行程问题
- 格式:doc
- 大小:50.00 KB
- 文档页数:4
小学数学10种经典行程问题解法总结行程问题是小学数学应用题中的基本问题,它包含了简单的相遇及追及问题、多人相遇追及问题、多次相遇追及问题、流水行船问题、环形跑道问题、钟面行程问题、火车过桥问题、猎狗追兔问题等,但万变不离其宗。
行程问题是物体匀速运动的应用题。
不论是同向运动还是相向运动,最后反映出来的基本关系式都可以归纳为:路程=速度×时间。
要想解答行程问题,首先要弄清物体的具体运动情况,可以在纸上画出相应的运动轨迹,更方便观察思考。
以下是总结的10种经典行程问题的相关解法。
一、简单相遇及追及问题相遇问题:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)甲速或乙速=总路程÷相遇时间-乙速或甲速追及问题:距离差=速度差×追及时间追及时间=距离差÷速度差速度差=距离差÷追及时间速度差=快速-慢速相离问题:两地距离=速度和×相离时间相离时间=两地距离÷速度和速度和=两地距离÷相离时间二、流水行船问题(1)船速+水速=顺水速度(2)船速-水速=逆水速度(3) (顺水速度+逆水速度)÷2=船速(4) (顺水速度-逆水速度)÷2=水速两船在水流中的相遇问题与在静水中及两车在陆地上的相遇问题一样,与水速没有关系因为:甲船顺水速度+乙船逆水速度=(甲船速+水速) + (乙船速-水速)=甲船速+乙船速如果两只船在水流中同向运动,一只船追上另一只船的时间,也与水速无关因为:甲船顺水/逆水速度-乙船顺水/逆水速度=(甲船速+/-水速)-(乙船速+/-水速)=甲船速-乙船速三、环形跑道问题从同一地点出发(1)如果是相向而行,则每走一图相遇一次(2)如果是同向而行,则每追上一图相過一次四、多人相遇追及问题基本公式:路程和=速度和×相遇时间路程差=速度差×追及时间例题:有甲、乙、丙三人,甲每分钟走80米,乙每分钟走60米,丙每分钟走40米,现在甲从东端,乙、丙两人从西端同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇。
1、邮递员早晨7时出发送一份邮件到对面的山坳里,从邮局开始要走12千米的上坡路,8 千米的下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地后停留1小时,又从原路返回,邮递员什么时候可以回到邮局?【解析】去时:T=12/4+8/5=4.6小时返回:T’=8/4+12/5=4.4小时T总=4.6+4.4+1=10小时7:00+10:00=17:00整体思考:全程共计:12+8=20千米去时的上坡变成返回时的下坡,去时的下坡变成返回时的上坡因此来回走的时间为:20/4+20/5=9小时所以总的时间为:9+1=10小时 7:00+10:00=17:002、小明从甲地到乙地,去时每小时走6千米,回时每小时走9千米,来回共用5小时。
小明来回共走了多少千米?【解析】速度比=6:9=2:3时间比=3:2 3+2=5小时,正好S=6×3=18千米来回为18×2=36千米3、A、B两城相距240千米,一辆汽车原计划用6小时从A城开到B城,汽车行驶了一半路程,因故在途中停留了30分钟。
如果按照原定的时间到达B城,汽车在后半段路程速度应该加快多少?【解析】前半程开了3小时,因故障停留30分钟,因此接下来的路程需要2.5小时来完成V=120÷2.5=48千米/小时原V=240/6=40千米/小时所以需要加快:48-40=8千米/小时4、甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车。
【解析】 11-7=4分钟甲乙车的速度比=1:0.8=5:4 甲乙行的时间比=4:5=16:20 所以是在乙车出发后的16+11=27分钟追上甲车5、铁路旁的一条平行小路上,有一行人与一骑车人同时向南行进。
