大型变压器油流带电现象(含测量方法)
- 格式:doc
- 大小:280.00 KB
- 文档页数:15
配电变压器常见故障分析判断及处理内容提要:配电变压器的安全运行管理工作是我们日常工作的重点,本文重点介绍变压器常见故障分析判断及处理方法,为同行们分析、判断、故障原因及故障的预防和处理提供一些依据。
关键词:变压器、故障分析、处理建筑电力用户通常采用的中小型电力变压器,他需要一个长期稳定的运行环境,正确维护电力变压器,对提高电力用户的供电可靠性具有很深远的意义。
要想正确有效的维护电力变压器正常运行,除掌握变压器的理论知识外,对运行中变压器经常出现的异常情况及故障也应具有准确的分析判断能力,从而为故障的预防和处理提供准确的依据。
一、电力变压器常见故障的分析判断电气工作人员可以随时通过对声音、振动、气味、变色、温度及其它现象的变化来判断变压器的运行状态,分析事故发生的原因、部位及程度。
从而根据所掌握的情况进行综合分析,结合各种检测结果对变压器的运行状态做出最后判断。
(一)直观判断1、声音正常运行时,由于交流电通过变压器绕组,在铁芯里产生周期性的交变磁通,引起电钢片的磁致伸缩,铁芯的接缝与叠层之间的磁力作用以及绕组的导线之间的电磁力作用引起振动,发出平均的“嗡嗡”响声。
如果产生不均匀响声或其它响声,都属不正常现象。
(1)若音响比平常增大而均匀时,则一种可能是电网发生过电压,另一种也可能是变压器过负荷,在大动力设备(如大型电动机),负载变化较大,因五次谐波作用,变压器内瞬间发出“哇哇”声。
此时,再参考电压与电路表的指示,即可判断故障的性质。
然后,根据具体情况改变电网的运行方式与减少变压器的负荷,或停止变压器的运行等。
(2)音响较大而噪杂时,可能是变压器铁芯的问题。
例如,夹件或压紧铁芯的螺钉松动时,仪表的指示一般正常,绝缘油的颜色、温度与油位也无大变化,这时应当停止变压器的运行进行检查。
(3)音响中夹有放电的“吱吱”声时,可能是变压器或套管发生表面局部放电。
如果是套管的问题,在气候恶劣或夜间时,还可见到电晕辉光或蓝色、紫色的小火花,此时应清除套管表面的脏污,再涂上硅油或硅脂等涂料。
变压器运行中常见异常及故障处理分析摘要:变压器因多元因素影响,在运行中不可避免出现异常及故障,若不及时进行处置可能会导致故障进一步扩大,严重甚至会导致变压器烧毁。
本文从变压器在使用过程中经常出现一些异常和故障现象进行分析,并对其进行正确判断和处理。
关键词:变压器;异常及故障;故障处理1变压器运行中常见异常及故障由于变压器结构比较复杂(变压器系统组成见图1),在不同工作环境下,存在着较大不确定性,所以变压器故障类型也是千差万别。
具体常见异常及故障如下:图1 变压器系统结构图1.1绕组绕组是变压器中重要组成部分,绕组断路、绕组短路、绕组变形,绕组过热等故障。
由于变压器种类繁多,绕组结构形式各异,在短路冲击下,绕组形变程度和性能也不尽相同。
线圈失效原因有:变压器绕组有毛刺、棱曲率半径较小等生产工艺上问题,或在检修时不能完全烘干,有杂质从变压器绕组中脱落,容易造成绕组短路。
绕组短路会造成油层不正常,严重时可达22 CH,极低或为0,绕组短路故障应立即处理,以免造成油压升高、油温升高、轻重瓦斯保护动作等,严重时变压器烧毁,造成停电事故。
在变压器受到雷电冲击、外部短路或冲击合闸时,品质较差焊点或引出导线与套管导杆之间接触会引起变压器在使用过程中因接头过热而引起局部绝缘恶化,严重时则可能引起绕组短路。
