(2)△CDE 是直角三角形.(6分)理由如下:∵Rt △ADE ≌Rt △BEC ,∴∠AED =∠BCE .∵∠BCE +∠BEC =90°,∴∠BEC +∠AED =90°,∴∠DEC =90°,∴△CDE 是直角三角形.(10分)22.证明:(1)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴DE =DC .(2分)在Rt △DCF和Rt △(2)在Rt 分)∴23)(2)在Rt ′=AB =分)24.解:过E 点作EF ⊥AB ,垂足为点F .∵∠EAB =30°,AE =2,∴EF =1,∴BD =1.(3分)又∵∠-30°=3,∴25且∠海里.只从被发现到进入我国领海的时间为6.4÷12.8=0.5(小时),(10分)∴可疑船只最早10时58分进入我国领海.(12分)湘教版数学八年级下册第二单元测试题(时间:120分钟分值:120分)一、选择题(每小题3分,共30分)1.如果一个多边形的内角和是720°,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形2.在下列图形中,既是轴对称图形又是中心对称图形的是()3.下列命题是真命题的是()ABCD4.A.3.5 B.4 C.7 D.14第4题图第5题图第6题图5BC 的长为(A.6DCAC.7两位同学的作法分别如下:对于甲、乙两人的作法,可判断()A.甲正确,乙错误B.甲错误,乙正确C.甲、乙均正确D.甲、乙均错误8.在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论:①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD,其中正确的有()A.①②③B.①②④C.②③④D.①③④9.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域.设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()A.2a2 B.3a2 C.4a2 D.5a2第9题图第10题图10.,AE=CF=A.71112点C两地之间的距离是________米.第12题图第13题图13一个条件1415.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于________.第15题图第16题图16角∠A,使衣帽架拉伸或收缩.若菱形的边长等于10cm ,∠A=120°,则AB=________,AD=________.17.如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,△EFC的周长为12,则EC的长为________.第17题图第18题图18.如图,菱形ABCD中,点E,F分别是BC,CD的中点,过点E作EG⊥AD于点G,连接GF,EF.若∠A=80°,则∠DGF的度数为________.三、解答题(共66分)19.(8分)一个多边形内角和的度数比外角和的度数的4倍多180度,求这个多边形的边数.20.(8分)如图,在锐角三角形ABC中,AD⊥BC于点D,点E,F,G分别是AC,AB,BC的中点.求证:FG=DE.21.(12分)如图,在▱ABCD中,点E,F为对角线AC上的两点,且AE=CF,连接DE,BF.(1)写出图中所有的全等三角形;(2)求证:DE∥BF.22.(12分)如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF 分别交BA的延长线,DC的延长线于点G,H,交BD于点O.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.23.(12分)如图,将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,连接AE,CF,AC.(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,①求菱形AECF的边长;②求折痕EF的长.24.(14分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于点E,垂足为点F,连接CD,BE.(1)求证:CE=AD;(2)当点D为AB的中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若点D为AB的中点,当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.参考答案与解析1.C 2.C 3.D 4.A 5.C 6.D7.C8.B解析:根据平行四边形的面积公式及“垂线段最短”的性质可知,当其面积最大时,其一边上的高与邻边重合,即其形状为矩形.此时,AC=AB2+BC2=32+42=5,故①正确;∠A=∠C=90°,∴∠A+∠C=180°,故②正确;若AC⊥BD,则此矩形又为正方形,有AB=BC,显然不符合题意,故③错误;根据矩形的对角线相等的性质,可知AC =BD,故④正确,综上可知,①②④正确.故选B.9.A10.C解析:如图所示,由题意易证△ABE≌△CDF.∴∠ABE=∠CDF.∵∠AEB=∠,,=EF,n=)(2)证明:∵AE=CF,∴AF=CE.(8分)∵四边形ABCD是平行四边形,∴AB=CD,AB ∥CD,∴∠BAF=∠DCE.在△ABF和△CDE中,AB=CD,∠BAF=∠DCE,AF=CE,∴△ABF≌△CDE(SAS),∴∠AFB=∠CED,∴DE∥BF.(12分)22.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠BAE=∠DCF.(3分)又∵AE=CF,∴△ABE≌△CDF.(6分)(2)解:四边形BEDF是菱形.(7分)理由如下:∵四边形ABCD是平行四边形,∴AD =BC,AD∥BC.∵AE=CF,∴DE=BF,∴四边形BEDF是平行四边形,∴BO=DO.(9分)又∵BG=DG,∴GO⊥BD,∴四边形BEDF是菱形.(12分)23.(1)证明:∵矩形ABCD折叠使A,C重合,折痕为EF,∴OA=OC,EF⊥AC,EA=EC .∵AD ∥BC ,∴∠F AC =∠ECA .(2分)在△AOF 和△COE 中,⎩⎪⎨⎪⎧∠F AO =∠ECO ,AO =CO ,∠AOF =∠COE ,∴△AOF≌△COE ,∴OF =OE .(4分)∴四边形AECF 为菱形.(6分)(2)解:①设菱形AECF 的边长为x ,则AE =CE =x ,BE =BC -CE =8-x .(7分)在Rt △ABE 中,∵BE 2+AB 2=AE 2,∴(8-x )2+42=x 2,解得x =5,即菱形的边长为5.(9分)②在Rt △ABC 中,AC =AB 2+BC 2=45,∴OA =12AC =2 5.在Rt △AOE 中,OE =AE 2-AO 2=5,∴EF =2OE =2 5.(12分) 24.(1)证明:∵DE ⊥BC ,∴∠DFB =90°.∵∠ACB =90°,∴∠ACB =∠DFB ,∴AC ∥DE .(2分)∵MN ∥AB ,∴四边形ADEC 是平行四边形,∴CE =AD .(4分)(2)解:四边形BECD 是菱形.(5分)理由如下:∵点D 为AB 的中点,∴AD =BD .∵CE =AD ,∴BD =CE .∵BD ∥CE ,∴四边形BECD 是平行四边形.(7分)∵∠ACB =90°,点D 为AB 的中点,∴CD =BD ,∴四边形BECD 是菱形.(9分)(3)解:当∠A =45°时,四边形BECD 是正方形.(10分)理由如下:∵∠ACB =90°,∠A =45°,∴∠ABC =∠A =45°,∴AC =BC .∵点D 为BA 的中点,∴CD ⊥AB ,∴∠CDB =90°.(12分)由(2)知四边形BECD 是菱形,∴四边形BECD 是正方形.即当∠A =45°时,四边形BECD 是正方形.(14分)。
初中数学试卷 桑水出品八年级数学单元测试(本试卷共29小题,满分120分) 班;姓名一、选择题(每小题3分,共30分)1、能够判定一个四边形是平行四边形的条件是 ( )A 、一组对角相等B 、两条对角线互相平分C 、两条对角线互相垂直D 、一对邻角的和为180°2、中,的值可以是( )A .1:2:3:4B .1:2:2:1C .2:2:1:1D .2:1:2:1 3、对角线互相垂直平分的四边形是 ( )A 、平行四边形B 、矩形C 、菱形D 、梯形4、已知:如图,在矩形ABCD 中,E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点.若AB =2,AD =4,则图中阴影部分的面积为 ( )A .8B .6C .4D .3 5、如图,□ABCD 中,对角线AC 、BD 交于点O ,点E 是BC 的中点.若OE=3 cm ,则AB 的长为 ( )A .3 cmB .6 cmC .9 cmD .12 cm6、如图,□ABCD 中,∠C=108°,BE 平分∠ABC,则∠ABE 等于( )A.18°B.36°C.72°D.108°7、将点P (m+2,2m+4)向右平移1个单位,到点Q 。
