第十一章全等三角形复习建议
- 格式:doc
- 大小:73.50 KB
- 文档页数:4
11.1课题:全等三角形学习目标: 1、了解全等形及全等三角形的概念。
知识目标 2、理解掌握全等三角形的性质。
3、能够准确辩认全等三角形的对应元素。
情感目标 1、在图形变换以用操作的过程中发展空间观念,培养几何直觉。
2、在观察发现生活中的全等形和实际操作中获得全等三角形的体验。
3、在探究和运用全等三角形性质的过程中感受到数学活动的乐趣。
学习重点:探究全等三角形的性质学习难点:掌握两个全等三角形的对应边、对应角的寻找规律,迅速正确指出两个全等三角形的对应元素。
学习过程:一、小组思考1观察思考:每组的两个图形有什么特点?(1(2)(3)讨论结果:____________________________________________________________________ ______________________________________________________________________________ 2举现实生活中能够完全重合的图形的例子总结:能够完全重合的两个图形叫做3观察下面两组图形,它们是不是全等形?并指出它们的相同点与不同点。
(1)(2它们的相同点_________________________________________________________________ 不同点________________________________________________________________________ 由此得全等形它有什么样的特征呢?全等形的特征:____________________________________________________________4动一动:既然只要保证形状大小相同就可以得到全等形,那么请同学们在纸板上动手做两个全等的三角形,并把它们取下来。
二、学习新课1看图片B C B’C’填空互相重合的顶点叫做_________互相重合的边叫做_________互相重合的顶点角叫做_________现在请同学认真观察指出图中的对应顶点、对应边、对应角。
MF ECB A人教版第11章复习一、学习目标1、掌握三角形全等的判定方法,利用三角形全等进行证明,掌握综合法证明的格式.2、能用尺规进行一些基本作图.能用三角形全等和角平分线的性质进行证明。
3、极度热情、高度责任、自动自发、享受成功。
二、重点难点教学重点:用三角形全等和角平分线的性质进行证明有关问题 教学难点: 灵活应用所学知识解决问题,精炼准确表达推理过程 三、合作本章知识结构梳理三角形⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧判定:(性质:(角的平分线直角三角形一般三角形)判定方法()性质:()定义:(全等三角形定义)2)1321 四、精讲精练1、精讲例题1、如图:AB=AC ,ME ⊥AB ,MF ⊥AC ,垂足分别为E 、F ,ME=MF 。
求证:MB=MC例题2、已知,△ABC 和△ECD 都是等边三角形,且点B ,C ,D 在一条直线上求证:BE=AD例题3、已知∠B=∠E=90°,CE=CB ,AB ∥CD. 求证:△ADC 是等腰三角形例题4、已知:如图,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,EDCABE D CBA 4 321 EDC BAG FE DCBADB=DC , 求证:EB=FC例题5、如图,已知AC ∥BD ,EA 、EB 分别平分∠CAB 和∠DBA ,CD 过点E ,求证AB=AC+BD2、精练1、如图:在△ABC 中,∠C =90°,AD 平分∠ BAC ,DE ⊥AB 交AB 于E ,BC=30,BD :CD=3:2,则DE= 。
2、如图,已知E 在AB 上,∠1=∠2, ∠3=∠4,那么AC 等于AD 吗?为什么?3、如图,已知,EG ∥AF ,请你从下面三个条件中,再选出两个作为已知条件,另一个作为结论,推出一个正确的命题。
(只写出一种情况)①AB=AC ②DE=DF ③BE=CF已知:EG ∥AF ,________,__________求证:_________A CE BD4、如图,在R△ABC中,∠ACB=45°,∠BAC=90°,AB=AC,点D是AB的中点,AF⊥CD于H交BC 于F,BE∥AC交AF的延长线于E,求证:BC垂直且平分DE.3、能用尺规进行下面几种作图1、已知三边作三角形2、作一个角等于已知角3、已知两边和它们的夹角作三角形4、已知两角和它们的夹边作三角形5、已知斜边和一直角边作直角三角形6、作角的平分线五、课堂小结学习全等三角形应注意以下几个问题(1):要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3):要记住“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4):时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”六、作业必做:课本26页复习题11第2、5、6、8、9题;选做:27页10-12题。
初二上册数学全册.第十一章全等三角形综合复习1. 全等三角形的概念及性质;2. 三角形全等的判定;3. 角平分线的性质及判定。
知识点一:证明三角形全等的思路通过对问题的分析,将解决的问题归结到证明某两个三角形的全等后,采用哪个全等判定定理加以证明,可以按下图思路进行分析:⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩SAS SSSHL AAS SAS ASAAAS ASA AAS 找夹角已知两边找第三边找直角边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一对边切记:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。