在发现绕组断线时,一般是在油箱中有沸水声音,直流电阻和空载电流等现象。
在变压器在遭受雷击或发生外部短路故障时,绕组发生不可逆变形,如鼓包、扭曲、位移等形。
其主要表现为绕组径向尺寸、轴向尺寸变化、变压器本体位移、变压器绕组扭曲、线圈鼓包、匝间短路等。
1.2铁心铁心起到变压器磁路作用,它可以传输和交换电磁能。
一般来讲,铁芯主要故障有三种:多点接地,接地不良,内部局部短路。
如有外来物质进入变压器箱,由于芯线张力不足,结构疏松,或者在箱体底部粘有油脂和湿气,铁芯容易发生多个接地。
此时,铁芯间非均匀电势会在接地点间形成环形电流,引起铁芯发热,变压器发生异响,铁芯绝缘电阻小于100 M,其特性气体甲烷和烯烃成分含量较高。
大型变压器出厂前的试验根据技术规范、最新版的IEC有关标准及其补充说明进行变压器试验,试验应出具详细记载测试数据的正式试验报告,并有招标方代表或第三方人员在场监试或见证,并提供变压器及其附件相应的型式试验报告和例行试验报告,同时执行下列要求。
1例行试验1.1绕组电阻测量测量所有绕组的直流电阻,对于带分接的绕组,应测量每一分接位置的直流电阻。
变压器绕组电阻不平衡率:相间应小于2%,三相变压器线间应小于1%。
即(RmaX-Rmin)‰e<2%(1%)1.2电压比测量和联结组标号检定应在所有绕组对间及所有分接位置进行电压比测量。
电压比允许偏差应符合GB1094.1中表1规定。
应检定变压器的联结组标号。
1.3短路阻抗及负载损耗测量1)短路阻抗测量。
应在各绕组对间,在主分接和最大、最小分接位置测量。
短路阻抗的允许偏差不能超过合同规定值,并在主分接位置进行低电流(例如5A)下的短路阻抗测量。
2)负载损耗测量。
负载损耗应在各绕组对间,在主分接和最大、最小分接位置上,按GB1094.1的方法进行测量。
所用互感器的误差和试验接线的电阻损耗(包括线损和表损)必须予以校正。
短路阻抗和负载损耗应换算到参考温度(75℃)时的值。
1.4空载损耗和空载电流测量在10%~115%的额定电压下进行空载损耗和空载电流测量,并绘制出励磁曲线。
空载损耗和空载电流值应按照GB1094.1中的方法进行测量,并予以校正。
提供空载电流和空载损耗。
1.5长时间空载试验在绝缘强度试验后,应对变压器施加1.1倍额定电压至少运行12h,然后进行与初次测量条件相同下的100%和110%额定电压的空载损耗和空载电流测量。
测量结果应与初次值基本相同。
1.6绕组连同套管的绝缘电阻测量每一绕组对地及其余绕组之间的绝缘电阻都要进行测量,测量时使用5000V 兆欧表。
吸收比(塌]不小于1.3或极化指数不小于1.5。
当极化指数或吸收比达不到规定值时,而绝缘电阻绝对值比较高(例如>10000MC),应根据绕组介质损耗因数等数据综合判断。
10kV配电变压器常见故障分析处理及防范对策摘要:在配网中,10kV配电变压器是极其重要的一次设备,其运行情况关系着居民安全平稳用电。
本文对于配电变压器常见的故障类型进行了归纳和原因分析,并对配电变压器的运检工作提出了相应的防范对策。
关键词:配电变压器;运行;故障;原因分析;对策1配电变压器常见故障类型及处理1.1声响异常1)声响较大而嘈杂时,可能是变压器铁芯的问题。
应停止变压器的运行,进行检查。
2)声响中夹有水的沸腾声和发出“咕噜咕噜”的气泡逸出声,这可能是绕组存在较严重的故障,其附近的零件严重发热而导致油气化造成的。
此时,应立即停止变压器运行,进行检修。
3)声响中夹有爆炸声且既大又不均匀时,可能是变压器的器身绝缘有击穿现象。