已知点Q 在Y 轴上,那么点Q 的坐标是( )A 、(-2,0);B 、(0,-2);C 、(1,0);D 、(0,1)8、在Rt △ABC 中,∠C=90度,AB 的垂直平分线交AC 于点D ,交AB 于点E ,若BC=2,AC=4,则BD=( )A 、1.5,B 、2 ;C 、2.5;D 、3. 9、已知四边形ABCD 的对角线相交于O ,给出下列 5个条件①AB ∥CD ②AD ∥BC ③AB=CD ④∠BAD=∠DCB ,从以上4个条件中任选 2个条件为一组,能推出四边形ABCD 为平行四边形的有( )A 6组 B.5组 C.4组 D.3组10、下列一组图形既是轴对称图形,又是中心对称图形的是( ).A .等边三角形与正方形;B .矩形与平行四边形C .正五边形与菱形;D .菱形与线段二.填空题: (每小题3分,共24分)11.若点M (a-3,a+1)到X 轴的距离是3,且位于第三象限,则M 点的坐标是E D C B A12.平行四边形的周长等于56 cm ,两邻边长的比为3∶1,那么这个平行四边形较长的边长为_______.13.平行四边形ABCD ,加一个条件__________________,它就是菱形.14.长方形ABCD 是篮球场地的简图,长是28m ,宽是15m ,•则它的对角线长约为________m .(精确到1m )15 如图,在正方形ABCD 的外侧,作等边△ADE ,则∠AEB=_______.16.直角三角形ABC 中,已知有两条边的长度是6的8,则它的第三边长是 17.若菱形的周长为24 cm ,一个内角为60°,则菱形的面积为__ cm 2。
湘教版八年级数学下册第1-2章综合测试题一、选择题(每小题3分,共24分)1.在Rt△ABC中,斜边AB上的中线CD的长为4 cm,则斜边AB的长为()A.2 cmB.12 cmC.8 cmD.16 cm图12.如图1,在四边形ABCD中,CB=CD,∠ABC=∠ADC=90°,∠BAC=35°,则∠BCD的度数为()A.145°B.125°C.110°D.70°3.下列图形中,既是轴对称图形又是中心对称图形的有 ()图2A.4个B.3个C.2个D.1个4.已知四边形ABCD是平行四边形,下列结论不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形5.如图3,▱ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则▱ABCD的两条对角线长的和是()A.18B.28C.36D.46图3图46.如图4,P是∠AOB平分线上的点,PD⊥OB于点D,PC⊥OA于点C,则下列结论:(1)PC=PD;(2)OD=OC;(3)△POC与△POD的面积相等;(4)∠POC+∠OPD=90°.其中正确的有()A.1个B.2个C.3个D.4个7.P是矩形ABCD的对角线AC的中点,E是AD的中点.若AB=6,AD=8,则四边形ABPE的周长为()A.14B.16C.17D.18图58.如图5,在矩形纸片ABCD中,AB=8 cm,把矩形纸片沿直线AC折叠,点B落在点E处,AE交DC于点F.若AF=25cm,则AD的长为()4A.4 cmB.5 cmC.6 cmD.7 cm请将选择题答案填入下表:题号 1 2 3 4 5 6 7 8 总分答案第Ⅱ卷(非选择题共96分)二、填空题(每小题4分,共32分)9.若一个菱形两条对角线长分别为10和6,则它的面积为.图610.如图6,在△ABC中,AB=AC,∠BAC的平分线交BC边于点D,AB=5,BC=6,则AD= .11.已知一个多边形的每个外角都等于45°,则这个多边形的内角和为.12.已知一个三角形的三边长分别为n+1,n+2,n+3,则当n= 时,这个三角形是直角三角形.13.如图7,在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,为了使Rt△ABC≌Rt△DCB,需添加的条件是(不添加字母和辅助线).图7图814.如图8所示,在△ABC中,AB=AC=4,∠B=15°,那么腰AB上的高CD的长为.15.图9是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两个圆孔中心A和B的距离为mm.图9图1016.如图10,正方形ABCD的边长为1,顺次连接正方形ABCD四边的中点得到第一个正方形A1B1C1D1,又顺次连接正方形A1B1C1D1四边中点得到第二个正方形A2B2C2D2,…,以此类推,则第六个正方形A6B6C6D6的周长为.三、解答题(共64分)17.(6分)如图11,在△ABC中,AD⊥BC于点D,AB=25,AC=30,AD=24,试判断△ABC的形状,并说明理由.图1118.(6分)如图12,已知AD⊥BE,垂足C是BE的中点,AB=DE,请说明AB∥DE的理由.图1219.(6分)如图13,在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.(1)求证:四边形ADBE是矩形;(2)求矩形ADBE的面积.图1320.(8分)如图14,在矩形ABCD中,E,F分别是边AB,CD的中点,连接AF,CE.求证:(1)△BEC≌△DFA;(2)四边形AECF是平行四边形.图1421.(8分)我国明代有一位杰出的数学家程大位在所著的《直至算法统宗》里有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地,送行二步与人齐,五尺人高曾记;仕女佳人争蹴,终朝笑语欢嬉,良工高士素好奇,算出索长有几?”诗的意思是:当秋千静止时,秋千的踏板离地的距离为一尺,将秋千的踏板往前推两步,这里的每一步合五尺,秋千的踏板与人一样高,这个人的身高为五尺,当然这时秋千的绳索是呈直线状态的,求这个秋千的绳索有多长.22.(8分)已知:如图15,P是OC上一点,PD⊥OA于点D,PE⊥OB于点E,F,G分别是OA,OB上的点,且PF=PG,DF=EG.求证:OC是∠AOB的平分线.图1523.(10分)如图16,在四边形ABCD中,E是线段AD上的任意一点(点E与点A,D不重合),G,F,H 分别是BE,BC,CE的中点.(1)求证:四边形EGFH是平行四边形;BC.求证:▱EGFH是正方形.(2)在(1)的条件下,连接EF,若EF⊥BC,且EF=12图1624.(12分)如图17,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF ∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)求证:四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.图17答案1.C2.C3.C4.D5.C6.D7.D8.C9.3010.411.1080°12.213.答案不唯一,如AB=DC 14.215.15016.1217.解:△ABC是等腰三角形.理由:在 Rt△ABD中,BD=√252-242=7,同理CD=18,所以BC=BD+CD=7+18=25=AB,所以△ABC是等腰三角形.18.解:∵C是BE的中点,∴BC=EC.在Rt△ABC和Rt△DEC中,{BC=EC,AB=DE,∴Rt△ABC≌Rt△DEC(HL),∴∠B=∠E,∴AB∥DE.19.解:(1)证明:∵AB=AC,AD是BC边上的中线,∴AD⊥BC,∴∠ADB=90°.又∵四边形ADBE是平行四边形,∴四边形ADBE是矩形.(2)∵AD是BC边上的中线,∴BD=12BC=12×6=3.在Rt△ABD中,AB=5.由勾股定理,得AD=4, ∴矩形ADBE的面积为AD·BD=4×3=12. 20.证明:(1)∵四边形ABCD是矩形,∴∠B=∠D=90°, BC=DA,AB=CD.又∵E,F分别是边AB,CD的中点,∴BE=12AB,DF=12CD,∴BE=DF,∴△BEC≌△DFA(SAS).(2)∵四边形ABCD是矩形,∴AB∥CD,AB=CD.又∵E,F分别是边AB,CD的中点,∴AE=12AB,CF=12CD,∴AE=CF,∴四边形AECF是平行四边形.21.解:如图,不妨设图中的OA为秋千的绳索,CD为地平面,BC为身高5尺的人,AE为两步,即相当于10尺的距离,A处有一块踏板,EC,AD为踏板离地的距离,它等于一尺.设OA=x尺,则OB=OA=x尺.FA=BE=BC-EC=5-1=4(尺),BF=EA=10尺.在Rt△OBF中,由勾股定理,得OB2=OF2+BF2,即x2=(x-4)2+102,解这个方程,得x=14.5,所以这个秋千的绳索长度为14.5尺.22.证明:在Rt△PFD和Rt△PGE中,{PF=PG,DF=EG,∴Rt△PFD≌Rt△PGE(HL),∴PD=PE.∵P是OC上一点,PD⊥OA,PE⊥OB,∴OC是∠AOB的平分线.23.证明:(1)∵G,F分别是BE,BC的中点,∴GF∥EC,且GF=12EC.又∵H是EC的中点,∴EH=12EC,∴GF∥EH,且GF=EH.∴四边形EGFH是平行四边形.(2)连接GH.∵G,H分别是BE,EC的中点,∴GH∥BC,且GH=12BC.又∵EF⊥BC,且EF=12BC,∴EF ⊥GH ,且EF=GH.∴▱EGFH 是正方形.24.解:(1)证明:∵AF ∥BC ,∴∠AFE=∠DBE. ∵E 是AD 的中点,∴AE=DE.在△AFE 和△DBE 中,{∠AFE =∠DBE,∠FEA =∠BED,AE =DE,∴△AFE ≌△DBE (AAS).(2)证明:由(1)知,△AFE ≌△DBE ,则AF=DB. ∵D 是BC 的中点,∴DB=DC ,∴AF=CD. ∵AF ∥BC ,∴四边形ADCF 是平行四边形. ∵∠BAC=90°,D 是BC 的中点,∴AD=DC , ∴四边形ADCF 是菱形.(3)连接DF.∵AF ∥BD ,AF=BD ,∴四边形ABDF 是平行四边形,∴DF=AB=5.∵四边形ADCF 是菱形.∴S 菱形ADCF =12AC ·DF=12×4×5=10.。