1. 甲乙二人同时从A城到B城,甲每小时行8千米,乙每小时行6千米,当甲到达B城时,乙离B城还有10千米,求A、B两地的距离。
2. 大车和小车同时从A城到B城,小车到底B城立即返回与大车相遇,如果小车时速50千米,大车每小时行30千米,两车从同时出发到相遇共用了6小时。
求AB两城的距离。
3. 甲乙二人在长300米的环形跑道上进行骑自行车比赛,甲车每分钟行500米,乙车每分钟行450米,多少分钟后两车再次相遇?4. 甲乙二人同时从相距120千米的AB两地相向而行,相遇后两人继续向前行驶,甲行到B 地后立即返回,刚好与乙同时到达A地,问甲从A地行到B地时乙行了多少千米?5. 大车和小车同时从AB两城相向而行,在距A城40千米处相遇,相遇后两车继续行到对方出发地后立即返回(1)在距B城20千米处再次相遇,求AB两城的距离(2)在距A城20千米处再次相遇,求AB两城的距离6. 甲乙两列火车在双轨铁路上相对而行,甲车每分钟行700米,乙车每分钟行300米,甲车长200米,乙车长150米,从两车车头相遇到车尾相遇经过了多少分钟。
7. 甲乙二人同时分别从相距2025米的AB两地相对而行,甲每分钟行60米,乙每分钟行65米,甲带着一只狗同行,狗每分钟跑100米,狗与乙相遇后又返回与甲相遇,在甲乙之间往返跑动。
当甲乙两人相遇时,狗跑了多少米?8. 两地相距100千米,大车和小车同时从两地相对而行,5小时相遇,如果大车速度是小车速度的3倍,求小车每小时行多少千米?9. 甲乙二人同时从AB两地相对而行,相遇后两人继续行到对方出发地立即返回,在途中两人再次相遇时共用了6小时,如果甲每小时行8千米,乙每小时行10千米,求AB的距离。
10. 甲乙二人同时从AB两地相对而行,相遇时甲比乙多行8.5千米,相遇后,甲行到B地并立即返回与乙同时到达A地,求AB两地的距离。
11. 一辆大车和一辆小车分别从甲乙两地同时出发,相向而行,小车开出后30分钟停车修理用了一小时,大车开出5小时正好在甲乙两地的中点与小车相遇,小车每小时行72千米,求甲乙两地相距多少千米?12. 甲乙二人同时从AB两地相对而行,5小时后相遇,相遇后甲再行3小时到达B地,这时乙离A地还有10千米,求AB两地相距多少千米?1. 大车和小车同时从A 城到B 城,当小车行了全程的14 时,大车行了全程的15,当小车到达B 城时,大车离B 城还有100千米,求AB 两地的距离。
5-4. 行程问题路程=速度×时间①相向(相遇)问题:甲走的路程+乙走的路程=两地距离②追及(同向)问题:第一,同地不同时出发:前者走的路程=追者走的路程;第二,同时不同地出发:前者走的路程+两地距离=追者所走的路程③环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。
④航行问题:基本量、基本数量关系:路程=速度×时间,顺水速=静水速+水速,逆水速=静水速-水速,寻找相等关系的方法:抓住两码头之间的距离不变,水流速度,船在静水中的速度不变的特点来考虑。
路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.例1.甲、乙两站相距580公里,一列慢车从甲站开出,每小时行100公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行.问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?例2.(环型跑道问题)一条环形跑道长400米,甲、乙两人练习赛跑,甲每分钟跑350米,乙每分钟跑250米。
