2018-2019学年数学苏教版必修3教学案:第1部分 第2章 章末小结与测评-含解析
- 格式:doc
- 大小:397.50 KB
- 文档页数:11
甲、乙两人玩掷骰子游戏,他们约定:两颗骰子掷出去,如果朝上的两个数的和是5,那么甲获胜,如果朝上的两个数的和是7,那么乙获胜.问题1:若甲获胜,那么两颗骰子出现的点数有几种?提示:会出现(1,4),(4,1)(2,3),(3,2)四种可能.问题2:若乙获胜,两颗骰子出现的点数又如何?提示:会出现(1,6),(6,1),(2,5,),(5,2),(3,4),(4,3)六种可能.问题3:这样的游戏公平吗?提示:由问题1、2知甲获胜的机会比乙获胜的机会少,不公平.问题4:能否求出甲、乙两人获胜的概率?提示:可以.1.基本事件与等可能事件(1)基本事件:在一次试验中可能出现的每一个基本结果.(2)等可能事件:若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件.2.古典概型(1)古典概型的特点:①有限性:所有的基本事件只有有限个;②等可能性:每个基本事件的发生都是等可能的.(2)古典概型的定义:将满足上述条件的随机试验的概率模型称为古典概型.(3)古典概型概率的计算公式:如果一次试验的等可能基本事件共有n个,那么每一个等可能基本事件发生的概率都是1n;如果某个事件A包含了其中m个等可能基本事件,那么事件A发生的概率为P(A)=m n.即P(A)=事件A包含的基本事件数试验的基本事件总数.1.一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征,即有限性和等可能性,并不是所有的试验都是古典概型,例如在适宜的条件下“种下一粒种子观察它是否发芽”,这个试验的基本事件有两个:“发芽”、“不发芽”,而“发芽”与“不发芽”这两种结果出现的机会一般是不均等的,故此试验不符合古典概型的等可能性.2.古典概型的概率公式P(A)=mn与事件A发生的频率mn有本质的区别,其中P(A)=mn是一个定值,且对同一试验的同一事件m、n均为定值,而频率中的m、n均随试验次数的变化而变化,但随着试验次数的增加频率总接近于P(A).[例1]将一颗骰子先后抛掷两次,求:(1)一共有几个基本事件?(2)“出现点数之和大于8”包含几个基本事件?[思路点拨]求基本事件的个数可用列举法、列表法、树形图法.[精解详析]法一:(列举法):(1)用(x,y)表示结果,其中x表示第1颗骰子出现的点数,y表示第2颗骰子出现的点数,则试验的所有结果为:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6).共36个基本事件.(2)“出现点数之和大于8”包含以下10个基本事件:(3,6),(4,5),(4,6),(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6).法二:(列表法):如图所示,坐标平面内的数表示相应两次抛掷后出现的点数的和,基本事件与所描点一一对应.(1)由图知,基本事件总数为36.(2)总数之和大于8包含10个基本事件(已用虚线圈出).法三:(树形图法):一颗骰子先后抛掷两次的所有可能结果用树形图直接表示.如图所示:(1)由图知,共36个基本事件.(2)点数之和大于8包含10个基本事件(已用对勾标出).[一点通]基本事件个数的计算方法有:(1)列举法:列举法也称枚举法.对于一些情境比较简单,基本事件个数不是很多的概率问题,计算时只需一一列举,即可得出随机事件所含的基本事件.注意列举时必须按一定顺序,做到不重不漏.(2)列表法:对于试验结果不是太多的情况,可以采用列表法.通常把对问题的思考分析归结为“有序实数对”,以便更直接地找出基本事件个数.列表法的优点是准确、全面、不易遗漏,其中最常用的方法是坐标系法.(3)树形图法:树形图法是进行列举的一种常用方法,适合较复杂问题中基本事件数的求解.1.本例中条件变为“一枚硬币连续掷三次”,会有多少种不同结果?解:画树形图共8种.2.一个口袋内装有大小相等的1个白球和已编有号码的3个黑球,从中摸出2个球.(1)共有多少种不同的结果(基本事件)?(2)摸出2个黑球有多少种不同结果?解:(1)共有6种不同结果,分别为{黑1,黑2},{黑1,黑3},{黑2,黑3},{白,黑1},{白,黑2},{白,黑3}.