此时应将变压器停止运行,进行检修。
4)声响中夹有放电的“吱吱”声时,可能是变压器器身或套管发生表面局部放电。
此时,要停下变压器,检查铁芯接地与各带电部位对地的距离是否符合要求。
5)声响中夹有连续的、有规律的撞击或摩擦声,而各种测量表计指示和温度均无反应时。
此时,可能是变压器某些部件因铁芯振动而导致机械接触造成的,或者因为静电放电而引起异常响声。
这类响声虽然异常,但对运行无大危害,不必立即停止运行,可在计划检修时予以排除。
1.2温度异常变压器在负荷和散热条件、环境温度都不变的情况下,较原来同条件时温度高,并有不断升高的趋势,也是变压器温度异常升高的现象之一,与超极限温度升高同样是变压器故障象征。
运行时发现变压器温度异常,应先查明原因,再采取相应的措施予以排除,以把温度降下来。
如果是变压器内部故障引起的,应停止运行,进行检修。
1.3喷油爆炸喷油爆炸是变压器内部的故障短路电流和高温电弧使变压器油迅速老化,而继电保护装置又未能及时切断电源,使故障较长时间持续存在、箱体内部压力持续增长、高压油气从防爆管或箱体等强度薄弱之处喷出而形成的事故。
此时,应进行检修。
1.4严重漏油在变压器运行过程中,渗漏油现象比较普遍。
24胜利油田变电站主变压器(单台容量超过5000kVA)部分运行时间超过十年,胜利油田电力管理总公司现管辖180座变电站272台大型油浸变压器,渗漏油现象一直是油浸式变压器运行中常见问题,变压器本体密封面、瓦斯继电器、散热片与本体连接处等部位存在渗漏油,渗漏油问题如果不及时处理,将危机变压器的带负荷安全运行,发生主变压器事故将造成更大损失,公司针对变压器渗漏油多发生在绝缘套管、密封面、焊结缝等处这些问题进行技术攻关。
1 处理变压器套管发热现象油田某台主变压器的110kV侧套管发热3次,负荷分别在67,67,86MW,当时的月份在十月底和十一月初,外界环境温度都在10℃左右,但套管发热点的温度分别在100℃、120℃和91.5℃。
根据上述故障现象,对故障的分析初步认为:接线板和压盘顶端之间的接触不良,修试中心的人员打磨了触头,涂抹了导电膏。
但故障情况没有从根本上得到解决。
10天后故障情况再次出现,根据上次的处理经验,认为故障情况应该不是在佛手处,可能是压盘与主变出线之间的接触问题,打开压盘后,发现主变出线与压盘底部之间有放电的痕迹,而且压盘和主变出线之间主要靠内螺纹连接,修试中心人员打磨后,恢复了主变运行。
图1 主变出线接头与压盘的内部结构图运行一个月后,Ⅰ#主变本体110kV侧A相出线套管接头又出现发热的情况,主变此时所带的负荷为94.6MW,接头温度为86℃,此次测量温度与上次不同的地方在于测温工具更换了。
以前值班员利用的测温设备为RAYTEC RAYMX2C的测温仪,此种测温仪为点式测温仪,在近距离测温方面,指(2~3)米之内,测量值比较符合实际值;在远距离测温方面,虽然本产品在测温时,根据距离远近有一个修正系数,但从实际的测温情况看,衰减现象比较明显,而且难以准确定位发热点,在几次自己做的试验中,发现确实有此种情况存在。
本次测温的工具为LASER RADIATION T2型面测温仪,此种测温仪可以实现电脑自动找点,可以准确的测量出整个物体的平均温度、找出温度最高点,并测量出最高点的温度,而且修正系数较为准确,误差较小,图2为新式测温仪的温度测量保存图。
大型变压器油流带电现象一、油流带电现象在强迫油循环的大型电力变压器中,由于变压器油流过绝缘纸及绝缘纸板的表面时,会发生油流带静电现象,简称油流带电。