(1)若两人同时同地背向而行,几分钟后两人首次相遇?变式:几分钟后两人二次相遇?(2)若两人同时同地同向而行,几分钟后两人首次相遇?又经过几分钟两人二次相遇?例3.(顺、逆水问题)一轮船往返A,B两港之间,逆水航行需3时,顺水航行需2时,水流速度是3千米/时,则轮船在静水中的速度是多少?例4.★★(错车问题)在一段双轨铁道上,两列火车同时驶过,A列车车速为18米/秒,B列车车速为16米/秒,若A列车全长180米,B列车全长160米,两列车错车的时间是多长时间?例5.(时钟问题)某人下午6点多钟外出买东西,看表上的时针与分针的夹角是110°,近7点钟返回时,发现时针与分针的夹角又是110°.则此人外出共用了多少时间?例6.某行军纵队以的速度行进,队尾的通讯员以的速度赶到队伍前送一封信,送到后又立即返回队尾,共用时。
行程问题应用题大全1. 题目:火车行程假设小明乘坐火车旅行,从A地出发到B地,全程需要3小时。
在途中,火车经过C地,小明在C地停留了20分钟。
请问小明在C地停留的时刻是多少?解析:假设小明在A地出发的时刻为t0,则到达B地的时刻是t0+3小时。
因此,在途中经过C地的时刻是(t0+3小时)/2,再加上停留的20分钟,则小明在C地停留的时刻为(t0+3小时)/2 + 20分钟。
2. 题目:飞机行程小红乘坐飞机旅行,从A地飞往B地,全程需要5小时。
飞机在途中经过C地,小红在C地停留了1小时20分钟,然后继续飞往B地。
请问小红在B地的时刻是多少?解析:假设小红在A地起飞的时刻为t0,则到达C地的时刻是t0+5小时。
在C地停留1小时20分钟后,小红再次起飞,需要飞行的时间是5小时。
因此,小红在B地的时刻是(t0+5小时)+1小时20分钟+5小时。
3. 题目:汽车行程假设小李乘坐汽车旅行,从A地出发到B地,全程需要6小时。
汽车在途中经过C地,小李在C地停留了45分钟。
请问小李在A地出发的时刻是多少?解析:假设小李在A地出发的时刻为t0,则到达C地的时刻是t0+6小时。
因此,小李在C地停留的时刻是(t0+6小时)+45分钟。
根据题目要求,我们需要求得小李在A地出发的时刻,即t0。
可以通过逆推的方法得到t0,即t0 = (t0+6小时)+45分钟-6小时。
4. 题目:步行行程小张步行旅行,从A地出发到B地,全程需要2小时。
在途中,小张在C地停留了30分钟。
请问小张在C地停留的时刻是多少?解析:假设小张在A地出发的时刻为t0,则到达B地的时刻是t0+2小时。
因此,在途中经过C地的时刻是(t0+2小时)/2,再加上停留的30分钟,则小张在C地停留的时刻为(t0+2小时)/2 + 30分钟。
5. 题目:骑行行程假设小王骑自行车旅行,从A地出发到B地,全程需要1小时30分钟。
自行车在途中经过C地,小王在C地停留了15分钟。
行程问题(一)姓名例1、甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
两人几小时后相遇?例2、东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲每小时行的路程是乙的2倍,3小时后两人相距56千米,两人速度各是多少?例3、王欣和陆良两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆良每分钟行90米,如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆良后,立即回头向王欣跑去,遇到王欣再向陆良跑去。
这样不断来回,直到王欣和陆良相遇为止,狗共行了多少米?例4、甲、乙两人在环形跑道上以各自的不变速度跑步,如果两人同时从同地相背而行,乙跑4分钟后两人第一次相遇,甲跑一周要6分钟,乙跑一周要多少分钟?例5、甲、乙两人骑车同时从东西两地相向而行,8小时相遇。
如果甲每小时少行1千米,乙每小时多行3千米,这样过7小时就可以相遇。
东西两地相距多少千米?例6、甲乙两车同时从东西两地相对开出,6小时相遇。
如果甲车每小时少行9千米,乙车每小时多行6千米,那么经过6小时后,两车已行路程是剩下路程的19倍。
东西两地相距多少千米?例7、甲乙两车同时从A、B两地相向而行,在距A地60千米处第一次相遇。
各自到达对方出发地后立即返回,途中又在距A地40千米处相遇。