(2)从上面所有结果中可看出摸出2个黑球的结果有3种.[例2](12分)同时投掷两个骰子,计算下列事件的概率:(1)事件A:两个骰子点数相同;(2)事件B :两个骰子点数之和为8;(3)事件C :两个骰子点数之和为奇数.[思路点拨] 先判断这个试验是否为古典概型,然后用列举法求出所有基本事件总数及所求事件包含的基本事件的个数,最后用公式P (A )=mn求结果.[精解详析] (1)将两个骰子标上记号A ,B ,将A ,B 骰子的点数记为(x ,y ),则共有36种等可能的结果.如下(1,1),(1,2),(1,3),(1,4),(1,5),(1,6), (2,1),(2,2),(2,3),(2,4),(2,5),(2,6), (3,1),(3,2),(3,3),(3,4),(3,5),(3,6), (4,1),(4,2),(4,3),(4,4),(4,5),(4,6), (5,1),(5,2),(5,3),(5,4),(5,5),(5,6), (6,1),(6,2),(6,3),(6,4),(6,5),(6,6).⇨(3分)出现点数相同的结果有(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)共6种. ∴P (A )=636=16.⇨(6分) (2)出现点数之和为8的结果有(2,6)(3,5)(4,4)(5,3)(6,2)共5种, ∴P (B )=536.⇨(9分) (3)出现点数之和为奇数包括“x 是奇数、y 是偶数”和“x 是偶数、y 是奇数”,共有18种,∴P (C )=1836=12.⇨(12分) [一点通]求古典概型概率的步骤:(1)用列举法求出基本事件总个数n .(2)用列举法求出事件A 包含的基本事件的个数m .(3)利用公式P (A )=事件A 包含的基本事件数试验的基本事件总数=mn 求出事件A 的概率.3.先后从分别标有数字1,2,3,4的4个大小、形状完全相同的球中,有放回地随机抽取2个球,则抽到的2个球的标号之和不大于5的概率为________.解析:基本事件共有4×4=16(个),其中抽到的2个球的标号之和不大于5的情况有:(1,1)、(1,2)、(1,3)、(1,4)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(4,1),共10种,所以所求概率为1016=58.答案:584.将一颗骰子先后抛掷2次,观察向上的点数,问: (1)两数之积是奇数的概率是多少? (2)两数之积是3的倍数的概率是多少?解:每次抛出的点数都可能有1,2,3,4,5,6这6种结果,两次点数之积的不同结果如下表所示共有36种.(1)设事件A 表示“两数之积是奇数”,则事件A 包含的不同结果的个数为9,所以P (A )=936=14. (2)设事件B 表示“两数之积是3的倍数”,则事件B 包含的不同结果的个数为20,所以P (B )=2036=59.1.解决古典概型问题的关键是:分清基本事件总数n 与事件A 所包含基本事件的个数m ,注意问题:(1)试验基本结果是否有等可能性. (2)本试验的基本事件有多少个.(3)事件A包含哪些基本事件.只有弄清这三个方面的问题解题才不致于出错.2.求基本事件的个数有列举法、列表法和树形图法,一是注意按一定顺序,防止重复和遗漏;二是可先数一部分,找出规律,推测全部.课下能力提升(十六)一、填空题1.从甲、乙、丙三人中任选两名代表,甲被选中的概率为________.解析:本题中基本事件有(甲,乙),(甲,丙),(乙,丙)共三个,其中甲被选中包含两个基本事件,故甲被选中的概率为23.答案:2 32.在平面直角坐标系内,从横坐标与纵坐标都在集合A={0,1,2}内取值的点中任取一个,此点正好在直线y=x上的概率为________.解析:由x,y∈{0,1,2},这样的点共有(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)9个,其中满足在直线y=x上的点(x,y)有(0,0),(1,1),(2,2)3个,所以所求概率为P=39=13.答案:1 33.从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是________.