. 例1. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。
求证:ACF BDE ∆≅∆。
知识点二:构造全等三角形 例2. 如图,在ABC ∆中,BE 是∠ABC 的平分线,AD BE ⊥,垂足为D 。
求证:21C ∠=∠+∠。
例3. 如图,在ABC ∆中,AB BC =,90ABC ∠=。
F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接,AE EF 和CF 。
求证:AE CF=。
知识点三:常见辅助线的作法..1. 连接四边形的对角线例4. 如图,AB //CD ,AD //BC ,求证:AB CD =。
2. 作垂线,利用角平分线的知识..例5. 如图,,AP CP 分别是ABC ∆外角MAC ∠和NCA ∠的 平分线,它们交于点P 。
求证:BP 为MBN ∠的平分线。
例6. 如图,D 是ABC ∆的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ∆的中线。
求证:2AC AE =。
4. “截长补短”构造全等三角形.例7. 如图,在ABC ∆中,AB AC >,12∠=∠,P 为AD 上任意一点。
第十一章 全等三角形 全等三角形小结与复习考点呈现考点一 全等三角形的概念和性质例1 下列命题:①形状相同的三角形是全等三角形;②面积相等的三角形是全等三角形;③全等三角形的对应边相等,对应角相等;④经过平移得到的三角形与原图形是全等形.其中正确的命题有 ( ) A. 1个 B. 2个 C. 3个 D. 4个解析:全等三角形是指两个完全重合的三角形,不仅形状相同,大小也相同,两者缺一不可.互相重合的边叫做对应边,互相重合的角叫做对应角,平移、翻折、旋转不改变图形的大小与形状,所以③④正确.故选B.点评:本题主要考查了全等三角形的概念和性质,注意把一个图形平移、旋转、折叠后得到的图形与原来的图形全等.例2 如图1,D E ,分别为ABC △的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若︒=∠64CDE ,则ADP ∠等于 ( )A .42°B .48°C .52°D .58°解析:由题意知△C DE ≌△PDE ,所以︒=∠=∠64CDE PDE ,则︒=︒-︒-︒=∠-∠︒=∠526464180-180PDE CDE ADP .故选C.点评:本题以折叠为背景,主要考查全等三角形的性质,运用全等三角形的对应角相等结合平角的概念解决问题.考点二 三角形全等的判定例3 (2010年四川巴中)如图2,AB = AC ,要说明△ADC ≌△AEB ,需添加的条件 不能是 ( )A .∠B =∠C B. AD = AE C .∠ADC =∠AEB D. DC = BE解析:已知AB =AC ,还有一个公共角∠A ,具备了一边一角的条件,可根据“SAS ”添加AD =AE ;可根据“ASA ”添加∠B =∠C ;可根据“AAS ”添加∠ADC =∠AEB ;若添加DC =BE ,则是 “SSA”不能判定两个三角形全等.故选D. 点评:本题目是一道条件开放型问题,判定三角形全等的方法有“SSS 、SAS 、AAS 、ASA ”,要根据已知条件添加一条边或一个角满足以上四个判定方法即可,但是需注意添加边时,不能构成“SSA ”的形式. 例4 (2010年四川凉山州)如图3,已知∠E =∠F =90°,∠B = ∠C ,AE =AF .有下列结论:①EM =FN ;②CD =DN ;③∠FAN = ∠EAM ;④△ACN ≌△ABM .其中正确的有 ( ) A.1个 B.2个 C.3个 D.4个解析:因为∠E =∠F =90°,∠B =∠C ,AE =AF ,所以△AEB ≌△AFC .所以AC =AB, ∠EAB =∠FAC .在△ACN 和△ABM 中,∠C =∠B ,AC =AB ,∠CAB =∠BAC ,所以△ACN ≌△ABM ,④正确;因为∠EAB =∠FAC ,所以∠EAB -∠CAB =∠FAC -∠CAB ,即∠EAM =∠FAN ,③正确;在△EAM 和△FAN 中,∠EAM =∠FAN ,AE =AF ,∠E =∠F =90°,所以△EAM ≌△FAN . 所以A EF B CD M NEM =FN ,①正确;由已知条件不能判断出CD =DN .故正确的有3个,应选C.点评:本题主要考查三角形全等的判定,求解时应同时从题设条件和图形出发,寻求三角形全等的条件,准确判定.考点三 运用三角形全等证明线段(或角)相等例5 (2010年呼和浩特)如图4,点A ,E ,F ,C 在同一条直线上,AD ∥BC ,AD =CB ,AE =CF .求证BE =DF .分析:要证明的两条线段BE 和 DF 分别为△CBE 和△ADF 中的边,可以考虑通过证明△ADF ≌△CBE 来解决.证明:∵ AD ∥BC ,∴ ∠A =∠C .∵ AE =FC , ∴ AF =CE .在△ADF 和△CBE 中,AD =CB ,∠A =∠C , AF =CE , ∴ △ADF ≌△CBE . ∴ BE =DF . 点评:如果要证明的两条线段分别是两个三角形的边时,通常可以尝试通过三角形全等进行证明.例6 (2010年北京,改编)如图5,点A ,B ,C ,D 在同一条直线上,EA ⊥AD ,FD ⊥AD ,EC =BF ,AB =DC .求证∠ACE =∠DBF .分析:要使∠ACE =∠DBF ,只要Rt △EAC ≌Rt △FDB 即可,两个三角形显然满足“HL ”.证明:∵ AB =DC , ∴ AC =DB .