A、B两地相距多少千米?1、甲乙两艘轮船分别从A、B两港同时出发而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两艘轮船途中相遇。
两地间的水路长多少千米?2、甲乙两车分别从相距480千米的AB两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从城到A城需12小时,两车出发后多少小时相遇?3、甲乙两队学生从相隔18千米的两地同时出发,相向而行。
一个同学骑自行车以每小时15千米的速度在两队间不停地往返联络。
甲队每小时行5千米,乙队每小时行4千米,两队相遇时,骑自行车的同学共行多少千米?4、小东和小刚两人在环形跑道上以各自不同的不变速度跑步,如果两人同时从同地相背而行,小刚跑6分钟后两人第一次相遇,小东跑一周要8分钟,小刚跑一周要几分钟?5、小明和小军分别从甲乙两地同时出发,相向而行。
行程问题练习题(一)、行程(时刻)问题类1、一个人骑自行车从甲地到乙地,如果每小时行走10千米,下午1点才能到达;如果每小时行15千米,上午11点就能到达。
要在中午12点到达乙地,他每小时要行多少千米?2、邮递员早晨7时出发送一份邮件到东村去,从邮局开始要走12千米上坡路,8千米下坡路,他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局。
(二)、行程(参数法)问题类。
3、小明从甲地去乙地,骑自行车走完全程的一半时,自行车坏了,又无法修理,只好推车步行到乙地,骑车速度是每小时12千米,步行时每小时行4千米,小明走完全程的平均速度是多少千米?4、一个人原计划骑自行车由甲地去乙地,后来改为前一半路乘汽车,后一半路步行,汽车速度是自行车2倍,步行速度是自行车一半,自行车速度为每小时10千米,求行这段路的平均速度。
5、学校组织秋游,同学们下午1点出发,走了一段平坦的路,爬了一座山,然后按原路返回,下战书7点回到学校,已知他们步行速率:高山4千米,上山3千米,下山6千米,他们一共走了多少路?(三)、相遇问题类6、甲乙两车同时从AB两地出发,相向而行,4小时相遇。
相遇后甲车继续行驶3小时到达B地,乙车每小时行24千米,问:AB两地相距多少千米?7、甲、乙两辆汽车的速率为每小时52千米和40千米,它们同时从甲地出发到乙地去,出发后6小时,甲车遇到一辆迎面开来的卡车,1小时后,乙车也遇到了这辆卡车,求这辆卡车的速度。
8、甲乙两人从相距36千米的两地相向而行,若甲先出发2小时,则在乙动身2.5小时后两人相遇;若乙先出发2小时,则甲动身后两人相遇,求甲、乙两人的速率。
(四)、相遇(时刻)问题类9、甲、乙两地间的铁路长800千米,某日上午5时30分从甲地开出一列快车,当日上午9时从乙地开出一列快车,两车相向而行,当日下战书4时30分相遇,快车每小时行48千米,慢车每小时行多少千米?10、甲乙两辆汽车早上8时分别从AB两城同时相向出发,到10时两车相距112.5千米,继续行进到下午1时,两车相距还是112.5千米,问:AB两地的距离是多少千米?11、一辆卡车和一辆大客车从相距320千米的两地相向开出,已知卡车每小时行45千米,大客车每小时行40千米,假如卡车上午8时开出,大客车要什么时候开出两车才能在正午12时相遇?(五)、相遇(中点)问题类12、甲、乙两车同时从AB两地相向而行,它们相遇时距AB两地中点处8千米,已知甲车速度是乙车的1.2倍,求AB两地的距离。
1.甲乙两车分别从AB两地同时出发相向而行,出发时,甲和乙的速度比是4:3,相遇后,甲的速度减少10%,乙的速度增加20%。
这样,当甲到达B地时,乙离A地还有17千米,那摩AB两地相距多少千米?【解答】后来的速度比是(4×0.9):(3×1.2)=1:1,所以甲行3/7,乙还离A地4/7-3/7=1/7,即AB两地相距17÷1/7=119千米。