油流带电现象国内外均有发生,惕1989年报导,美国曾有12台大型变压器因油流带电现象而损坏。
我国曾于1992年对国产大型变压器质量进行过调查,调查结果表明,油流带电引发的静电放电是威胁国内大型变压器安全运行的重要因素之一。
东北电力科学院和沈阳变压器厂曾在制造厂内和电力系统中对500kV大型变压器进行油流带电的测试,在40台次的测试中,发现6台次(其中电力系统中的2台次,出厂试验4台次)由于油流带电引起变压器内部放电,其具体情况如表1--39所示。
表11-39 油流引起变压器内部放电的情况鉴于以上所述,大型变压器的油流带电现象已引起国内外电力部门和变压器制造业的广泛关注。
日本、美国、法国、瑞典、英国和波兰等很多国家早在70年代就投入大量人力、物力对油流带电问题开展研究。
近些年来,油流带电问题也引起我国的重视、变压器制造业、电力部门和有关高等偏校都在认真进行研究。
油流带电机理关于油流带电的机理目前尚有争论,现有的研究结果认为可以从油流的流动作用和交流电场的电动作用两方面来认识。
就油流的流动作用而言,比较普遍的看法是,变压器的固体绝缘材料(如绝缘纸和纸板)的化学组成是纤维素和木质素,其中纤维素带有羟基(-OH),木质素带有羟基、醛基(-CHO)和竣基(-COOH)。
在变压器油的不断流动下,油与绝缘纸板发生摩擦,使得这些基团发生电子云的偏移,即这样,纤维素和木质素分子就被-Hδ+的正电性所覆盖,绝缘纸板表面就如同覆盖着一层正极性的氢原子。
带正电性的-Hδ+对油中负离子具有较强的亲合作用,进而吸附油中负离子,并在油一纸界面上形成仍电层。
当变压器油以一定速度流动时,偶电层的电荷发生分离,负电荷仍附着在纸板表面,正电荷进入油中并随油流动,形成冲击电流,如图1--82所示。
这样,油就带正电,而纸板表面带负电。
随着油的循环流动,油中正电荷越积越多,当积聚到一程度就可能向绝缘纸板放电。
图1-82 电荷分离机理(a)油静止;(b)油流动交流电场的电动作用是指外加交流电场能大大加剧静电起电作用。
对电动作用机理,目前还远没有达到共识的程度。
测量油流带电倾向的方法和仪器据报导,目前国内外研究人员测量油流带电倾向的方法有循环直接法、循环注入法、流下法和旋转回金法等。
我国采用的方法如下:(一)循环注入法东北电力科学研究院应用循环注入法的测量装置如图1--83所示。
装置的静电发生器是一段包有皱纹纸和白布带的引线模型,使油在2mm间隙中循环流过引线模型的表面。
用循环泵使基准油以一定的温度和流速流过静电发生器。
测量绝缘表面的对地泄漏电流与时间关系,当测量带电倾向时,用注射器注入几十毫升的被试油样,这时泄漏电流有一变化量,根据泄漏电流波形变化求出带电倾向。
图1-83 循环注入法测量装置1-静电发生器;2-法拉第笼;3-绝缘法兰;4-循环管;5-循环泵;6-调速阀门;7-放油门;8-流量计;9-油箱;10-被试油样器;11-加热器;12-注射器;13-注油阀门;14-调控仪;15-静电计;16-记录仪例如,某500kV变电所C相电抗器油带电倾向测量结果如图1-84所示。
图中A点为基准油循环开始,B点为被试油样注入开始,C点为油样注入结束,根据B、C两点闪电流的变化量,计算出带电倾向。