∵ EA ⊥AD ,FD ⊥AD , ∴ ∠A=∠D=90°.在Rt △EAC 和Rt △FDB 中,EC =FB ,AC =DB , ∴ Rt △EAC ≌Rt △FDB . ∴ ∠ACE =∠DBF .点评:注意“HL ”只适用于直角三角形,而“SSS 、SAS 、ASA 、AAS ”适用于所有的三角形.考点四 三角形全等的实际应用例7 (2010年广安)某学校花台上有一块形如图6所示的三角形ABC 地砖,现已破损.管理员要对此地砖测量后再去市场加工一块形状和大小与此完全相同的地砖来换,现只有尺子和量角器,请你帮他设计一个测量方案,使其加工的地砖能符合要求,并说明理由.解析:本题是要利用尺子和量角器测量得到的数据作一个三角形与△ABC 全等,根据全等三角形的判定可以有多种测量方案. 如:⑴用量角器分别量出∠A 、∠B 的大小;⑵用尺子量出AB 的长,根据这三个数据,按照原来的位置关系加工地砖.DOBA 点评:本题是一道方案设计问题,主要考查运用三角形全等解决实际问题的能力,具有一定的开放性,主要依据“SAS 、ASA 、AAS 、SSS ”设计测量方案.考点五 角的平分线的性质例8 有下列说法:①角的平分线上任意一点到这个角两边的距离相等;②到一个角两边距离相等的点在这个角的平分线上;③三角形三条角平分线的交点到三个顶点的距离相等;④三角形三条角平分线的交点到三边的距离相等.其中正确的有 ( )A. 1个B. 2个C. 3个D. 4个解析:由角的平分线的性质可知①②④正确.故选C.点评:解题时要注意用角的平分线的性质,不要总是用全等去证明.例9 (2010年曲靖)如图7,在Rt△ABC 中, ∠C =90°,若BC =10,AD 平分∠BAC 交BC 于点D ,且BD ︰CD =3︰2,则点D 到线段AB 的距离为_________. 解析:要求点D 到AB 的距离,过点D 作DE ⊥AB 于点E ,线段DE 长度即为所求. 因为AD 平分∠BAC ,所以DE =CD . 因为BD ︰CD =3︰2,所以4105252=⨯==BC CD .故DE =CD =4. 点评:解决本题的而关键是运用角的平分线的性质把求点D 到线段AB 的距离转化为求线段CD 的长度.误区点拨误区一 对“对应”二字理解不深、不透例1 已知两个直角三角形中,有一锐角相等,又有一边相等,说明这两个三角形是否全等.错解:这两个三角形全等.剖析:对全等三角形判定定理中的“对应边相等”没有理解,错把边相等当成对应边相等.正解:这两个三角形不一定全等,如图1,在Rt △ABC 与Rt △EDC 中,CD =AB ,∠1=∠2,∠C =∠C =90°,显然△ABC 与△EDC 不全等.误区二 臆造全等的判定方法例2 如图2,AC 和BD 相交点于O ,且C D ∠=∠, BC AD =.求证△DAB ≌△CBA . 错解:在△DAB 和△CBA 中,AD =BC ,AB =BA ,∠D =∠C ,所以△DAB ≌△CBA .剖析:“SSA ”不能判定三角形全等,属于臆造三角形全等的判定方法导致错误. 正解:在△ODA 和△OCB 中,∠D =∠C ,∠AOD =∠BOC ,AD =BC ,所以△ODA ≌△OCB . 所以OD =OC ,OA =OB .所以OD +OB =OC +OA ,即BD =AC .在△DAB 和△CBA 中,AD =BC ,∠D =∠C ,BD =AC ,所以△DAB ≌△CBA . 误区三 忽视图形的多种情况例3 已知△ABC 和△A ′B ′C ′中,AB =A ′B ′,AC =A ′C ′,若AD ,A ′D ′分别是BC ,B ′C ′边上的高,且AD =A ′D ′.问△ABC 与△A ′B ′C ′是否全等?如果全等,给出证明;如果不全等,请举出反例.错解:这两个三角形全等.证明如下:如图3,在Rt △ABD 和Rt △A ′B ′D ′中,因为E DCBAB DAB =A ′B ′,AD =A ′D ′,所以Rt △ABD ≌Rt △A ′B ′D ′. 所以BD =B ′D ′. 同理可得DC =D ′C ′,所以BC =B ′C ′.在△ABC 和△A ′B ′C ′中,因为AB =A ′B ′,AC =A ′C ′,BC =B ′C ′,所以△ABC ≌△A ′B ′C ′.剖析:这两个三角形不一定全等.当这两个三角形均为钝角(或锐角)三角形时全等;若一个是锐角三角形,一个是钝角三角形时就不可能全等.正解:这两个三角形不一定全等.如图4,虽有BD =B ′D ′,DC =D ′C ′,但BC ≠B ′C ′,因此这两个三角形不全等.跟踪训练1.如果NMQ ∆∆≌MNP ,且8cm MN =,7cm PN =,6cm PM =,则MQ 的长为 ( )A .cm 8B .cm 7C .cm 6D .cm 52.如图1,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC △≌△ 的是 ( )A .CB CD = B .BAC DAC =∠∠ C .BCA DCA =∠∠D .90B D ==︒∠∠3.如图2,BOP CPO ∠=∠,PC ∥OA ,4=PD ,则点P 到OB的距离是 ( )A .2B .3C .4D .5A B CD图1PODCB AA ′B ′C ′D ′ABC D图3A BC D图4A ′B ′D ′4.尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA ,OB 于C ,D ,再分别以点C ,D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP △≌△的根据是 ( )A .SASB .ASAC .AASD .SSS5.如果△ABC ≌△DEF ,△DEF 周长是32 cm ,DE=9cm ,EF=13 cm ,∠E=∠B , 则AC=____ cm.6.