2.从甲地到乙地全是山路,其中上山路程是下山路程的2/3,一辆汽车从甲地到乙地共行7小时,汽车上山速度是下山速度的一半,这辆这辆汽车从乙地返回甲地需要多少小时?【解答】上山速度看作1,下山速度看作2,去时下山路程是1,上山路程是2/3,返回时上山路程是1,下山路程是2/3,所以有7÷(1÷2+2/3÷1)×(2/3÷2+1÷1)=8小时。
3.甲乙两地,如果去时的速度提高25%,可比原定的时间提前6分钟到达,如果每小时少行10千米,则将多用1/3的时间才能到达,问两地的距离。
【解答】原定时间是6÷25%+6=30分钟,即1/2小时。
原定速度是10÷1/3+10=40千米,则两地之间的距离是40×1/2=20千米。
4.小丁骑自行车去小周家,先以12千米/小时的速度下山,然后又以9千米/小时的速度走过一段平路,到小周家共用了55分钟;后来时他用8千米/小时的速度通过平路,又以4千米/小时的速度上山回到了家,共用了90分钟,求小周家和小丁家的距离【解答】去时速度坡路12平路9,返回坡路4平路8,如果返回坡路4×3=12平路8×3=24用去90÷3=30分钟。
行平路速度9千米/时比24千米/时多用(55-30)÷60=5/12小时,所以平路的长度是5/12÷(1/9-1/24)=6千米,坡路就是(90/60-6/8)×4=3千米,两家相距6+3=9千米。
行程问题(一)相遇追及问题知识点1:路程=速度×时间2:路程和=速度和×相遇时间3:路程差=速度差×追击时间例1 甲、乙两人同时从两地出发相向而行,距离是1300米,甲每分钟行60米,乙每分钟行70米。
甲带着一只狗,狗每分钟行150米。
这只狗同甲一道出发,碰到乙的时候,它就掉头朝甲这边走,碰到甲时又往乙那边走…直到两人相遇,这只狗一共走了多少米?解析: 狗行走的时间与甲乙两人的相遇时间相同,用其速度乘其时间便可求解.1300÷(60+70)=10(分钟)150×10=1500(米)例2 两城相距400千米,两列火车同时从两城相对开出,5小时相遇,已知第一列火车的速度比第二列火车每小时快2千米,两列火车的速度各是多少?解析: 两车速度和为400÷5=80km/h,又知差为2km/h,则根据和差问题可求二者速度.提示:和差问题:大数=(和+差)÷2,小数=(和—差)÷2400÷5=80(km/h)(80+2)÷2=41(km/h)(80-2)÷2=39(km/h)例3 甲、乙两辆汽车同时从A、B两地相向而行,4小时后相遇。
相遇后甲车继续前行3小时到达B地,乙车继续以每小时24千米的速度前进,问A、B两地相距多少千米?解析:甲车行完全程用7小时,求得甲的速度就能求出全程.(24×4÷3)×(3+4)=224(km)例4 甲、乙两车分别从A、B两地同时相向而行。
甲车每小时行82千米,乙车每小时行72千米,两车在距离中点30千米处相遇。
A、B两地相距多少千米?解析:关键是求甲乙两车的相遇时间,由于在距离中点30km相遇可知二者的路程差为30×2=60km.用路程差除以速度差可求相遇时间.30×2÷(82—72)×(82+72)=924(km)例5 甲、乙两车同时从A、B两地相向而行,第一次相遇在距A地65千米处,相遇后,两车继续前进,分别到达目的地后立刻返回。
行程问题
等量关系:速度×时间=路程
2)航行问题:
等量关系:顺水速度=静水速度+水流速度逆水速度=静水速度-水流速度
练习:
1.一猎狗发现在它前方240米处有一以80米/分的速度逃跑的兔子,猎狗迅速以120米/分速度追击,要多久才能追到?
2.一部队从军部出发行军,每小时走40千米,
3.5小时后一通讯兵传达一军部命令骑摩托车从军部出发追赶,4小时后追上,则通讯兵每小时比部队多行多少千米?
3.甲乙两人骑自行车,从相距42千米的两地相向而行,甲每小时走12千米,乙每小时走10千米,如甲走12分钟后乙再出发,问甲出发后几小时与乙相遇?
4.学生队伍以每小时5千米的速度外出春游,他们从学校出发走了4小时12分钟后,学校派通讯员骑摩托车以每小时40千米的速度追赶学生队伍,传达紧急通知,求通讯员用了多少时间赶上学生队伍?