已知测试装置纵坐标灵敏度为0.34nA/cm,根坐标灵敏度为cm,当温度为20℃,注入被试油样为70ml时,经计算带电倾向为q=0. 239 × 10-9× 3.0 × 1012=(μC/m3)图 1-84循环注入法测量泄漏电流与时间的关系曲线该装置的特点是:(1)可移动;(2)可调节温度和流速;(3)测带电倾向时可用较少的油样(几十毫升);(4)装置除了可测量带电倾向外,还可以用来测量不同油品流动电流与温度和流速的关系。
该装置的不足是:(1)装置所用的基准油量较多,约3000ml;(2)因油与固体绝缘接触表面较小,所以得到的泄漏电流也较小。
(二)流下法流下法是一种非循环式的油流带电倾向测量法。
其测量装置示意图如图1-85所示。
由图可见,它包括以下几个主要部分:图1-85 流下法测量带电倾向装置示意图1-油样容器;2-电荷发生器;3-收集荷电油样容器;4-绝缘台;5-记录器;6-法拉第筒;7-进油口;8-进气口;9-温度计;10-加热器(l)油样容器。
可用塑料或玻璃为材料制作,容积为200ml左右,其作用主要是存放油样,并使油样保持注入前的原始状态。
(2)电荷发生器。
即静电发生器,可用层压管或玻璃管内填满碎绝缘纸制成,内径为15mm左右,其主要作用是使油样流过其中时分离电荷。
试验证明,碎绝缘纸采用滤纸较好、它能产生较大的静电电流,使仪器测量灵敏度增加。
(3)收集荷电油样容器。
可用铝板制作,其容积应与油样容器相适应,能将带电的油全部收集在其中,以备测量。
(4)测量仪表。
主要是指微电流计,供测量收集荷电油样的容器对地的泄漏电流用,其最小灵敏度为0.05pA。
(5)记录器。
用于记录时间特性。
(6)绝缘台。
用聚四氯乙烯制作,其作用是将收集荷电油样的容器对地蔽绝缘起来,以免电荷泄放。
(7)法拉北筒,用金属材料制作,其作用是屏蔽外界干拢。
由于该装置具有操作简单、油样少、有标准的纸过滤器和电荷分离效率较高等优点,所以目前在国外获得广泛的应用。
不少国家应用该装置测定油中带电倾向,并积累了一定的经验。
例如,西屋公司根据运行经验,将运行中的变压器油中带电倾向控制在800μc/cm3之内,否则应更换和过滤油。
德国TU变压器厂根据该厂变压器多年运行经验,将运行中的变压器油中带电倾向控制在μc/cm3以下。
在我国,东北电力科学研究院和东北电力学院都用这种装置进行带电倾向的测量和研究。
(三)过滤式法其原理与流下法相似,原电力部电力科学研究院采用的测量装置示意图如图1-86所示。
它由压力供给、电荷发生器及测量等部分组成。
图1-86 过滤式法测量带电倾向装置示意图1-电荷发生器;2-阀门;3-注油器;4-夹子;5-橡皮塞;6-总阀门;7-供气管;8-空气压缩机;9-压力产生及控制;10-油容器;11-聚四氟乙烯绝缘板;12-微电流计(可接图形记录仪);13-法拉第屏蔽室当强迫使变压器通过一层滤纸时,就会发生电荷分离,过滤后的油带正电,滤纸上带负电。
应用微电流计可以测得滤纸上静电电荷形成的泄漏电流。
再用下式计算带电频向q=I/(V/T)式中q-带电倾向,μc/cm3;T-全部变压器油流过团体绝缘(滤纸)所需的时间;I-微静电计测出的静电电流平均值;V-所用变压器油的总容积。
该装置的特点是,其电荷分离过程能代表实际变压器中发生的油流带电现象,灵敏度较高,能获得较好的测试效果。
影响油流带电的主要因素(一)油流速度与温度的影响油流速度是最主要的影响因素。
油流速度增加,油流带电程度随之严重,通常认为在2~4倍的额定流速(平均流速)下,带电倾向较为明显。
例如,西北某水电厂的#1~#3主变压器油中乙炔、总烃含量超标,乙炔含量最高达30ppm,总烃最高达164PPm。