如图3,已知AD AB =,DAC BAE ∠=∠,要使ABC △≌ADE △,可补充的条件是 .(写出一个即可)7.如图4,ABE △和ACD △是ABC △分别沿着150BAC ∠=,则θ∠的度数是 .8.如图5,在Rt△ABC 和Rt △BAD 中,AB 为斜边,AC =BD ,BC ,AD 相交于点E .求证A D=BC .9. 如图6,在ABC ∆中,︒=∠90ACB ,BC AC =,CE BE ⊥,CE AD ⊥,垂足分别为E ,D ,且cm AD 5=,cm DE 3=,求BE 的长度.10. 如图7,正方形网格中有一个ABC △,请你在方格内画出满足条件1111A B AB BC BC ==,,1A A ∠=∠的所有的111A B C △,(形状相同算一个),并判断111A B C △与ABC △是否一定全等?你能够得到什么结ACE B D 图3CDA EBθ图4BA C图7论?跟踪训练参考答案1.B2.C3.C4.D5. 106.答案不唯一,如AC AE =或D B ∠=∠等 7.︒60 8.证明:在Rt △ABC 和Rt △BAD 中,AB =BA ,AC =BD , ∴ Rt △ABC ≌Rt △BAD . ∴ A D=BC .9.解:∵ ︒=∠90ACB , ∴ ︒=∠+∠90BCE ACD . ∵ CE BE ⊥,CE AD ⊥,∴ ︒=∠=∠90CEB ADC ,︒=∠+∠90CAD ACD . ∴ ∠CAD =∠BCE . ∵ BC AC =,∴ ACD ∆≌CBE ∆.∴ cm CE AD 5==,BE CD =. ∵ )(235cm DE CE CD =-=-=. ∴ cm BE 2=. 10.解:如图所示:ABC △与111A B C △不一定全等.结论:由两边及其中一边的对角对应相等的两个三角形不一定全等.BACB 1A 1C 1C 1B 1A 1。
初二全等三角形综合复习一、学习目标:1.复习全等形与全等三角形的看法、全等三角形的判判定理,以及角均分线的作图方法和角均分线的性质等知识,建立知识系统;2.使学生总结搜寻全等三角形及其全等条件的方法、归纳常有辅助线的作法,使学生掌握解析问题的方法,提升解题能力。
二、重点、难点:重点:将所学知识科学地组织起来,将其纳入已有的知识构造中。
难点:提升解析问题、解决问题的能力。
三、考点解析:全等三角形是初中几何的重要内容,也是数学中最基础的知识,是研究平面几何的重要工具。
近几年的中考数学试题中,经常将全等与其他知识结合在一起,观察学生综合运用数学知识解决问题的能力,形式多种多样,为全等这一传统的话题增添了奇特的味道。
1.全等三角形的看法及性质;2.三角形全等的判断;3.角均分线的性质及判断。
知识点一:证明三角形全等的思路经过对问题的解析,将解决的问题归纳到证明某两个三角形的全等后,采用哪个全等判判定理加以证明,可以按以下列图思路进行解析:已知两边找夹角找第三边SASSSS找直角HL边为角的对边找任一角AAS已知一边一角找夹角的另一边SASASA边为角的邻边找夹边的另一角找边的对角AAS找夹边ASA已知两角找任一对边AAS切记:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不用然全等。
例 1. 如图, A, F , E, B 四点共线,AC CE , BD DF , AE BF , AC BD 。
求证:ACF BDE 。
知识点二:构造全等三角形例 2. 如图,在ABC 中, BE 是∠ABC 的均分线,AD BE ,垂足为 D 。
求证:2 1 C 。
例 3. 如图,在ABC 中, AB BC ,ABC 90 。
F为AB延长线上一点,点E在BC上,BE BF ,连接AE, EF和 CF 。
求证: AE CF 。
思路解析:可以利用全等三角形来证明这两条线段相等,重点是要找到这两个三角形。
第十一章:全等三角形一、基础知识1.全等图形的有关概念 (1)全等图形的定义能够完全重合的两个图形就是全等图形。
例如:图13-1和图13-2就是全等图形图13-1图13-2 (2)全等多边形的定义两个多边形是全等图形,则称为全等多边形。
例如:图13-3和图13-4中的两对多边形就是全等多边形。
图13-3 图13-4(3)全等多边形的对应顶点、对应角、对应边两个全等的多边形,经过运动而重合,相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角。
(4)全等多边形的表示例如:图13-5中的两个五边形是全等的,记作五边形ABCDE ≌五边形A ’B ’C ’D ’E ’(这里符号“≌”表示全等,读作“全等于”)。
图13-5表示图形的全等时,要把对应顶点写在对应的位置。
(5)全等多边形的性质全等多边形的对应边、对应角分别相等。
A B DC E B ’A ’ C ’ D ’ E ’(6)全等多边形的识别多边形相等、对应角相等的两个多边形全等。
2.全等三角形的识别(1)根据定义若两个三角形的边、角分别对应相等,则这两个三角形全等。
(2)根据SSS如果两个三角形的三条边分别对应相等,那么这两个三角形全等。
相似三角形的识别法中有一个与(SSS)全等识别法相类似,即三条边对应成比例的两个三角形相似,而相似比为1时,就成为全等三角形。
(3)根据SAS如果两个三角形有两边机器夹角分别对应相等,那么这两个三角形全等。
相似三角形的识别法中同样有一个是与(SAS)全等识别法相类似,即一角对应相等而夹这个角的两边对应成比例的两个三角形相似,当相似比为1时,即为全等三角形。
(4)根据ASA如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。
(5)根据AAS如果两个三角形有两个角及其中一角的对边分别对应相等,那么这两个三角形全等。