湘教版八年级数学下册单元测试题全套(含答案)第1章达标检测卷(时间:45分钟 总分:100分)一、选择题(每小题3分,共30分)1.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于( ) A .10B .7C .5D .42.如图,直线AB ,CD 相交于点O ,PE ⊥CD 于点E ,PF ⊥AB 于点F ,若PE =PF ,∠AOC =50°,则∠AOP 的度数为( ) A .65°B .60°C .40°D .30°3.一个等腰三角形的一腰长为3a ,底角为15°,则另一腰上的高为( ) A .a B.32a C .2aD .3a4.如图,已知点P 到AE ,AD ,BC 的距离相等,下列说法:①点P 在∠BAC 的平分线上;②点P 在∠CBE 的平分线上;③点P 在∠BCD 的平分线上;④点P 在∠BAC ,∠CBE ,∠BCD 的平分线的交点上.其中正确的是( )A .①②③④B .①②③C .④D .②③ 5.如图,∠BAC =90°,AD ⊥BC ,则图中互余的角有( )A .2对B .3对C .4对D .5对6.在Rt △ABC 中,∠C =30°,斜边AC 的长为5 cm ,则AB 的长为( ) A .2 cmB .2.5 cmC .3 cmD .4 cm7.在下列选项中,以线段a ,b ,c 的长为边,能构成直角三角形的是( )A.a=3,b=4,c=6 B.a=5,b=6,c=7C.a=6,b=8,c=9 D.a=7,b=24,c=258.直角三角形斜边上的中线长是6.5,一条直角边是5,则另一直角边长等于()A.13 B.12 C.10 D.59.在△ABC和△DEF中,∠A=∠D=90°,则下列条件不能判定△ABC和△DEF全等的是()A.AB=DE,AC=DF B.AC=EF,BC=DFC.AB=DE,BC=EF D.∠C=∠F,BC=EF10.如图,字母B所代表的正方形的面积是()A.12 B.13 C.144 D.194二、填空题(每小题3分,共18分)11.若直角三角形的一个锐角为50°,则另一个锐角的度数是________.12.已知,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,且AD=3,AC=6,则AB=________.13.如图,在Rt△ABC中,O为斜边的中点,CD为斜边上的高.若OC=6,DC=5,则△ABC的面积是________.14.生活经验表明:靠墙摆放梯子时,若梯子底端离墙约为梯子长度的13时,则梯子比较稳定.现有一长度为9 m的梯子,当梯子稳定摆放时,它的顶端能到达8.5 m高的墙头吗?________(填“能”或“不能”).15.如图,每个小正方形的边长均为1,△ABC的三边长分别为a,b,c,则a,b,c的大小关系是________.16.如图,在Rt△ABC中,∠A=90°,BD平分∠ABC交AC于D点,AB=12,BD=13,点P是线段BC 上的一动点,则PD的最小值是________.三、解答题(共52分)17.(8分)已知Rt△ABC中,其中两边的长分别是3,5,求第三边的长.18.(10分)已知:如图,GB=FC,D、E是BC上两点,且BD=CE,作GE⊥BC,FD⊥BC,分别与BA、CA的延长线交于点G,F.求证:GE=FD.19.(10分)如图,在Rt△ACB中,∠C=90°,BE平分∠ABC,ED垂直平分AB于点D,若AC=9,求AE 的长.20.(12分)如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.(1)Rt△ADE与Rt△BEC全等吗?并说明理由;(2)△CDE是不是直角三角形?并说明理由.21.(12分)如图,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=2,求AD的长.参考答案1. C2. A3. B4. A5. C6. B7. D8. B9. B 10. C 11.40° 12.12 13.30 14.不能 15.c <a <b 16.517.解:当已知两条边是直角边时,由勾股定理得第三条边的长为32+52=34; 当已知两条边中有一条是直角边而另一条是斜边时,第三边长为52-32=4. ∴第三边的长为34或4. 18.证明:∵BD =CE ,∴BD +DE =CE +DE ,即BE =CD . ∵GE ⊥BC ,FD ⊥BC , ∴∠GEB =∠FDC =90°. ∵GB =FC ,∴Rt △BEG ≌Rt △CDF (HL). ∴GE =FD .19.解:设AE =x ,则CE =9-x . ∵BE 平分∠ABC ,CE ⊥CB ,ED ⊥AB , ∴DE =CE =9-x . 又∵ED 垂直平分AB ,∴AE =BE ,∠A =∠ABE =∠CBE . ∵在Rt △ACB 中,∠A +∠ABC =90°, ∴∠A =∠ABE =∠CBE =30°.∴DE =12AE .即9-x =12x .解得x =6.即AE 的长为6.20.解:(1)Rt △ADE 与Rt △BEC 全等.理由如下: ∵∠1=∠2, ∴DE =CE .∵∠A =∠B =90°,AE =BC , ∴Rt △ADE ≌Rt △BEC (HL). (2)△CDE 是直角三角形.理由如下: ∵Rt △ADE ≌Rt △BEC , ∴∠ADE =∠BEC . ∵∠ADE +∠AED =90°, ∴∠BEC +∠AED =90°. ∴∠DEC =90°.∴△CDE 是直角三角形.21.(1)证明:∵AD ⊥BC ,∠BAD =45°,∴AD=BD.∵AD⊥BC,BE⊥AC,∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°.∴∠CAD=∠CBE.又∵∠CDA=∠BDF=90°,∴△ADC≌△BDF(ASA).∴AC=BF.∵AB=BC,BE⊥AC,∴AE=EC,即AC=2AE.∴BF=2AE.(2)解:∵△ADC≌△BDF,∴DF=CD= 2.∴在Rt△CDF中,CF=DF2+CD2=2.∵BE⊥AC,AE=EC,∴AF=FC=2,∴AD=AF+DF=2+ 2.第2章达标检测卷时间:120分钟满分:120分班级:__________姓名:__________得分:__________一、选择题(每小题3分,共30分)1.如果一个多边形的内角和是720°,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形2.下列图形,既是轴对称图形又是中心对称图形的是()3.下列命题是真命题的是()A.有一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.对角线互相垂直平分的四边形是正方形D.有一组邻边相等的平行四边形是菱形4.如图,在菱形ABCD中,对角线AC,BD交于点O,E为AD边的中点,菱形ABCD的周长为28,则OE的长等于()A.3.5 B.4 C.7 D.14第4题图第5题图第6题图5.如图,矩形ABCD的对角线AC,BD交于点O,AC=4cm,∠AOD=120°,则BC的长为() A.43cm B.4cm C.23cm D.2cm6.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为点B′,AB′与DC相交于点E,则下列结论正确的是()A.∠DAB′=∠CAB′ B.∠ACD=∠B′CDC.AD=AE D.AE=CE7.如图是一张平行四边形纸片ABCD,要求利用所学知识将它变成一个菱形,甲、乙两位同学的作法分别如下:对于甲、乙两人的作法,可判断()A.甲正确,乙错误B.甲错误,乙正确C.甲、乙均正确D.甲、乙均错误8.在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论:①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD,其中正确的是()A.①②③B.①②④C.②③④D.①③④9.为了增加绿化面积,某小区将原来的正方形地砖更换为如图的正八边形地砖,更换后,图中阴影部分为植草区域.设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为() A.2a2B.3a2 C.4a2D.5a210.如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,则EF的长是()A.7 B.8 C.7 2 D.73二、填空题(每小题3分,共24分)11.若n边形的每个外角都是45°,则n=________.12.如图,A,B两地被一座小山阻隔,为了测量A,B两地之间的距离,在地面上选一点C,连接CA,CB,分别取CA,CB的中点D,E,测得DE的长度为360米,则A,B两地之间的距离是________米.第12题图第13题图13.如图,在菱形ABCD中,对角线AC,BD相交于点O,不添加任何辅助线,请添加一个条件______________,使四边形ABCD是正方形.14.在矩形ABCD中,AC交BD于O点,已知AC=2AB,∠AOD=________°.15.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长为________.第15题图第16题图16.如图,活动衣帽架由三个相同的菱形组成,利用四边形的不稳定性,调整菱形的内角∠A,使衣帽架拉伸或收缩.若菱形的边长为10cm ,∠A=120°,则AB=________,AD=________.17.