5.甲乙两站相距40千米,一列慢车从甲站开出,每小时行使56千米,同时一列快车由乙站开出,每小时行使72千米,两车同向而行,快车在慢车的后面,经过多少小时快车可追上慢车?
6.甲乙两人环湖竞走,一周400米,乙每分钟走80米,甲的速度是乙的5/4倍,现在甲在乙的前面100米;多少分钟后两人相遇?
7.甲乙两人练习短距离赛跑,甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑2秒钟,甲经过几秒可以追上乙?
8.敌军和我军相距14千米,敌军以4千米/小时的速度逃跑,我军迅速以7千米/小时的速度追击敌军,需几小时可以追上?
9.普通飞机和喷气式飞机从相距600千米的两个机场相向起飞,30分钟后相遇,如果喷气式飞机的速度是普通飞机的3倍,求普通飞机和喷气式飞机的速度?
10.一条环行跑道长400米,甲练习自行车,平均每分钟骑550米,乙练习赛跑,平均每分钟跑250米,两人同时同地同向出发,经过多少分钟两人相遇?
11.甲乙两站相距245千米,一列慢车由甲站开出,每小时行使50千米,同时,一列快车由乙站开出,每小时行使70千米,两车同向而行,快车在慢车的后面,经过几小时快车可以追上慢车?
12.小红和小军两人同时从各自的家里出发去找对方,两家的直线距离为1200米,小红每分
走55米,两人最后用
1小时在途中某点相遇,则小军每分钟走多少米?
6
13.小明上山的速度是每小时3.5千米,下山的速度是每小时5千米,若小明上山比下山多用了3小时,求小明下山走了几小时,这段山路共有多少千米?
14.A、B两地相距80米,甲从A地出发,每秒走1米,乙从B地出发每秒走1.5米,如甲先走15米,求乙出发后多
少秒与甲相遇?
15.小船的静水速度是27千米/时,顺流航行60千米逆流返回,如果水流速不变,返程所用时间比顺流多用25%,求水流速度?
16.A、B两地间的路程为360km,甲车从A地出发开往B地,每小时72km,甲车出发25分钟后,乙车从B地出发开往A地,每小时行驶48km,两车相遇后,各自仍按原速度原方向继续行驶,那么相遇后两车相距100km时,甲车从出发共行驶了多少小时?
17.一艘轮船,航行于甲、乙两地之间,顺水用3小时,逆水比顺水多用30分钟。
已知轮船在静水中的速度是每小时26千米,求水流的速度?
18.小玲乘船由A地顺流而下到B地,然后又按原路逆流而上到C地,共用了4小时.已知船顺水速度是每小时10千米,水流的速度是每小时2.5千米,A、C两地相距10千米,求A、B 两地的距离?
利息问题
1)不付利息税:教育储蓄和购买国家债券
等量关系:利息=本金×年利率×年期
本息和=本金+利息=本金+本金×年利率×年期
2)付利息税:除了教育储蓄和购买国家债券之外的储蓄和债券
等量关系:利息=本金×年利率×年期×80%
本息和=本金+利息×80%=本金+本金×年利率×年期×80%
练习:
1.小红去银行帮妈妈取存了1年的钱,银行给她利息316.8元,年利率为1.98%,则她取得的本息和为多少?
2.赵先生购买了100000元的某公司4年期债券,4年后得到本息和为106400元,这种债券的年利率是多少?
3.将2000元人民币按一年定期存入银行,到期后扣除20%的利息税得本息和为2160元,这种存款方式的年利率是多少?
4. 某人同一天去两家银行存款,在中国银行存了10000元特种大额储蓄,定期一年,年息为10%,在中国工商银行也存了10000元,定期为一年,年息为10.98%,一年到期后,该人忘记了取款,中国银行则把该存款连本带息自动转存为一年的定期储蓄,年息为10.98%(可随时支取,利息不变),而中国工商银行则按活期储蓄的利息(年息为3.18%)计算本金的超额利息。
该人数日后想起此事,隧到两家银行取款,发现两家银行的本息正好相等,请问:这人实际多存了多少天?(一年按365天计算)
5. 爸爸为小明存了一个3年期的教育储蓄(3年期的年利率为2.7%),3年后取5405元,他开始存了多少元?