3.直角三角形全等的识别(1)根据HL如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等。
《第十一章全等三角形》的教学建议一、木章的地位和作用学生已学过线段、角、相交线、平行线以及三角形的有关知识,七年级两册教科书中安排了一些说理的内容,这些为学习全等三角形的有关内容作好了准备。
通过本章的学习,可以丰富和加深学生对已学图形的认识,同吋为学习其他图形知识打好基础。
全等三角形是研究图形的重要工具,学生只有掌握好全等三角形的内容,并口能灵活地运用它们,才能学好后而的四边形、圆等内容。
从本章开始,要使学生理解证明的基本过程,掌握用综合法证明的格式。
这既是本章的重点,也是教学的难点。
同吋通过本章的学习,让学生初步掌握简单的尺规作图方法,进一步提高学生的几何作图能力和识图能力。
二、教学冃标1.了解全等形、全等三角形的概念和性质,会用符号表示两个三角形全等,能够准确地辨认全等三角形中的对应元素。
2.探索三角形全等的判定方法,能利用三角形全等进行证明和计算,掌握综合法证明的格式。
3.了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明。
三、本章的知识结构框图:对应边相等,对应角相等性f质全等形—空_> 全等三角形一喪_►解决问题____________SSS, SAS, ASA, A AS, HL四、课时安排11. 1全等三角形1课时11. 2三角形全等的条件6课时11. 3角的平分线的性质2课时数学活动小结2课时五、教学建议:(一)教学注意点1、找对应边、对应角的方法无论是运用全等三角形的性质,还是运用全等三角形的判定,都必须找准对应线段和对应角,实际上就是找准对应顶点。
教学时,结合具体图形使学生理解“对•应”的意义就可以了,让学生在实际操作屮归纳岀找对应边、对应角的方法,提高学生辨析图形的能力。
找対应边、对应角的方法有以下4个:(1)利用对应顶点两个三角形全等时,通常把表示对应顶点的字母写在对应的位置丄,那么我们就可以根据对应顶点去确定全等三角形的对应边和对应角了。
第十一章三角形章节复习教学设计一、教学目标:1.梳理本章的知识结构网络,回顾与复习本章知识.2.结合图形回顾本章知识点,复习几种基本的画图,复习简单的证明技巧,在此基础上进行典型题、热点题的较大量的训练,旨在提高同学们对三角形有关知识、多边形内角和、外角和知识综合运用能力.3.通过初步的几何证明的学习培养学生的推理能力,通过由特殊到一般的探究过程的训练培养学生的探索能力,创新能力,以达到培养学生良好学习习惯的目的.二、教学重点、难点:重点:三角形的三条重要线段、三角形的内角和、外角和、多边形的内角和、外角和等知识的灵活运用.难点:简单的几何证明及几何知识的简单应用.三、教学过程:知识网络知识梳理1.由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.线段AB,BC,CA是三角形的边.点A,B,C是三角形的顶点.∠A,∠B,∠C 是相邻两边组成的角,叫做三角形的内角,简称三角形的角.顶点是A,B,C的三角形,记作△ABC,读作“三角形ABC”.△ABC的三边,有时也用a,b,c来表示.顶点A所对的边BC用a表示,顶点B所对的边AC用b表示,顶点C所对的边AB用c表示.2.三角形的分类:3.三角形的三边关系:三角形的两边之和大于第三边,两边之差小于第三边.已知三角形的两边a、b(a>b),则第三边的范围“a-b<第三边<a+b”4.三角形的高、中线与角平分线:高:顶点与对边垂足间的线段,三条高或其延长线相交于一点,如图.中线:顶点与对边中点间的线段,三条中线相交于一点(重心),如图.三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段.三条角平分线相交于一点,如图.5.三角形的内角和与外角:(1)三角形的内角和等于180°;(2)直角三角形的两个锐角互余;(3)直角三角形的判定:有两个角互余的三角形是直角三角形;(4)三角形的一个外角等于与它不相邻的两个内角的和;(5)三角形的一个外角大于和它不相邻的任何一个内角.6.多边形及其内角和:(1)在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.正多边形是各个角都相等,各条边都相等的多边形.(2)从n边形的一个顶点出发,能引出(n﹣3)条对角线;(3)经过n边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形;(4)n边形一共有n(n-3)�条对角线.(5)n边形内角和等于(n-2)×180°(n≥3的整数)(6)n边形的外角和等于360°(7)正多边形的每个内角的度数是n n 180)2( 或n360180 (8)正多边形的每个外角的度数是n360考点解析考点一:三角形的三边关系例1.已知a 、b 、c 为△ABC 的三边长,且a 2+b 2=6a +10b ﹣34,其中c 是△ABC 中最长的边长,且c 为整数,求c 的值.解:∵a 2+b 2=6a +10b ﹣34,∴a 2﹣6a +9+b 2﹣10b +25=0,∴(a ﹣3)2+(b ﹣5)2=0,∴a =3,b =5,∴5﹣3<c <5+3,即2<c <8.又∵c 是△AB C 中最长的边长,∴c =5、6、7.例2.已知a,b,c 是△ABC 的三边长.(1)若a ,b ,c 满足,(a -b )2+�−�=0,试判断△ABC 的形状;(2)化简:�−�−�+�−�+�-�−�−�.解:(1)∵(a -b )2+|�−�|=0,∴(a -b )2=0且|�−�|=0,∴a =b =c ,∴△ABC 是等边三角形.