如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,△EFC的周长为12,则EC的长为________.第17题图18.如图,在菱形ABCD中,点E,F分别是BC,CD的中点,过点E作EG⊥AD于点G,连接GF,EF.若∠A=80°,则∠DGF的度数为________.第18题图三、解答题(共66分)19.(8分)一个多边形内角和的度数比外角和的度数的4倍多180度,求这个多边形的边数.20.(8分)如图,在锐角三角形ABC中,AD⊥BC于点D,点E,F,G分别是AC,AB,BC的中点.求证:FG=DE.21.(12分)如图,在▱ABCD中,E,F为对角线AC上的两点,且AE=CF,连接DE,BF.(1)写出图中所有的全等三角形;(2)求证:DE∥BF.22.(12分)如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线,DC的延长线于点G,H,交BD于点O.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.23.(12分)如图,将矩形ABCD折叠使点A,C重合,折痕交BC于E,交AD于F,连接AE,CF,AC.(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,①求菱形AECF的边长;②求折痕EF的长.24.(14分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D 作DE⊥BC,交直线MN于点E,垂足为点F,连接CD,BE.(1)求证:CE=AD;(2)当D为AB的中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB的中点,当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.参考答案与解析一、1.C 2.C 3.D 4.A 5.C 6.D 7.C8.B 解析:根据平行四边形的面积公式及“垂线段最短”的性质可知,当其面积最大时,其一边上的高与邻边重合,即其形状为矩形.此时,AC =AB 2+BC 2=32+42=5,故①正确;∠A =∠C =90°,∴∠A +∠C =180°,故②正确;若AC ⊥BD ,则此矩形为正方形,有AB =BC ,显然不符合题意,故③错误;根据矩形的对角线相等的性质,可知AC =BD ,故④正确,综上可知,①②④正确.故选B. 9.A10.C 解析:如图,由题意易证△ABE ≌△CDF .∴∠ABE =∠CDF .∵∠AEB =∠BAD =90°,∴∠ABE +∠BAE =90°,∠DAG +∠BAE =90°,∴∠ABE =∠DAG =∠CDF ,∴∠DAG +∠ADG =∠CDF +∠ADG =90°,即∠DGA =90°,同理得∠CHB =90°,∴四边形EGFH 为矩形.在△ABE 和△DAG 中,⎩⎪⎨⎪⎧∠ABE =∠DAG ,∠AEB =∠DGA =90°AB =DA ,,∴△ABE ≌△DAG (AAS),∴DG =AE =5,AG =BE =DF =12,∴AG -AE =DF -DG =7,即EG =FG =7,∴EF =EG 2+FG 2=7 2.故选C.二、11.8 12.720 13.∠BAD =90°(答案不唯一) 14.120 15.20 16.10cm 30cm 17.518.50° 解析:延长AD ,EF 相交于点H .易证△CEF ≌△DHF ,∴∠H =∠CEF ,EF =FH .由EG ⊥AD ,F 为EH 的中点,易知GF =HF ,由题意知∠C =∠A =80°,CE =CF ,∴∠CEF =50°,∴∠DGF =∠H =∠CEF =50°.三、19.解:设这个多边形的边数为n ,根据题意得(n -2)·180°=4×360°+180°,解得n =11.(7分) 故多边形的边数为11.(8分)20.证明:∵AD ⊥BC ,∴∠ADC =90°. 又∵E 为AC 的中点,∴DE =12AC .(4分)∵F ,G 分别为AB ,BC 的中点, ∴FG 是△ABC 的中位线, ∴FG =12AC ,∴FG =DE .(8分)21.(1)解:△ABC ≌△CDA ,△ABF ≌△CDE ,△ADE ≌△CBF .(6分) (2)证明:∵AE =CF ,∴AF =CE .(8分)∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD , ∴∠BAF =∠DCE .在△ABF 和△CDE 中,AB =CD ,∠BAF =∠DCE ,AF =CE , ∴△ABF ≌△CDE (SAS),∴∠AFB =∠CED ,∴DE ∥BF .(12分) 22.(1)证明:∵四边形ABCD 是平行四边形, ∴AB =CD ,∠BAE =∠DCF .(3分) 又∵AE =CF ,∴△ABE ≌△CDF .(6分) (2) 解:四边形BEDF 是菱形.(7分) 理由:∵四边形ABCD 是平行四边形, ∴AD =BC ,AD ∥BC . ∵AE =CF ,∴DE =BF ,∴四边形BEDF 是平行四边形,∴BO =DO .(9分) 又∵BG =DG ,∴GO ⊥BD , ∴四边形BEDF 是菱形.(12分)23.(1)证明:∵矩形ABCD 折叠使点A ,C 重合,折痕为EF , ∴OA =OC ,EF ⊥AC ,EA =EC . ∵AD ∥BC ,∴∠F AC =∠ECA .(2分) 在△AOF 和△COE 中,⎩⎪⎨⎪⎧∠F AO =∠ECO ,AO =CO ,∠AOF =∠COE ,∴△AOF ≌△COE ,∴OF =OE .(4分) ∴四边形AECF 为菱形.(6分)(3) 解:①设菱形AECF 的边长为x ,则AE =CE =x ,BE =BC -CE =8-x .(7分) 在Rt △ABE 中,∵BE 2+AB 2=AE 2, ∴(8-x )2+42=x 2,解得x =5, 即菱形的边长为5.(9分)②在Rt △ABC 中,AC =AB 2+BC 2=45, ∴OA =12AC =2 5.在Rt△AOE中,OE=AE2-AO2=5,∴EF=2OE=2 5.(12分)24.(1)证明:∵DE⊥BC,∴∠DFB=90°.∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE.(2分)∵MN∥AB,∴四边形ADEC是平行四边形,∴CE=AD.(4分)(2)解:四边形BECD是菱形.(5分)理由:∵点D为AB的中点,∴AD=BD.∵CE=AD,∴BD=CE.∵BD∥CE,∴四边形BECD是平行四边形.(7分)∵∠ACB=90°,D为AB的中点,∴CD=BD,∴四边形BECD是菱形.(9分)(3)解:当∠A=45°时,四边形BECD是正方形.(10分)理由:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC.∵D为BA的中点,∴CD⊥AB,∴∠CDB=90°.(12分)由(2)知四边形BECD是菱形,∴四边形BECD是正方形.即当∠A=45°时,四边形BECD是正方形.(14分)第3章达标检测卷时间:120分钟满分:120分班级:__________姓名:__________得分:__________一、选择题(每小题3分,共30分)1.在平面直角坐标系中,点(1,5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.在平面直角坐标系中,下列各点位于第四象限的是()A.(-2,3) B.(2,3)C.(2,-3) D.(-2,-3)3.在平面直角坐标系中,点P(-3,4)关于x轴的对称点的坐标是()A.(-4,-3) B.(-3,-4)C .(3,4)D .(3,-4)4.已知点M (1-2m ,m -1)在第四象限,则m 的取值范围在数轴上表示正确的是( ) A. B. C.D.5.若点A (2,n )在x 轴上,则点B (n +2,n -5)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6.下列说法错误的是( )A .平行于x 轴的直线上的所有点的纵坐标相同B .平行于y 轴的直线上的所有点的横坐标相同C .若点P (a ,b )在x 轴上,则a =0D .(-3,4)与(4,-3)表示两个不同的点7.如图的象棋盘上,若“帅”位于点(1,-2)上,“象”位于点(3,-2)上,则“炮”位于点( ) A .(1,-2) B .(-2,1) C .(-2,2) D .(2,-2)第7题图 第10题图8.将点A (2,3)向左平移2个单位长度得到点A ′,点A ′关于x 轴的对称点是A ″,则点A ″的坐标为( ) A .(0,-3) B .(4,-3) C .(4,3) D .(0,3)9.已知△ABC 顶点的坐标分别是A (0,6),B (-3,-3),C (1,0),将△ABC 平移后顶点A 的对应点A 1的坐标是 (4,10),则点B 的对应点B 1的坐标为( )A .(7,1)B .(1,7)C .(1,1)D .(2,1)10.如图,在平面直角坐标系中,半径长均为1个单位长度的半圆O 1,O 2,O 3…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2015秒时,点P 的坐标是( )A .(2014,0)B .(2015,-1)C .(2015,1)D .(2016,0) 二、填空题(每小题3分,共24分)11.