经测试和综合分析判断,认为#1~#3主变压器油中乙炔含量增高的重要原因是由于油流放电引起的。
为此将原来运行的4台潜油泵减少为3台,使油流速度降低,半年的监测表明:乙炔含量明显降低,并一直趋于稳定。
由于油流速度与温度有关,所以温度变化时,油流带电程度也随之变化。
图1--87示出了在不同流速下,绕组泄漏电流与温度的关系曲线。
由图可见,当油温在50~60℃之间时,油流所产生的泄漏电流达最大值。
通常,变压器恰工作在这样的温度范围,显然是不利的。
研究表明,油的流速在0.29m/s以下时,就不会发生放电现象,但为了安全要留有一定的格度。
(二)油流状态的影响油的流动分为层流和湍流,油流状态通常以雷诺数表示。
图l-88示出了油流状态(雷诺数)与泄电流的图1-87 不同流速下绕组泄漏电流与温度的关系图1-88 泄漏电流与雷诺数的关系关系。
从目中可以看出,当油流处在展流区时,泄漏电流与雷诺数成正比,且与温度有关。
而在湍流区,则与雷诺数的平方成正比。
从展流到湍流的过渡区域,由于油流极不稳定,电荷的分离与雷诺数的2~5次方成正比。
以层压纸管的油流来模拟油流的试验结果如图l-89所示。
A B C位置图1-89 在层压纸管模型中静电感应电流的分布由图可见:(1)在纸管的入油口油流极不稳定,属湍流状态,其泄漏电流最大。
(2)在纸管的出口处,也有类似的湍流效应。
在实际的变压器中,绕组下部的进油口附近区域属湍流状态,因此该区域油流带电程度严重。
(三)励孩对油流带电的影响图l-90所示为在一台实际的500kV单相自耦壳式变压器模型上进行不同励磁下测量静电泄漏电流的试验结果。
由图可知,泄漏电流随励孩电压升高而增大,且与油温有关,泄漏电流的峰值效应明显。
图1-90变压器励磁对泄漏电流的影响(四)油系对油流带电的影响当油泵突然起动时,由于油流的扰动,交界面的偶电展快速被油流分离,会使油很快增加到一个较高的起始带电度,频繁起动油泵会加剧这种现象。
因此油泵的起动和切断应该逐步进行。
此外,由于油泵本身的油流速度较高,很容易分离电行,在设计时,油泵大多是位于冷却器下部,油泵旋转时产生的电荷经油泵本体对地释放一部分,但有人认为,人释放量不够,会影响变压器内部的油流带电,因此有些设计作了改进,其目的是使油进/变压器之前,有一段较长的电荷释放距离。
(五)油中水分的影响油中水分含量对油的流动带电倾向有明显的影响。
随着油中微量水分的减小,油中的带电倾向将增加,从图1-91所示的9种美国产新绝缘油的含水量与电荷密度的关系曲线中可以看出,当怕中微水含量小于15PPm时,油中电行密度剧增。
这与油的种类也有关,电荷密度较高的是一种经水解处理后再用漂白土过滤的油种,电行密度较低的是一种经水解处理后再以溶剂革取的油种,两者的区别是前者无抑制剂,后者则添有抑制剂,也即抽中的其他物质对电荷密度会有一定的影响。
合格的大型变压器中的绝缘油徽水含量低(约10PPm),使得电荷的泄放困难,故运行中的大型电力变压器油流带电问题较严重。
由于温度的变化,水分在油和纸质材料问有一个连续的动态平衡过程,由于这个过程在连续变化。
这相当于液、固两态界面的电导率在连续变化,这也就直接影响了油流带电。
图1-91电荷密度与油含水量的关系(六)固体纸绝缘材料表面状态的影响固体纸质绝缘表面吸附电荷的能力,随着其表面的粗糙度增加而增加,即纸质材料表面的网状结构将直接影响电荷的分离。
变压器内所使用的各种固体绝缘材料,在油流流过时的带电量(带电电位)与其表面状态的关系如图1-92所示。