解析:随机选取的a,b组成实数对(a,b),有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),共15种.其中b >a 的有(1,2),(1,3),(2,3),共3种,所以b >a 的概率为315=15.答案:154.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________.解析:从四条线段中任取三条有4种取法:(2,3,4),(2,3,5),(2,4,5),(3,4,5).其中能构成三角形的取法有3种:(2,3,4),(2,4,5),(3,4,5),故所求概率为34.答案:345.盒子里共有大小相同的3只白球、1只黑球,若从中随机摸出两只球,则它们颜色不同的概率是________.解析:从3只白球、1只黑球中随机摸出两只小球,基本事件有(白1,白2),(白1,白3),(白2,白3),(白1,黑),(白2,黑),(白3,黑),其中颜色不同的有三种,故所求概率为P =12.答案:12二、解答题6.从3台甲型电脑和2台乙型电脑中任取两台,求两种品牌都齐全的概率.解:3台甲型电脑为1,2,3,2台乙型电脑为A ,B ,则所有基本事件为:(1,2),(1,3),(1,A ),(1,B ),(2,3),(2,A ),(2,B ),(3,A ),(3,B ),(A ,B ),共10个. 记事件C 为“一台为甲型,另一台为乙型”,则符合条件的事件为6个,所以P (C )=610=35. 7.设集合P ={b ,1},Q ={c ,1,2},P ⊆Q ,若b ,c ∈{2,3,4,5,6,7,8,9}. (1)求b =c 的概率;(2)求方程x 2+bx +c =0有实根的概率.解:(1)因为P ⊆Q ,当b =2时,c =3,4,5,6,7,8,9;当b >2时,b =c =3,4,5,6,7,8,9,基本事件总数为14.其中b =c 的事件数为7种,所以b =c 的概率为:714=12.(2)记“方程有实根”为事件A,若使方程有实根,则Δ=b2-4c≥0,即b=c=4,5,6,7,8,9共6种. 所以P(A)=614=37.8.对某项工程进行竞标,现共有6家企业参与竞标,其中A企业来自辽宁省,B,C 两家企业来自江苏省,D,E,F三家企业来自山东省,此项工程需要两家企业联合施工,假设每家企业中标的概率相同.(1)列举所有企业的中标情况;(2)在中标的企业中,至少有一家来自江苏省的概率是多少?解:(1)从这6家企业中选出2家的选法有(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种.(2)在中标的企业中,至少有一家来自江苏省的选法有(A,B),(A,C),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),共9种.所以,“在中标的企业中,至少有一家来自江苏省”的概率为915=3 5.。
一、抽样方法抽样方法有:简单随机抽样、系统抽样、分层抽样.简单随机抽样有抽签法、随机数表法.1.抽签法的步骤(1) 编号:给整体中全部的个体编号( 号码能够从 1 到N) ;(2)制签:将 1~N这N个号码写在形状、大小都同样的号签上;(3)搅拌:将号签放在一个容器中,搅拌均匀;(4) 抽签:每次冷静器中不放回地抽取一个号签,并记录其编号,连续抽取n 次;(5)取样:从整体中,将与抽到的号签编号一致的个体拿出.2.系统抽样的步骤从元素个数为N的整体中抽取容量为n 的样本的步骤以下:(1)编号:先将整体的 N个个体编号;(2)分段:确立分段间隔 k,对编号进行分段;(3) 确立初始编号:在第一段用简单随机抽样确立第一个个体编号l ( l ≤ k);(4)抽取样本:依据必定的规则抽取样本.3.分层抽样的步骤n(1)分层,求抽样比:确立抽样比k=N;(2)求各层抽样数:按比率确立每层抽取个体的个数n i= N i× k;(3)各层抽样:各层分别用简单随机抽样或系统抽样法抽取个体;(4)构成样本:综合每层抽取的个体,构成样本.二、整体散布的预计1.作频次散布直方图的步骤(1)求全距.(2)决定组距与组数,注意样本容量越大,所分组数越多.(3)将数据分组.各小组频数(4) 计算各小组的频次,作频次散布表,各小组的频次=.样本容量(5)画频次散布直方图.2.茎叶图刻画数据的优弊端(1)全部信息都能够从图中获取;(2)便于记录和表示;(3)数据许多时不方便.3.