第二象限内的点P(x,y)满足|x|=9,y2=4,则点P的坐标是________.12.如图,在平面直角坐标系中,点A的坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O′A′,则点A的对应点A′的坐标为________.第12题图第14题图13.若点P在第四象限,且到x轴、y轴的距离分别为3和4,则点P的坐标为________.14.如图是某学校的部分平面示意图,若综合楼在点(-2,-1),食堂在点(1,2),则教学楼所在点的坐标为________.15.已知点P1(a,3)和P2(4,b)关于y轴对称,则(a+b)2017的值为________.16.在平面直角坐标系xOy中,菱形ABCD的顶点A,B的坐标分别为(-3,0),(2,0),点D在y 轴上半部分,则点C的坐标是________.第16题图第17题图17.如图,点A,B的坐标分别为(1,2),(4,0),将△AOB沿x轴向右平移,得到△CDE,已知DB =1,则点C的坐标为________.18.平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形”.现有点A(2,5),B(-1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是____________________.三、解答题(共66分)19.(8分)已知平面内点M(x,y),若x,y满足下列条件,请说出点M的位置.(1)xy<0; (2)x+y=0; (3)xy=0.20.(8分)如图,若将△ABC顶点的横坐标增加4个单位长度,纵坐标不变,三角形将如何变化?若将△ABC顶点横坐标都乘-1,纵坐标不变,三角形将如何变化?21.(8分)下图标明了李华同学家附近的一些地方.(1)根据图中所建立的平面直角坐标系,写出学校、邮局的坐标;(2)某星期日早晨,李华同学从家里出发,沿着(-2,-1),(-1,-2),(1,-2),(2,-1),(1,-1),(1,3),(-1,0),(0,-1)的路线转了一下然后回家,写出他路上经过的地方;(3)连接他在(2)中经过的地点,你能得到什么图形?22.(8分)如图,正方形ABCD的边长为4,AD∥y轴,D(1,-1).(1)写出A,B,C三个顶点的坐标;(2)写出BC的中点P的坐标.23.(10分)如图,在平面直角坐标系中,A (a ,0),B (b ,0),C (-1,3),且⎪⎪⎪⎪a 2+b 3+(4a -b +11)2=0. (1)求a ,b 的值;(2)在y 轴的负半轴上存在一点M ,使△COM 的面积等于△ABC 面积的一半,求出点M 的坐标.24.(12分)已知A (0,1),B (2,0),C (4,3). (1)在坐标系中描出各点,画出△ABC ; (2)求△ABC 的面积;(3)设点P 在坐标轴上,且△ABP 与△ABC 的面积相等,求点P 的坐标.25.(12分)如图是一个在平面直角坐标系中从原点开始的回形图,其中回形通道的宽和OA的长都是1.(1)观察图形填写表格:(2)在图上将回形图继续画下去(至少再画出4个拐点);(3)说出回形图中位于第一象限的拐点的横坐标与纵坐标之间的关系;(4)观察图形,说出(3)中的关系在第三象限中是否存在?参考答案与解析一、1.A 2.C 3.B 4.B 5.D 6.C 7.B 8.A 9.C10.B 解析:点P 从原点O 出发,沿这条曲线向右运动,运当动时间为1秒时,点P 的坐标为(1,1);当运动时间为2秒时,点P 的坐标为(2,0);当运动时间为3秒时,点P 的坐标为(3,-1),当运动时间为4秒时,点P 的坐标为(4,0),根据图象可得移动4次图象完成一个循环.∵2015÷4=503……3,∴A 2015的坐标是(2015,-1).故选B.二、11.(-9,2) 12.(-1,3) 13.(4,-3) 14.(-4,1) 15.-1 16.(5,4) 17.(4,2) 18.(1,8)或(-3,-2)或(3,2) 解析:∵以O ,A ,B ,C 四点为顶点的四边形是“和点四边形”,①当C 为A ,B 的“和点”时,C 点的坐标为(2-1,5+3),即C (1,8);②当B 为A ,C 的“和点”时,设C 点的坐标为(x 1,y 1),则⎩⎪⎨⎪⎧-1=2+x 1,3=5+y 1,解得⎩⎪⎨⎪⎧x 1=-3,y 1=-2,即C (-3,-2);③当A 为B ,C 的“和点”时,设C 点的坐标为(x 2,y 2),则⎩⎪⎨⎪⎧2=-1+x 2,5=3+y 2,解得⎩⎪⎨⎪⎧x 2=3,y 2=2,即C (3,2).∴点C 的坐标为(1,8)或(-3,-2)或(3,2). 三、19.解:(1)因为xy <0,所以横纵坐标异号,所以M 点在第二象限或第四象限.(2)因为x +y =0,所以x ,y 互为相反数,点M 在第二、四象限的角平分线上. (3)因为xy=0,所以x =0,y ≠0,所以点M 在y 轴上且原点除外.20.解:横坐标增加4个单位长度,纵坐标不变,所得各顶点的坐标依次是A 1(1,3),B 1(1,1),C 1(3,1),连接A 1B 1,A 1C 1,B 1C 1,图略,整个三角形向右平移4个单位长度;横坐标都乘-1,纵坐标不变,所得各顶点的坐标依次是A 2(3,3),B 2(3,1),C 2(1,1),连接A 2B 2,A 2C 2,B 2C 2,图略,所得到的三角形与原三角形关于y 轴对称.21.解:(1)学校(1,3),邮局(0,-1).(2)商店、公园、汽车站、水果店、学校、娱乐城、邮局. (3)一只小船.22.解:(1)A (1,3),B (-3,3),C (-3,-1). (2)P (-3,1).23.解:(1)∵⎪⎪⎪⎪a 2+b 3+(4a -b +11)2=0, ∴⎩⎪⎨⎪⎧a 2+b 3=0,4a -b +11=0,解得⎩⎪⎨⎪⎧a =-2,b =3,∴a 的值是-2,b 的值是3.(2) 过点C 作CG ⊥x 轴,CH ⊥y 轴,垂足分别为G ,H . ∵A (-2,0),B (3,0), ∴AB =3-(-2)=5.(7分)∵点C 的坐标是(-1,3),∴CG =3,CH =1, ∴S △ABC =12AB ·CG =12×5×3=152,∴S △COM =154,即12OM ·CH =154,∴OM =152.又∵点M 在y 轴负半轴上,∴点M 的坐标是⎝⎛0,-24.解:(1)如图.(2)过点C 向x ,y 轴作垂线,垂足为D ,E .则四边形DOEC 的面积为3×4=12,△BCD 的面积为12×2×3=3,△ACE 的面积为12×2×4=4,△AOB 的面积为12×2×1=1.∴S △ABC =S 四边形DOEC -S △BCD -S △ACE -S △AOB =12-3-4-1=4.(3)当点P 在x 轴上时,△ABP 的面积为12AO ·BP =12×1×BP =4,解得BP =8,∴点P 的坐标为(10,0)或(-6,0);当点P 在y 轴上时,△ABP 的面积为12×BO ×AP =12×2×AP =4,解得AP =4,∴点P 的坐标为(0,5)或(0,-3).综上所述,点P 的坐标为(0,5)或(0,-3)或(10,0)或(-6,0). 25.解:(1)(2)如图.(3)第一象限内的拐点的横坐标与纵坐标相等. (4)存在.第4章达标检测卷时间:120分钟 满分:120分班级:__________ 姓名:__________ 得分:__________一、选择题(每小题3分,共30分) 1.下列函数是正比例函数的是( ) A .y =-2x +1 B .y =x3C .y =2x 2D .y =-3x2.一次函数y =2x +4的图象与y 轴交点的坐标是( ) A .(0,-4) B .(0,4) C .(2,0) D .(-2,0)3.若点A (2,4)在函数y =kx 的图象上,则下列各点在此函数图象上的是( ) A .(1,2) B .(-2,-1) C .(-1,2) D .(2,-4)4.直线y =-2x +b 与x 轴的交点坐标是(2,0),则关于x 的方程2x -b =0的解是( ) A .x =2 B .x =4 C .x =8 D .x =105.对于函数y =-13x -1,下列结论正确的是( )A .它的图象必经过点(-1,3)B .它的图象经过第一、二、三象限C .当x >1时,y <0D .y 的值随x 值的增大而增大6.函数y =xx -2的自变量x 的取值范围是( )A .x ≥0且x ≠2B .x ≥0C .x ≠2D .x >27.如果两个变量x ,y 之间的函数关系如图,则函数值y 的取值范围是( ) A .-3≤ y ≤3 B .0≤ y ≤2 C .1≤ y ≤3 D .0≤ y ≤3第7题图8.一次函数y =ax +1与y =bx -2的图象交于x 轴上同一个点,那么a ∶b 的值为( ) A .1∶2 B .-1∶2 C .3∶2 D .以上都不对9.若式子k -1+(k -1)0有意义,则一次函数y =(1-k )x +k -1的图象可能是( )10.早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回,两人相遇后,小刚立即赶往学校,妈妈回家,15分钟后妈妈到家,再经过3分钟小刚到达学校,小刚始终以100米/分的速度步行,小刚和妈妈的距离y(单位:米)与小刚打完电话后的步行时间t(单位:分)之间的函数关系如图,下列四种说法:①打电话时,小刚和妈妈的距离为1250米;②打完电话后,经过23分钟小刚到达学校;③小刚和妈妈相遇后,妈妈回家的速度为150米/分;④小刚家与学校的距离为2550米.