(2)∵a ,b ,c 是△ABC 的三边长,∴b -c -a <0,a -b +c >0,a -b -c <0,原式=-(b -c -a )+a -b +c -[-(a -b -c )]=a +c -b +a -b +c -b -c +a=3a -3b +c.例3.已知a ,b ,c 分别为△ABC 三边的长,且满足a +b =3c -2,a -b =2c -6.(1)求c 的取值范围;(2)若△ABC 的周长为18,求c 的值.(1)解:∵a ,b ,c 分别为△ABC 三边的长,a +b =3c -2,a -b =2c -6,3-226c c c c>∴<∴解得2<c <6.(2)∵△ABC 的周长为18,a +b =3c -2,∴a +b +c =4c -2=18.解得c =5.【迁移应用】【1-1】下列长度的三条线段能组成三角形的是()A .3cm 、3cm 、6cmB .3cm 、5cm 、7cmC .2cm 、4cm 、6cmD .2cm 、9cm 、6cm答案:B【1-2】已知三角形的三边长分别为2,a -1,4,则化简|a -3|-|a -7|的结果为___________.答案:2a -10【1-3】已知a ,b ,c 是ABC 的三边长,a 、b 满足2|7|(2)0a b ,且ABC 的周长为偶数,则边长c 的值为多少?解:∵a ,b 满足|a −7|+(b −2)2=0,∴a −7=0,b −2=0,解得a =7,b =2,根据三角形的三边关系,得7−2<c <7+2,即:5<c <9,又∵三角形的周长为偶数,a +b =9,∴c =7.考点二:三角形中的重要线段例4.如图,在△AB C 中,∠ABC =40°,∠C =60°,AD ⊥BC 于D,AE 是∠BAC 的平分线.(1)求∠DAE 的度数;(2)指出AD 是哪几个三角形的高.解:(1)AD ⊥BC 于D,∴∠ADB =∠ADC =90°∵∠ABC =40°,∠C =60°,∴∠BAD =50,∠CAD =30°∴∠BAC =50°+30°=80°∵AE 是∠BAC 的平分线,∴∠BAE =40°.∴∠DAE=∠BAD-∠BAE=50°-40°=10°.(2)AD是△ABE、△ABD、△ABC、△AED、△AEC、△ADC的高.例5.如图,在△AB C中,AD是BC边上的中线,△ABD的周长比△ADC的周长多2,且AB与AC的和为10.(1)求AB、AC的长;(2)求BC边的取值范围.解:(1)∵AD是BC边上的中线,∴BD=C D.∵△ABD的周长-△ADC的周长=(AB+AD+BD)-(AC+AD+CD)=AB-AC=2,即AB—AC=2①.又AB+AC=10②,①+②得2AB=12,解得AB=6.∴AC=4.(2)∵AB=6,AC=4,∴2<BC<10.例6.如图,在△AB C中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF和△BEF的面积分别为S△ABC,S△ADF和S△BEF,且S△ABC=12,求S△ADF-S△BEF的值.解:∵点D 是AC 的中点,∴AD =12A C.∵S △ABC =12,∴S △ABD =12S △ABC =12×12=6.∵EC =2BE ,S △ABC =12,∴S △ABE =13S △ABC =13×12=4.∵S △ABD -S △ABE =(S △ADF +S △ABF )-(S △ABF +S △BEF )=S △ADF -S △BEF ,∴S △ADF -S △BEF =S △ABD -S △ABE =6-4=2.【点睛】三角形的中线将三角形分成面积相等的两部分;高相等时,面积的比等于底边的比;底相等时,面积的比等于高的比.【迁移应用】【2-1】如图,在△AB C 中,∠ACB =90°,CD ⊥AB 于D ,图中可以作为△ACD 的高的线段有()A .0条B .1条C .2条D .3条【2-2】如图,在△AB C 中,∠C =90°,D ,E 是AC 上两点,且AE =DE ,BD 平分∠EBC ,那么下列说法中不正确的是()A .BE 是△ABD 的中线B .BD 是△BCE 的角平分线C.∠1=∠2=∠3D.S△AEB=S△EDB【2-3】如图,在△AB C中,点D是BC上的一点,DC=2BD,点E是AC的中点,S△ABC=20cm2,则S△ADE=_____cm2.答案:【2-1】C;【2-2】C;【2-3】� �.考点三:有关三角形内、外角的计算例7.如图,AD平分∠BAC,∠EAD=∠ED A.(1)求证:∠EAC=∠B;(2)若∠B=50°,∠CAD∶∠E=1∶3,求∠E的度数.(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD=��∠BA C.∵∠EDA=∠B+∠BAD,∠EAD=∠CAD+∠EAC,∠EDA=∠EAD,∴∠EAC=∠B.(2)解:由(1)可知∠EAC =∠B =50°.设∠CAD =x ,则∠E =3x ,∠EAD =∠ADE =x +50°,∴50°+x +50°+x +3x =180°.∴x =16°.∴∠E =3x =48°.例8.如图,在△AB C 中,三条内角平分线AD ,BE ,CF 相交于点O ,OG ⊥BC于点G .(1)若∠ABC =40°,∠BAC =60°,求∠BOD 和∠COG 的度数;解:∠BOD =∠OAB +∠OBA12∠BAC +12∠ABC =50°,∠COG =90°-∠OCG=90°-12(180°-∠ABC -∠BAC )=90°-40°=50°.解:∠BOD =∠COG .理由如下:∵∠BOD =∠OAB +∠OBA12∠BAC +12∠ABC =12(180°-∠ACB )=90°-12∠ACB ,∠COG =90°-∠OCG =90°-12∠ACB ,∴∠BOD=∠COG.【迁移应用】【3-1】如图,点D在BC的延长线上,DE⊥AB于点E,交AC于点F.