● 两个等量关系的问题:
***利用第一个等量关系设未知数,第二个等量关系列方程
练习:
1. 小明用172元钱买了两种书,共10本,单价分别为18元、10元。
每种书小明各买了多少本?
2. 要过年了,集贸市场有一些鸡和兔,总共有头56个,160只脚,则集贸市场鸡和兔各有多少只?
3. 由车头与14节车厢组成的客车共重347.5吨,已知车头比4节车厢重1
4.5吨,则车头重多少吨?每节车厢重多少吨?
4. 一份数学试卷有25道选择题,规定做对一题得4分,一题不做或做错扣1分,结果某学生得分为75分,则他做对多少道题?
5. 在一次美化校园中,先安排32人去拔草,17人去植树,后又增派20人去支援他们,结果拔草的人数是植树人数的2倍,问支援拔草和植树的人分别有多少人?
● 商品的利润率:
等量关系:
1.利润=售价-进价
2.实际售价=折扣数×10%×标价
3.利润率=进价
利润
4.利润率=进价
进价售价 5.销售额=售价×销售量
练习:
1. 为了搞活经济,商场将一种商品按标价的9折出售,仍可获利10%,若商品标价33元,那么该商品进价为多少元?
2. 一商店以3盘16元价格购进一批录音带,又以每4盘21元的价格购进比前一批加倍的录音带,如果以每3盘K 元的价格全部出售可得到投资的20%的收益,则K=?
3.一件商品按成本价提高100%后,按八折销售,售价为320元,这件商品的成本价是多少?每件可赢利多少?
4.商品按进价增加20%出售,因积压需降价处理,如果仍想获得8%的利润,则出售价需打几折?
5.某商品的进价为310元,按标价的8折销售时,利润率为16%,商品的标价为多少元?
6.某商品的进价为120元,标价为200元,折价销售时的利润率为10%,此商品是按几折销售的?
数字问题:
如果表示一个两位或三位数,例如:95=9×10+5, 256=2×100+5×10+6,用字母表示两位数:ab=10a+b,三位数:c
=10
100
b
+
abc+
a
练习:
1.若有一个七位自然数,它的第一位数字是5,若把5移到末位,其他数位上的数字顺序不变,则原数等于这个新数的3倍还多8,求原来的七位数。
2.有一个三位数,百位数字是1,若把1移到最后,其他两位数字顺序比变,所得的三位数比原数的2倍少7,求原来这个三位数。
3.有三个连续偶数,它们的和比其中最小的一个大74,求这三个连续偶数各是多少?
1,如果把十位上的数与个位上的数对调,那么得4.一个两位数,个位上的数是十位上的数的
2
到的新的两位数比原来的两位数小36,求原来的两位数?
5.有一个两位数,十位上的数是个位上的数的2倍,如果把这两个数字的位置调换,那么所得的新的两位数比原来的两位数小27,求这个两位数?
6.有一个两位数,个位上的数比十位上的数大4,且个位上的数字与十位上的数字的和只有这个两位数的1/4,求这个两位数?
7.一个五位数,它万位上的数是7,将7移到最右端所得的五位数比原数小81,求原数。
8.一个两位数,十位上的数是个位上的4倍,从这个两位数中减去54后得到的数,就等于将这个两位数十位与个位对换得到的两位数,求原来的两数。
9.小红出去旅行1周,日期的和是91,她哪天回来的
10.在日历上,用一个正方形圈出3×3共9个数,若它们的和是117。
试写出这9个数。
11.今年兄弟两年龄和是55岁,若干年前,当哥哥的年龄只有弟弟现在这么大时,弟弟的年龄恰恰是哥哥年龄的一半,问哥哥今年多大岁数?。