其中正确的个数是()第10题图A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)11.已知函数y=(k-1)x+k2-1,当k________时,它是一次函数;当k=________时,它是正比例函数.12.已知一个函数,当x>0时,函数值y随着x的增大而减小,请写出这个函数表达式____________(写出一个即可).13.将直线y=2x+1向下平移3个单位长度后所得直线的表达式是____________.14.点A(-1,y1),B(3,y2)是直线y=kx+b(k<0)上的两点,则y1-y2________0(填“>”或“<”).15.一次函数的图象过点(0,3)且与直线y=-x平行,那么函数表达式是__________.16.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y米与时间x小时(0≤x≤5)的函数表达式为______________.17.现有A和B两家公司都准备向社会公开招聘人才,两家公司的招聘条件基本相同,只有工资待遇有如下的区别:A公司,年薪三万元,每年加工龄工资200元;B公司,半年薪一万五千元,每半年加工龄工资50元.试问:如果你参加这次招聘,从经济收入的角度考虑,你觉得选择________公司更加有利.18.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0),将△ABC沿x轴向右平移,当C点落在直线y=2x-6上时,线段BC扫过的区域面积为________.三、解答题(共66分)19.(10分)已知一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求k,b的值;(2)若一次函数y=kx+b的图象与x轴交点为A(a,0),求a的值.20.(10分) 直线P A是一次函数y=x+1的图象,直线PB是一次函数y=-2x+2的图象.求:(1)A,B,P三点的坐标;(2)四边形PQOB的面积.21.(10分)某商场促销期间规定,如果购买不超过50元的商品,则按全额收费,如果购买超过50元的商品,则超过50元的部分按九折收费.设商品全额为x元,交费为y元.(1)写出y与x之间的函数表达式;(2)某顾客在一次消费中,向售货员交纳了212元,那么在这次消费中,该顾客购买的商品全额为多少元?22.(12分)已知一次函数y =kx +b 的图象经过点A (0,2)和点B (-a ,3),且点B 在正比例函数y =-3x 的图象上.(1)求a 的值;(2)求一次函数的表达式并画出它的图象;(3)若P (m ,y 1),Q (m -1,y 2)是这个一次函数图象上的两点,试比较y 1与y 2的大小.23.(12分)如图,直线l 1与l 2相交于点P ,点P 横坐标为-1,l 1的表达式为y =12x +3,且l 1与y 轴交于点A ,l 2与y 轴交于点B ,点A 与点B 恰好关于x 轴对称.(1)求点B 的坐标; (2)求直线l 2的表达式;(3)若M 为直线l 2上一点,求出使△MAB 的面积是△P AB 的面积一半的点M 的坐标.24.(12分)为了更新果树品种,某果园计划购进A,B两个品种的果树苗栽植培育.若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种树苗所需费用y(元)与购买数量x(棵)之间存在如图的函数关系.(1)求y与x的函数表达式;(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量.请设计购买方案,使总费用最低,并求出最低费用.参考答案与解析一、1.B 2.B 3.A 4.A 5.C 6.A 7.D8.B 解析:∵两个函数图象相交于x 轴上同一个点,∴ax +1=bx -2=0,解得x =-1a =2b ,∴a b =-12,即a ∶b =-1∶2.故选B. 9.C 10.C 二、11.≠1 -112.y =-x +2(答案不唯一) 13.y =2x -2 14.> 15.y =-x +3 16.y =6+0.3x17.B 解析:分别列出第1年、第2年、第n 年的实际收入(元):第1年:A 公司30000,B 公司15000+15050=30050;第2年:A 公司30200,B 公司15100+15150=30250;第n 年:A 公司30000+200(n -1),B 公司:[15000+100(n -1)]+[15000+100(n -1)+50]=30050+200(n -1),由上可以看出B 公司的年收入永远比A 公司多50元.18.16 解析:如图.∵点A ,B 的坐标分别为(1,0),(4,0),∴AB =3.∵∠CAB =90°,BC =5,∴AC =4,∴A ′C ′=4.∵点C ′在直线y =2x -6上,∴2x -6=4,解得 x =5,即OA ′=5,∴CC ′=5-1=4.∴S ▱BCC ′B ′=4×4=16.即线段BC 扫过的面积为16.三、19.解:(1)由题意得⎩⎪⎨⎪⎧b =2,k +b =3,解得⎩⎪⎨⎪⎧k =1,b =2.(2) 由(1)得y =x +2.∵点A (a ,0)在y =x +2的图象上,∴0=a +2,即a =-2. 20. 解:(1)∵点A 是直线AP 与x 轴的交点,∴x +1=0,∴x =-1,∴A (-1,0). Q 点是直线AP 与y 轴的交点, ∴y =1,∴Q (0,1).又∵点B 是直线BP 与x 轴的交点, ∴-2x +2=0,∴x =1,∴B (1,0).解方程组⎩⎪⎨⎪⎧y =x +1,y =-2x +2,得⎩⎨⎧x =13,y =43,∴点P ⎝⎛⎭⎫13,43. (3) ∵A (-1,0),B (1,0), ∴AB =2,S △ABP =12×2×43=43,∴S 四边形OBPQ =S △ABP -S △AOQ =43-12×1×1=56.21.解:(1)当0≤x ≤50,y =x ;当x >50时,y =0.9x +5.(2)若y =212,则212=0.9x +5,∴x =230. 答:该顾客购买的商品全额为230元. 22.解:(1)∵B (-a ,3)在y =-3x 上,∴3=-3×(-a ),∴a =1.(2) 将A (0,2),B (-1,3)代入y =kx +b ,得⎩⎪⎨⎪⎧b =2,-k +b =3,∴⎩⎪⎨⎪⎧k =-1,b =2,∴y =-x +2, 画图象略.(8分)(3) ∵-1<0,∴y 随x 的增大而减小. ∵m >m -1,∴y 1<y 2.23.解:(1)当x =0时,y =12x +3=3,则A (0,3),而点A 与点B 恰好关于x 轴对称,所以B 点坐标为(0,-3). (2) 当x =-1时,y =12x +3=-12+3=52,则P ⎝⎛⎭⎫-1,52. 设直线l 2的表达式为y =kx +b ,把B (0,-3),P ⎝⎛⎭⎫-1,52分别代入 得⎩⎪⎨⎪⎧b =-3,-k +b =52,解得⎩⎪⎨⎪⎧k =-112,b =-3,所以直线l 2的表达式为y =-112x -3. (3) 设M ⎝⎛⎭⎫t ,-112t -3, 因为S △P AB =12×(3+3)×1=3,所以S △MAB =12×(3+3)×|t |=12×3,解得t =12或-12,所以M 点的坐标为⎝⎛⎭⎫12,-234或⎝⎛⎭⎫-12,-14. 24.解:(1)设y 与x 的函数表达式为y =kx +b ,当0≤x ≤20时,把(0,0),(20,160)代入y =kx +b ,得⎩⎪⎨⎪⎧0=b ,160=20k +b ,解得⎩⎪⎨⎪⎧k =8,b =0, ∴y 与x 的函数表达式为y =8x ;当x >20时,把(20,160),(40,288)代入y =kx +b ,得⎩⎪⎨⎪⎧20k +b =160,40k +b =288,解得⎩⎪⎨⎪⎧k =6.4,b =32, ∴y 与x 的函数表达式为y =6.4x +32.综上可知,y 与x 的函数表达式为y =⎩⎪⎨⎪⎧8x (0≤x ≤20),6.4x +32(x >20).(2) ∵B 种苗的数量不超过35棵,但不少于A 种苗的数量,∴⎩⎪⎨⎪⎧x ≤35,x ≥45-x ,∴22.5≤x ≤35. 设总费用为W 元,则W =6.4x +32+7(45-x )=-0.6x +347. ∵k =-0.6,∴W 随x 的增大而减小, ∴当x =35时,W 总费用最低,此时,45-x =10,W 最低=-0.6×35+347=326(元).即购买B 种树苗35棵,A 种树苗10棵时,总费用最低,最低费用为326元.第5章达标检测卷时间:120分钟 满分:120分班级:__________ 姓名:__________ 得分:__________一、选择题(每小题3分,共30分)1.小亮3分钟共投篮80次,进了64个球,则小亮进球的频率是( ) A .80 B .64 C .1.2 D .0.82.在一个样本中,50个数据分别落在5个小组内,第1,2,3,5小组数据的个数分别是2,8,15,5,则第4小组的频数是( )A .15B .20C .25D .303.对50个数据进行处理时,适当分组,各组数据个数之和与频率之和分别等于()A.50,1 B.50,50 C.1,50 D.1,14.一组数据共40个,分成5组,第1~4组的频数分别是10,5,7,6,第5组的频率是() A.0.15 B.0.20 C.0.25 D.0.305.小明统计了他家今年5月份打电话的次数及通话时间,并列出了如下频数分布表:则通话时间不超过15min的频率为()A.0.1 B.0.4 C.0.5 D.0.96.下列说法错误的是()A.