若∠A=35°,∠D=15°,则∠ACB的度数为()A.65°B.70°C.75°D.85°答案:B【3-2】一副三角板如图所示摆放,则∠α与∠β的数量关系为()A.∠α+∠β=180°B.∠α+∠β=225°C.∠α+∠β=270°D.∠α=∠β答案:B【3-3】如图,在△CEF中,∠E=80°,∠F=50°,AB∥CF,AD∥CE,连接BC,CD,则∠A的度数是_______.答案:50°,【3-4】一个锐角三角形,所有内角的度数均为正整数,且最小角是最大角的15则这个锐角三角形三个内角的度数为___________________.答案:17°、78°、85°考点4:多边形的内角和与外角和例9.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数.解:∵∠A+∠D+∠F=180°,∠B+∠C+∠E+∠G=360°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°+360°=540°.例10.一个多边形剪去一个内角后,得到一个内角和为1980°的新多边形,求原多边形的边数.解:设新的多边形的边数为n,∵新的多边形的内角和是1980°,∴180°×(n﹣2)=1980°,解得:n=13,∵一个多边形从某一个顶点出发截去一个角后所形成的新的多边形是十三边形,①若截去一个角后边数增加1,则原多边形边数为12,②若截去一个角后边数不变,则原多边形边数为13,③若截去一个角后边数减少1,则原多边形边数为14,∴原多边形的边数可能是:12或13或14.例11.如图,小明从A点出发,沿直线前进8米后向左转45°,再沿直线前进8米,又向左转45°……照这样走下去,他第一次回到出发点A时,共走路程为(C)A.80米B.96米C.64米D.48米【迁移应用】【4-1】把一个多边形纸片沿一条直线截下一个三角形后,变成一个十八边形,则原多边形纸片的边数可能是_______________________________.答案:十七边形或十八边形或十九边形【4-2】一个多边形少算一个内角,其余内角之和是1500°,则这个多边形的边数是()A.8B.9C.10D.11答案:D【4-3】如图,已知正五边形ABCDE,BG平分∠ABC,DG平分正五边形的外角∠EDF,则∠G=()A.36°B.54°C.60°D.72°答案:B考点六:本章中的思想方法:1.方程思想:例13.如图,在△AB C中,∠C=∠ABC,BE⊥AC,△BDE是等边三角形,求∠C的度数.解:设∠C=x°,则∠ABC=x°∵△BDE是等边三角形∴∠ABE=60°∴∠EBC=x°-60°∵BE⊥AC,∴∠BEC=90°在△BCE中,根据三角形内角和定理得90+x+x-60=180,解得x=75∴∠C=75°【点睛】在角的求值问题中,常常利用图形关系或内角、外角之间的关系进行转化,然后通过三角形内角和定理列方程求解.【迁移应用】如图,△AB C中,BD平分∠ABC,∠1=∠2,∠3=∠C,求∠1的度数.解:设∠1=x,根据题意得∠2=x.因为∠3=∠1+∠2,∠4=∠2,所以∠3=2x,∠4=x,又因为∠3=∠C,所以∠C=2x.在△AB C中,根据三角形内角和定理,得x+2x+2x=180°,解得x=36°,所以∠1=36°.2.分类讨论思想:例13.已知等腰三角形的两边长分别为10和6,则三角形的周长是________.【解析】由于没有指明等腰三角形的腰和底,所以要分两种情况讨论:第一种10为腰,则6为底,此时周长为26;第二种10为底,则6为腰,此时周长为22.【点睛】别忘了用三边关系检验能否组成三角形这一重要解题环节.3.化归思想:如图,△AOC与△BOD是有一组对顶角的三角形,其形状像数字“8”,我们不难发现有一重要结论:∠A+∠C=∠B+∠D.这一图形也是常见的基本图形模型,我们称它为“8字型”图.例14.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数.解:连接CD,由“8字型”模型图可知∠F+∠G=∠FCD+∠GDC,∴∠A+∠B+∠BCF+∠EDG+∠E+∠F+∠G=∠A+∠B+∠BCF+∠EDG+∠E+∠FCD+∠GDC=∠A+∠B+∠BCD+∠CDE+∠E=(5-2)×180°=540°.。
第十一章全等三角形复习建议
一、考纲要求:
1、能够在全等三角形中找到对应点、对应边、对应角;
2、会利用全等三角形的性质与判定方法证明线段相等、角相等;
3、会解决三角形中全等图形的计算问题;
4、会利用角平分线性质证明线段相等,知道三角形的角平分线交于一点,交点到
三边距离相等。
二、题型及命题思想:
1、考查基本计算知识,以填空题或选择题形式出现;
2、考查推理能力的证明题,单独或综合出现;
3、出现在运用知识能力的阅读题或探究性题型之中。
三、复习建议:
1、加强对概念、公理和定理的理解记忆;
2、注意分析证题思路,通过让学生模仿证明步骤,逐步掌握证题的方法;
3、加强对学生解题过程的规范化训练,增强学生的符号感;
4、全面培养学生的逻辑思维能力、分析问题和解决问题的能力。
注意:复习过程中基础的题目由学生自己做,课堂上着重针对一些学生掌握不好的知识点进行专题训练:
四、复习策略:
1.课时安排:2课时
基础复习:1课时;中档题:1课时
2.知识网络和知识点题型化
比如:(一)知识点回顾:
(1)全等三角形的性质_____________
(2)
(二)知识点题型化
(1)如图(1)F、C在线段BE上且∠DFE=∠ACB,BC=EF,使△ABC≌△DEF,需补充
的一个条件是__________。
(2)如图(2)在△AOB 与△COD 中,AC 、BD 交于点O ,AB ∥CD ,OA=OC,则△AOB ≌_______,理由__________。
(3)在横线上填一个适当的条件,使得命题是真命题,如图(3),若∠B=∠C, ____________,则△ABD ≌△ACE.