用样本的频次散布预计整体的散布时的注意事项(1)对于同一组样本数据,确立的组距不一样,获取的组数及分组也不一样,绘制的频次散布直方图就会有差别,但都是对整体的近似预计.(2) 应用频次散布直方图时,需明确纵轴表示的是频次/ 组距,从而进行有关计算.(3)绘制茎叶图时需注意同一组数据中的同样数据要一一列出.4.样本的数字特点(1)样本的数字特点可分为两大类:一类是反应样本数据集中趋向的,包含众数、中位数和均匀数;另一类是反应样本颠簸大小的,包含方差及标准差.我们常经过样本的数字特点预计整体的数字特点.(2)在用样本的数字特点预计整体的数字特点时应注意:①任何一个样本数据的改变都会惹起均匀数的改变.特别状况下,均匀数可能受某几个极端值的影响,而偏离一般状况.②标准差的平方是方差,标准差的单位与样本数据的单位一致.③用样本的均匀数和标准差预计整体的均匀数和标准差时,样本的均匀数和标准差不过整体三、线性回归方程(1)两个随机变量 x 和 y 之间有关关系确实定方法有:①散点图法:经过散点图,察看它们的散布能否存在必定规律,直观地判断;②表格、关系式法:联合表格或关系式进行判断.(2)用公式求线性回归方程的一般步骤是:i i i i.①列表 x, y, x yn n②计算 x , y ,2,x i y i.x ii = 1i = 1③代入公式计算b、 a 的值.④写出线性回归方程.(3)学习变量的有关性时:①注意经过实例辨析确立性关系 ( 函数关系 ) 与有关关系.依据散点图剖析两个变量间的有关关系是正有关仍是负有关.②学会用最小平方法求已知样本数据的线性回归方程.用回归方程对数据进行预计时,获取的结果不是正确值.( 时间 90 分钟,满分120 分 )一、填空题 ( 本大题共14 小题,每题 5 分,共 70 分 )1.在以下各图中,两个变量拥有线性有关关系的图是________.分析:由散点图知(1) 为函数关系,(4) 不拥有有关关系,故(2)(3)正确.答案: (2)(3)2.某农场在三种地上种玉米,此中平川210 亩,河沟地120 亩,山坡地180 亩,预计产量时要从中抽取 17 亩作为样本,则平川、河沟地、山坡地应抽取的亩数分别是________.分析:应抽取的亩数分别为210×17=7( 亩 ) ,120×17= 4( 亩 ) ,180×17=6(亩).510510510答案: 7,4,6^^^^个 位.分析:由 y =2- 1.5 x 知当 x 增添一个 位 , y 减少 1.5答案: 1.54.某校有老 200 人,男学生 1 200人,女学生 1 000 人, 用分 抽 的方法从全部生中抽取一个容量 n 的 本.已知从女生中抽取80 人, n =________.分析:因 80∶ 1 000 = 8∶ 100,因此∶ (200 +1 200 + 1 000) = 8∶ 100,因此n =192.n答案: 1925.在 本 率散布直方 中共有11 个小矩形,若中 一个小矩形的面 等于全部各小矩形1面 和的 4, 本容量是160, 中 一 的 数是 ________.分析:因 全部小矩形的面 和1,因此中 个小矩形的面 是 1=0.25 ,即 一 本4数据的 率是0.25 ,因此 的 数是160×0.25 = 40.答案: 406.一 数据的方差是s 2,将 数据中的每一个数都乘3,所得的一 新数据的方差是________.1分析: 数据x 1, x 2,⋯, x n 的均匀数x , 3x 1, 3x 2,⋯, 3x n 的均匀数x ′= n (3 x 1+2122213x 2+⋯+ 3x n ) = 3 x ,∴ s ′ = n [(3 x 1- 3 x ) + (3 x 2- 3 x ) +⋯+ (3 x n - 3 x ) ] =9× n [( x 1-x ) 2+ ( x 2- x ) 2+⋯+ ( x n - x ) 2] = 9s 2 .答案: 9s 27.已知 x ,y 的取 以下表:x0 1 3 4 y2.24.34.86.7从散点 能够看出 y 与 x 性有关,且 性回 方程 ^y = 0.95 x + a , a = ________. 分析:由数据得x = 2, y = 4.5 ,而回 直 必( x , y ) ,将 (2,4.5)代入 性回 方程,得 4.5 =0.95 ×2+ a ,故 a = 2.6.