在频数直方图中,频数之和为数据个数B.频率等于频数与组距的比值C.在频数分布表中,频率之和为1D.频率等于频数与样本容量的比值7.对我县某中学随机选取70名女生进行身高测量,得到一组数据的最大值为169cm,最小值为143cm,对这组数据整理时规定它的组距为5 cm,则应分组数为()A.5组B.6组C.7组D.8组8.如图是初一某班全体50位同学身高情况的频数直方图,则身高在160~165厘米的人数的频率是()A.0.36 B.0.46 C.0.56 D.0.69.某频数直方图中,共有A,B,C,D,E五个小组,频数分别为10,15,25,35,10,则直方图中,长方形高的比为()A.2∶3∶5∶7∶2 B.1∶3∶4∶5∶1C.2∶3∶5∶6∶2 D.2∶4∶5∶4∶210.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生.如图是某校三个年级学生人数分布扇形统计图,其中八年级人数为408人,表格是该校学生阅读课外书籍情况统计表.根据图表中的信息,可知该校学生平均每人读课外书的本数是()A .2B .3C .4D .5 二、填空题(每小题3分,共24分)11.抛硬币15次,有7次出现正面,8次出现反面, 则出现正面的频数是 ________.12.某次测验后,60~70分这组人数占全班总人数的20%,若全班有45人,则该组的频数为________. 13.一组数据分成了五组,其中第三组的频数是10,频率是0.05,则这组数据共有________个数. 14.40个数据分在四个组内,第一、二、四组中的数据分别为7,6,15个,则第三组的频率为________. 15.在相同条件下,对30辆同一型号的汽车进行耗油1升所行驶路程的试验,根据测得的数据画出频数直方图如图.在本次试验中,耗油1升所行驶路程在13.8~14.3千米范围内的汽车数量的频率为________.16.某校500名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如表(其中每个分数段可包括最小值,不包括最大值),结合表中的信息,可得测试分数在80~90分数段的学生有________名.17.经调查某村共有银行储户若干户,其中存款额在2万~3万元之间的储户的频率是0.2,而存款额为其余情况的储户的频数之和为40,则该村存款额在2万~3万元之间银行储户有________户.18.随着某综艺节目的热播,某问卷调查公司为调查了解该节目在中学生中受欢迎的程度,走进某校园随机抽取部分学生就你是否喜欢该综艺节目进行问卷调查,并将调查结果统计后绘制成如下不完整的统计表,则a -b =________.三、解答题(共66分)19.(10分)某中学进行体育测试,成绩按“优秀”“良好”“合格”“不合格”进行分类统计,成绩为四类的学生的频率依次为0.25,0.4,0.3,x,其中频率为x的频数为15.求这次体育测试中成绩为“优秀”“良好”“合格”的学生分别有多少人.20.(12分)未成年人思想道德建设越来越受社会的关注.某青少年研究机构随机调查了某校100名学生寒假所花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观,根据调查数据制成了如下的频数分布表(部分空格未填).(1)补全频数分布表;(2)研究机构认为应对消费在200元以上的学生提出勤俭节约的建议.试估计应对该校1000学生中多少名学生提出该项建议.21.(14分)为了增强学生的身体素质,教育部门规定学生每天参加体育锻炼的时间不少于1小时,为了了解学生参加体育锻炼的情况,抽样调查了900名学生每天参加体育锻炼的时间,并将调查结果制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)请补充这次调查参加体育锻炼时间为1小时的频数直方图;(2)求这次调查参加体育锻炼时间为1.5小时的人数;(3)这次调查参加体育锻炼时间的中位数是多少?22.(14分)某校为了了解全校学生上学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:。
湘教版八年级下册数学第1章《直角三角形》单元测试一.选择题、1.用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是()A.B.C.D.2.三角形三条高的交点一定在()A.三角形内部B.三角形外部C.三角形内部或外部D.三角形内部、外部或顶点3.下列说法中,正确的个数是()①斜边和一直角边对应相等的两个直角三角形全等;②有两边和它们的夹角对应相等的两个直角全角形全等;③一锐角和斜边对应相等的两个直角三角形全等;④两个锐角对应相等的两个直角三角形全等.A.4B.3C.2D.14.下列说法错误的是()A.两个面积相等的圆一定全等B.全等三角形是指形状、大小都相同的三角形C.斜边上中线和一条直角边对应相等的两直角三角形全等D.底边相等的两个等腰三角形全等5.如图,点A,B分别是∠NOP,∠MOP平分线上的点,AB⊥OP于点E,BC⊥MN于点C,AD ⊥MN于点D,则以下结论错误的是()A.AD+BC=AB B.∠AOB=90°C.与∠CBO互余的角有2个D.点O是CD的中点6.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A.M点B.N点C.P点D.Q点7.在直角三角形ABC中,∠C=90°,AB=8,CD是AB边上的中线,则CD=()A.3B.4C.5D.68.在△ABC中,若∠B与∠C互余,则△ABC是()三角形.A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形9.在△ABC中,AB=AC=4,∠B=30°,点P是线段BC上一动点,则线段AP的长可能是()A.1B.C.D.10.在Rt△ABC中,∠ACB=60°,DE是斜边AC的中垂线,分别交AB、AC于D、E两点.若BD=2,则AD的长是()A.3B.4C.5D.4.511.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为24,则BC的长为()A.18B.14C.12D.612.在Rt△ABC中,斜边上的中线CD=2.5cm,则斜边AB的长是()A.2.5cm B.5cm C.7.5cm D.10cm二.填空题1.如图所示:在△AEC中,AE边上的高是.2.如图,在Rt△ABC和Rt△DCB中,AB=DC,∠A=∠D=90°,AC与BD交于点O,则有△≌△,其判定依据是,还有△≌△,其判定依据是.3.如图所示在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥BA于E,AB=6厘米,则△DEB的周长是厘米.4.已知直角三角形一个角为55°,则这个三角形最小的角为.5.已知等腰三角形的底角为15°,腰长为8cm,则腰上的高为.6.若直角三角形斜边上的高和中线长分别是3cm和4cm,则它的面积是.三.解答题1.如图,在△ABC中,AD、AE分别是边BC上的中线和高,AE=2cm,S=1.5m2,求BC和△ABD DC的长.2.数学课上,老师给出了如下问题:已知:如图1,在Rt△ABC中,∠C=90°,AC=BC,延长CB到点D,∠DBE=45°,点F是边BC上一点,连结AF,作FE⊥AF,交BE于点E.(1)求证:∠CAF=∠DFE;(2)求证:AF=EF.经过独立思考后,老师让同学们小组交流.小辉同学说出了对于第二问的想法:“我想通过构造含有边AF和EF的全等三角形,因此我过点E作EG⊥CD于G(如图2所示),如果能证明Rt △ACF和Rt△FGE全等,问题就解决了.但是这两个三角形证不出来相等的边,好像这样作辅助线行不通.”小亮同学说:“既然这样作辅助线证不出来,再考虑有没有其他添加辅助线的方法.”请你顺着小亮同学的思路在图3中继续尝试,并完成(1)、(2)问的证明.3.如图,在直线MN上求作一点P,使点P到射线OA和OB的距离相等.(要求用尺规作图,保留作图痕迹,不必写作法和证明过程)4.如图,在△ABC中,BD是∠ABC的平分线,过点C作CE⊥BD,交BD的延长线于点E,∠ABC =60°,∠ECD=15°.(1)直接写出∠ADB的度数是;(2)求证:BD=AB;(3)若AB=2,求BC的长.5.已知,如图,等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D.(1)求证:BC AB.(2)求证:△ABC的面积为AB2.6.证明:直角三角形斜边上的中线等于斜边的一半.(要求画图并写出已知、求证以及证明过程)7.在等腰△ABC中,AB=AC,∠BAC=45°,CD是△ABC的高,P是线段AC(不包括端点A,C)上一动点,以DP为一腰,D为直角顶点(D、P、E三点逆时针)作等腰直角△DPE,连接AE.(1)如图1,点P在运动过程中,∠EAD=,写出PC和AE的数量关系;(2)如图2,连接BE.如果AB=4,CP,求出此时BE的长.。