(4)能确定△ABC 与△A ´B ´C ´全等的是( ) A 、AC=A ´C ´ BC=B ´C ´ ∠B=∠B ´ B 、AC=A ´C ´ ∠A=∠A ´ ∠B=∠B ´ C 、AC=C ´B ´ ∠A=∠A ´ ∠B=∠B ´ D 、∠A=∠A ´ ∠B=∠B ´ ∠C=∠C ´
(5)如图(4),D 在AB 上,E 在AC 上且∠B=∠C 那么补充一个条件后,仍无法判定△ABE ≌△ACD 的是( )
A 、AD=AE
B 、∠AEB=∠AD
C C 、BE=C
D D 、AB=AC
B C
A
B
C
A
C
E
3、重视书写规范,应该说这是初中几何逻辑推理表达的最初级最佳训练内容。
4、抓基本图形
5、重能力提升
近年来,围绕全等三角形的知识,出现了许多能力考查题,主要有:
(1) 补充条件型
例 1. 如图1AD A D BC A B C BC B C ,分别是锐角和中、''''''∆A ∆边上的高,且
(1)
(4)
B
AB A B AD A D ABC A B C
==≅
'''''''
,,若使∆∆,请你补充条件_________________(只需填写一个你认为适当的条件)
图1
(2)探索结论
例2. 如图2,AB AD BC CD AC BD
==
,,、相交于E,请写出由这些条件可得的结论(不再添加辅助线,不再标注其他字母,不写推理过程)。
图2
(3)构造真命题
例3. 如图3,在△ABC和△A´B´C´中,∠=∠
A A CD C D
'''
,和分别是AB边和A B''边上的中线,再从以下三个条件:(1)AB A B AC A C
==
''''
;()
2;(3)CD C D
=''中任取两个为题设,另一个为结论,则最多可以构成___________个正确的命题。
(4)说明理由
例4. 如图4,D是等边∆ABC内一点,且BD=AD ,BP=AB,∠
=∠
DBP DBC
,问∠BPD的度数是否一定的,若是,求出它的度数,若不是,说明理由。
6、注重纠错:
(1)强调对应
策略:图形认识与强化,设置题目陷阱。
(2)在一个三角形中找三角形全等。
(3)SSA的错误应使学生思维不朝着这个错误方向发展。
图3
图4
(4)错把HL当成边角边定理使用。
(5)当引辅助线或识别全等三角形能力不足。
五、复习中要注意的问题
1.学习时不能眼高手低,不能只关注最后的结果,或者单一的死记硬背、机械模仿,要关注知识的
发生与形成过程,掌握知识点的内涵,更要明白其间的横向联系,既:真正的学会了数学,然后才能用数学去解决问题
2.避免繁难的几何论证题目。
注意从常见的几何图形中提出问题和猜想,通过对其运动变化的分析,
探索发现其内在的规律,并能用简单的逻辑推理来证明命题的正确性,从而增强学生解决问题的决心。
3.提高复习效率。
引导学生做一定的习题是必要的,但不是多多益善,要注意学生的消化与吸收,
注意问题后的反思,重视多解,一题多变,多题归一,在变化中把握问题的本质,注意问题后的拓展和反思。
4.加强用数学,做数学的意识。
操作探究型试题的训练,创造实验操作的情景,让同学们探索在图
形变化过程中,线段、角、三角形的位置或数量之间的关系,操作是理解题意的重要措施,正确做图是解题的关键,认真分析,大胆猜想,小心求证是解题的核心,特别是在展开与折叠、翻折、平移和旋转变换,图形割补包括图案设计等方面培养学生的动手操作能力,又通过动手操作来探究发现其中的规律
5.把握重点知识,凸现思想方法。
数学思想方法是对数学规律的理性认识,是数学的灵魂,掌握了
它就能驾御知识,形成能力,突出对数学思想方法的考察是近年来数学中考命题改革的另一个发展趋势。
以上只是我们学校复习中对全等三角形的具体作法.作为教师应站在知识系统的高度上,结合学校和学生的具体情况来制定相应的复习计划,调整复习内容,如有不当,欢迎批评指正.。