答案: 2.68. 认识一片大 一万株 木的生 状况,随机 量了此中100 株 木的底部周 ( 位:cm).依据所得数据画出的 本 率散布直方 如 所示,那么在 片 木中,底部周 小于 110cm 的株数大 是 ________.分析:底部周长小于110 cm 的频次为: (0.01 + 0.02 +0.04) ×10= 0.7 ,因此底部周长小于110 cm 的株数大概是10 000 ×0.7 = 7 000.答案: 7 0009.某校为了认识学生做家务状况,随机检查了50 名学生,获取他们在某一天各自做家务所用时间的数据,结果以下图,则可获取这50 名学生在这天均匀每人做家务的时间为________h.分析:由题图可知,在检查的50 名学生中有 5 人做家务时间为0 h ,有 5 人做家务时间为2.0 h,有 10 人做家务时间为 1.0 h,有 10 人做家务时间为 1.5 h,有 20 人做家务时间为0.5 h,因此一天中均匀每人做家务的时间为(5 ×0+5×2+10×1+10×1.5 +20×0.5) ÷50=45÷50=0.9(h) .答案: 0.910.把容量为100 的某个样本数据分为10 组,并填写频次散布表,若前七组的频次之和为0.79 ,而剩下三组的频数知足:第一组频数是第二组频数的1,而第三组频数则是第二组频数的4 4倍.那么剩下三组中频数最高的一组的频数是________.分析:由题意知后三组的频次之和为1-0.79 = 0.21 ,故后三组的频数之和为0.21 ×100= 21.1设后三组中第二组的频数为a,则4a+ a+4a=21,∴a=4.即后三组的频数挨次为1,4,16.故后三组中频数最高的一组的频数是16.答案: 1611.在样本的频次散布直方图中,共有 4 个长方形,这 4 个小长方形的面积分别为S、2S、3S、 4S,且样本容量为400,则小长方形面积最大的一组的频数为________.分析:∵ S+2S+3S+4S=1,∴ S=0.1.∴4S= 0.4. ∴0.4 ×400= 160.答案: 16012.某赛季甲、乙两名篮球运动员各13 场比赛得分状况用茎叶图表示以下:甲乙988177996102256799532030237104依据上图对这两名运动员的成绩进行比较,某同学获取以下四个结论:①甲运动员得分的极差大于乙运动员得分的极差;②甲运动员得分的中位数大于乙运动员得分的中位数;③甲运动员得分的均匀值大于乙运动员得分的均匀值;④甲运动员的成绩比乙运动员的成绩稳固.则此中全部错误结论的序号是________.分析:①甲得分的极差为47- 18= 29,乙得分的极差为33- 17= 16,故①正确;②甲得分的中位数为 30,乙得分的中位数为26,②正确;③22x 甲> x 乙正确, s甲<s乙;④错误.答案:④13.某班 50 名学生期末考试数学成绩 ( 单位:分 ) 的频次散布直方图以下图,此中数据不在分点上,对图中供给的信息作出以下的判断:(1)成绩在 49.5 ~ 59.5 分段的人数与 89.5 ~ 99.5 分段的人数相等;(2) 从左到右数,第四小组的频次是0.03 ;(3)成绩在 79.5 分以上的学生有 20 人;(4)本次考试,成绩的中位数在第三小组.此中正确的判断有________.分析: (1)49.5~59.5与89.5~99.5两段所在矩形的高相等,因此人数相等.(2)从左到右数,第四小组的频次 / 组距的值为 0.03 ,频次为 0.03 ×10= 0.3.(3)79.5分以上的学生共有: 50×(0.03 +0.01) ×10= 20人.因此中位数在 69.5 ~ 79.5段,即在第三小 .答案: (1)(3)(4)14.已知 体的各个体的 由小到大挨次2,3,3,7,a , b, 12,13.7,18.3,20,且 体的中位数 10.5.若要使 体的方差最小,a ,b 的取 分 是 ________.+ b分析:因 体中位数是 10.5 ,因此2 = 10.5 ,即 a + b = 21, b =21- a ,因此 体均匀数是x = 1 (2 + 3+3+ 7+ + + 12+ 13.7 + 18.3 + 20) = 79+ a + b =10 a b 1079+ 21= 10;10体方差是s 21[(2 -10)22+⋯+ (2b22a 2+b 2=+ (3 -10)-10) + (- 10) +⋯+ (20 - 10) ]=10a10a 2+ 21- a2+ 13.758 =10+ 13.758= 1a 2- 21a + 57.85855=1( a - 21) 2+35.808. 