湘教版八年级下册数第一章-直角三角形-同步基础练习姓名:________ 班级:________ 成绩:________一、单选题1 . 如图,∠MON=90°,OB=4,点A是直线OM上的一个动点,连结AB,作∠MAB与∠ABN的角平分线AF与BF,两条角平分线所在的直线相交于点F,则点A在运动过程中线段BF的最小值为()A.4B.C.8D.22 . 如图,在△ABC中,E,D分别是边AB,AC上的点,且AE=AD,BD,CE交于点F,AF的延长线交BC于点H,若∠EAF=∠DAF,则图中的全等三角形共有()A.4对B.5对C.6对D.7对3 . 用下列图形不能进行平面镶嵌的是()A.正三角形和正四边形B.正三角形和正六边形C.正四边形和正八边形D.正四边形和正十二边形4 . 下列判断正确的是()A.等腰三角形的角平分线、中线和高线互相重合;B.有一个角是60º的等腰三角形,其它两个内角也为60ºC.等腰三角形的各角都是锐角.D.直角三角形不可能是等腰三角形5 . 下列说法中正确的有多少个()①等边三角形是等腰三角形;②正五边形有五条对称轴;③等腰三角形的一边长为4,另一边长为9,则它的周长是17或22;④等腰三角形的一个角是80°,则另外两个角的分别是80°,20°或50°,50°A.4个B.3个C.2个D.1个6 . AD是△BAC的角平分线,过D向AB、AC两边作垂线,垂足为E、F,则下列错误的是()A.DE=DF B.AE=AF C.BD=CD D.∠ADE=∠ADF7 . 下列说法:①等腰三角形的两底角相等;②角的对称轴是它的角平分线;③成轴对称的两个图形中,对应点的连线被对称轴垂直平分;④全等三角形的对应边上的高相等;⑤在直角三角形中,如果有一条直角边长等于斜边长的一半.那么这条直角边所对的角等于30°.以上结论正确的个数()A.1个B.2个C.3个D.4个8 . 下列条件中,不能判定两个直角三角形全等的是()A.两条直角边对应相等B.斜边和一个锐角对应相等C.斜边和一条直角边对应相等D.一条直角边和一个锐角分别相等9 . 下列条件中,不能保证两个直角三角形一定全等的是()A.一个锐角和这个锐角的对边对应相等B.一个锐角和斜边对应相等C.一条直角边和斜边对应相等D.有两条边分别相等10 . 如图,Rt△ACB中,∠ACB=90°,O为AB的中点,AE=AO,BF=BO,OE=2,OF=3,则AB的长为()A.B.5C.8D.11 . 如图所示,△DEF是由△ABC经过平移得到的,若∠B=50°,∠C=75°,则∠D=_____,∠E=________.12 . 如图,在△ABC中,AB=AC,D,E,F分别在BC,AC,AB上的点,且BF=CD,BD=CE,∠FDE=α,则∠A的度数是_____度.(用含α的代数式表示)13 . 如图,已知,垂足点为,若,则=______________.14 . 如图,,交于,于,若,则等于_______15 . 如图,正方形ABCD中,AB=12,点E在边BC上,BE=EC,将△DCE沿DE对折至△DFE,延长EF交边AB 于点G,连接DG、BF,给出以下结论:①△DAG≌△DFG:②BG=2AG;③S△DGF=120;④S△BEF=,其中所有正确结论有:______.16 . 如图,已知为边延长线上一点,于交于,,,求的度数.17 . 已知:如图,∠ABC和∠ACB的平分线交于点O,EF经过点O且平行于BC,分别与AB,AC交于点E,A.(1)若∠ABC=50°,∠ACB=60°,求∠BOC的度数;(2)若∠ABC=a,∠ACB=b ,用a,b 的代数式表示∠BOC的度数.18 . 已知△ABC中,∠BAC=90°,AB=AC.(1)如图,D为AC上任一点,连接BD,过A点作BD的垂线交过C点与AB平行的直线CE于点E.求证:BD =AE.(2)若点D在AC的延长线上,如图,其他条件同(1),请画出此时的图形,并猜想BD与AE是否仍然相等?说明你的理由.参考答案一、单选题1、2、3、4、5、6、7、8、9、10、二、填空题1、2、3、4、5、三、解答题1、2、3、。
图4
4米3米
2015新湘教版八年级数学下册第一章直角三角形单元练习试题
一、选择题.填空题
1、等腰三角形顶角为120°,底边上的高为3,则腰长为_________ 2.△ABC 中,∠A:∠B:∠C=1:2:3,则△ABC 是_________ 3. 以下四组数中,不是勾股数的是( )
A.3,4,5
B.5,12,13
C.4,5,6
D.8,15,17 4.如图,一棵大树在一次强台风中于离地面3米处折断倒下,倒下
树尖部分与树根距离为4米,这棵大树原来的高度为__________米。
5.三角形中,到三边距离相等的点是( )
A.三条边的垂直平分线的交点
B.三条高的交点
C.三条中线的交点
D.三条角平分线的交点
6.等腰三角形腰长为13,底边长为10,则它底边上的高为 ________
7.如右图,Rt △ABC 中,∠C=90°,∠B=30°,AD 是∠BAC 的平分线, AD=10,则点D 到AB 的距离是_____________
8.如图,有一张直角三角形纸片,两直角边长AC =6 cm ,BC =8 cm , 将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则CD 等于_________ 10、三角形ABC 中,AB=AC=6,∠B=30°,则BC 边上的高AD=_________ 11.下列条件不能判定两个直角三角形全等的是( ) A.两条直角边对应相等 B.有两条边对应相等 C.一条边和一个锐角对应相等 D.两个锐角对应相
12.如图将一副三角板按如图所示的方式叠放,则角α= 。
13.若一个直角三角形的两边长分别是10、24,则第三边长为________。
14.在Rt △ABC 中,∠ACB =90°,D 是AB 的中点,CD =4 cm ,则AB =________ 15.直角三角形的两直角边分别为12和24,则斜边长为 , 斜边上的中线长为 ,斜边上的高为 。
16.在Rt △ABC 中,∠ACB =90°,∠A=30°,则a:b:c= 。
17.等边三角形的边长为4,则它的面积是 。
18.如图是一个三级台阶,它的每一级的长宽和高分别为20dm 、3dm 、2dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物, 则蚂蚁沿着台阶面爬到B 点最短路程是____________
19.如图,滑杆在机械槽内运动,∠ACB 为直角,已知滑杆AB 长2.5 m ,顶端A 在AC 上运动,量得滑杆下端 B 点距C 点的距离为1.5 m ,当端点B 向右移动0.5 m 时,滑杆顶端A 下滑 米。
20、直角三角形中一个锐角为30°,斜边和最小的边的和为12cm,则斜边长为 . 21、等腰直角三角形的斜边长为3,则它的面积为 .
22、在△ABC 中, ∠A: ∠B: ∠C=1:2:3,CD ⊥AB 于D,AB=a ,则DB 等于( )
23、等腰三角形一腰上的高等于该三角形一条边长度的一半,则其顶角为 . 24、长方体地面长为4,宽为3,高为12,那么长方体对角线的长是 . 25、在直角三角形ABC 中,∠ACB=90度,CD 是AB 边上中线,若CD=5cm,则AB=__________ 26、在直角三角形中,有一个锐角为52度,那么另一个锐角度数为 27、在直角三角形中,斜边及其中线之和为6,那么该三角形的斜边长为________.
28、在△ABC 中, ∠ACB=90 °,CE 是AB 边上的中线,那么与CE 相等的线段有_________,与∠A 相等的 角有_________,若∠A=35°,那么∠ECB= _________.
29、在直角三角形ABC 中,∠C=90°,∠BAC=30°,BC=10,则AB=________.
30、30、顶角为30度的等腰三角形,若腰长为2,则腰上的高__________,三角形面积是________
20
32
A
B
三、解答题
31.若a 、b 、c 为△ABC 的三边长,且a 、b 、c 满足等式()013)12(522
=-+-+-c b a 。
△ABC 是直角三角形吗?请说明理由。
32.如图,点B ,E ,C ,F 在同一直线上,∠A=∠D=90°,BE=FC ,AB=DF 。
求证:∠B=∠F 。
33.(10分)已知:如图,AB =AC ,点D 是BC 的中点,AB 平分∠DAE ,AE ⊥BE ,垂足为E 。
求证:AD =AE 。
.
34.(12分)如图,已知长方形ABCD 中AB=8cm,BC=10cm,在边CD 上取一点E ,将△ADE 折叠使点D 恰好 落在BC 边上的点F ,求CE 的长.
E
C
D F
B
A
35.(12分)已知:如图,为了躲避海盗,一轮船一直由西向东航行,早上8点,在A
处测得小岛P 的方向是北偏东75°,以每小时15海里的速度继续向东航行,10点到达B 处,并测得小岛P 的方向是北偏东60°,若小岛周围25海里内有暗礁,问该轮船是否能一直向东航行?
36.(9分)如图,点P 是∠AOB 的角平分线上的一点,过P 作PC ∥OA ,交OB 于点C ,若∠AOB =60°, OC =4。
求点P 到OA 的距离PD 。
(提示:过点C 点作CE ⊥OP 于点E 点 )
37.如图,在△ABC 中,∠B=∠C ,D 、E 分别是BC 、AC 的中点,AB=6,
求DE 的长。
38、已知:△ABC 中,AB=AC=BC (△ABC 为等边三角形)D 为BC 边上的中点, DE ⊥AC 于E.求证:AC CE 4
1
.
北
60°
B 75
东 P
A
E D C B A
39、已知:如图AD ∥BC ,且BD ⊥CD ,BD=CD ,AC=BC. 求证:AB=BD
40、已知如图,AE ⊥ED ,AF ⊥FD ,AF=DE ,EB ⊥AD ,FC ⊥AD ,垂足分别 为B 、C.试说明
EB=FC.
41、如图3,AD 是ΔABC 的中线,DE ⊥AB 于E ,DF ⊥AC 于F ,且BE=CF , 求证:(1)AD 是∠BAC 的平分线 (2)AB=AC
42、△ABC 中,∠BAC=2∠B ,AB=2AC ,AE 平分∠CAB 。
求证:AE=2CE 。
A B
C
12
E
F
图3
D。