因 7≤ a ≤b ≤12,因此当 a =10.5 ,s 2 获得最小35.808 ,b = 10.5.5 2答案: 10.5,10.5二、解答 ( 本大 共4 小 ,共 50 分 )15.( 本小 分12 分 ) 如 是甲、 乙两人在射 比 中中靶的状况( 中靶中心的 面 10,靶中各数字表示 数字所在 被 中所得的 数) ,每人射 了6 次.(1) 用列表法将甲、乙两人的射 成 出来;(2) 你用学 的 知 , 甲、乙两人 次的射 状况 行比 .解: (1)数678 9 10 甲命中次数22 2 乙命中次数132222(2) x 甲 = 9 , x 乙= 9 , s 甲 =3, s 乙 = 1,22因为 x 甲= x 乙 , s 甲 < s 乙,因此甲与乙的均匀成绩同样,但甲的发挥比乙稳固.16. ( 本小题满分 12 分 ) 已知 10 只狗的血球体积及红血球的丈量值以下x 45 42 46 48 42 35 58 40 39 50 y6.536.309.257.506.995.909.496.206.557.72x ( 血球体积, mm),y ( 血红球数,百万 )(1) 画出上表的散点图;(2) 求出回归直线而且画出图形; (3) 回归直线必经过的一点是哪一点?解: (1) 散点图如图1(2) x = 10(45 + 42+ 46+48+ 42+ 35+ 58+ 40+ 39+ 50) = 44.50 ,1ny =+ 6.30 + 9.52 +7.50 + 6.99 + 5.90 + 9.49 + 6.20 +6.55 + 7.72) = 7.27 , x i y i(6.53 10i = 1- -n^= 3 283.9 ,22,设回归直线方程为 , n x y = 3 235.15 x i = 20 183 , n x = 19 802.5 y = bx + a ,i =1nx i y i -n xyi = 1则 a=≈0.13 , =y -a x ≈1.49nb2- n x 2x ii = 1因此所求回归直线的方程为^,图形以下:y = 0.13 x + 1.49 (3) 回归直线必经过 ( x , y ) 即(44.50,7.27) .17. ( 本小题满分 12 分 ) 为了让学生认识环保知识,加强环保意识,某中学举行了一次“环保知识比赛”,共有900 名学生参加了此次比赛,为认识本次比赛成绩状况,从中抽取了部分学生的成绩 ( 得分均为整数,满分为100 分 ) 进行统计.请你依据还没有达成并有局部污损的频次散布表和频次散布直方图,解答以下问题:分组频数频次[50,60)40.08[60,70)0.16[70,80)10[80,90)160.32[90,100]共计50(1)填补频次散布表的空格 ( 将答案直接填在表格内 ) ;(2)补全频次散布直方图;(3)若成绩在 [75,85) 分的学生为二等奖,问获取二等奖的学生约为多少人?解: (1)分组频数频次[50,60)40.08[60,70)80.16[70,80)100.20[80,90)160.32[90,100]120.24共计50 1.00(2)频次散布直方图以下图5(3) 成绩在 [75,80)分的学生占70~ 80 分的学生的10,因为成绩在[70,80)分的学生频次为0.2 ,因此成绩在 [75,80)分的学生频次为0.1 ;成绩在 [80,85) 分的学生占 80~90 分的学生的5 10,因为成绩在 [80,90)分的学生频次为0.32 ,因此成绩在 [80,85)分的学生频次为0.16 ,因此成绩在 [75,85)分的学生频次为0.26 ,因为有 900 名学生参加了此次比赛,因此该校获取二等奖的学生约为0.26 ×900= 234( 人 ) .18. ( 本小题满分14 分 ) 下表供给了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组比较数据.x3456y 2.534 4.5(1)请画出上表数据的散点图;(2)请依据上表供给的数据,用最小二乘法求出y 对于x的线性回归方程^=+;y bx a(3)已知该厂技改前 100 吨甲产品的生产能耗为90 吨标准煤.试依据(2) 求出的线性回归方程,展望生产100 吨甲产品的生产能耗比技改前降低多少吨标准煤?( 参照数值: 3×2.5 +4×3+5×4+6×4.5 =66.5)解: (1) 如图.n(2)x i y i=3×2.5+4×3+5×4+6×4.5=66.5.i= 13+ 4+ 5+6x =4= 4.5.2.5 + 3+4+ 4.5y =4= 3.5.n22222x i=3 + 4+ 5+6= 86.i = 166.5 -4×4.5 ×3.566.5 -63b=2== 0.7.高中数学苏教版必修三教学案:第2章章末小结与测评含答案a= y - b x =3.5-0.7×4.5=0.35.^故线性回归方程为y=0.7 x+0.35.(3) 依据回归方程的展望,此刻生产100 吨产品耗费的标准煤的数目为0.7 ×100+ 0.35 =70.35 ,故耗能减少了90-70.35 = 19.65( 吨 ) .-11-。
一、算法的设计1.算法设计它与一般意义上的解决问题不同,它是对一类问题的一般解法的抽象与概括,它往往是把问题的解法划分为若干个可执行的步骤,有时是重复多次,但最终都必须在有限个步骤之内完成.2.设计算法时的注意事项(1)与解决该问题的一般方法相联系,从中提炼与概括算法步骤.(2)将解决的问题过程划分为若干步骤.(3)引入有关的参数或变量对算法步骤加以表达.(4)用简炼的语言将各步骤表达出来.二、流程图1.流程图的定义用规定的图框和流程线来准确、直观、形象地表示算法的图形.2.算法的三种基本逻辑结构(1)顺序结构:(2)选择结构:(3)循环结构:3.画流程图的规则(1)使用标准的图框符号.(2)一般按从上到下、从左到右的方向画.(3)除判断框外,其他图框只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一符号.(4)一种判断框分为“是”与“不是”两个分支,而且有且仅有两个结果;另一种是多分支判断,有几种不同的结果.(5)在图形符号内描述的语言要非常简练清楚.三、基本算法语句(1)赋值语句的一般格式:变量←表达式(2)输入语句要求输入的值只能是具体的常数,不能是表达式、变量或函数;输出语句可以输出常量、变量或表达式的值甚至也可以输出字符.(3)条件语句的一般形式:If A ThenBElseCEnd If(4)条件语句的嵌套的一般形式:其相应的流程图如下图所示.(5)循环语句①当型语句:While P循环体End While②直到型语句:Do循环体Until PEnd Do③当循环的次数已经确定,可用“For”语句表示.“For”语句的一般形式为:For I From“初值”To“终值”Step“步长”循环体End For(6)使用算法语句时应注意的几个问题:①一个输入语句可以对多个变量赋值,中间用“,”隔开,输出语句也类似.②赋值号左边只能是变量,而不能是表达式.两边不能对换,若对换,需引入第三个变量.③条件语句一般用在需要对条件进行判断的算法设计中,如判断一个数的正负,确定两数大小等.④当型循环是当条件满足时执行循环体.而直到型循环是当条件不满足时执行循环体.⑤在解决一些需要反复执行的任务时,如累加求和、累乘求积通常都用循环语句来实现,要注意循环变量的控制条件.⑥在循环语句中嵌套条件语句时,要注意书写格式.四、算法案例(求最大公约数)1.更相减损术更相减损术(也叫等值算法)是我国古代数学家在求两个正整数最大公约数时的一个算法,其操作过程是:对于给定的两个正整数,用较大的数减去较小的数,接着把得到的差与较小的数比较,用这两个数中较大的数减去较小的数,继续上述操作(大数减去小数),直到产生一对相等的数为止,那么这个数(等数)即是所求的最大公约数.2.辗转相除法辗转相除法(即欧几里得算法)就是给定两个正整数,用较大的数除以较小的数,若余数不为零,则将较小的数和余数继续上面的除法,直到余数为零,此时的除数就是所求的最大公约数.3.二者的区别与联系辗转相除法进行的是除法运算,即辗转相除,而更相减损术进行的是减法运算,即辗转相减,但实质都是一个递归过程.(时间90分钟,满分120分)一、填空题(本大题共14小题,每小题5分,共70分) 1.如图表示的算法结构是________结构.解析:由流程图知为顺序结构. 答案:顺序2.语句A ←5,B ←6,A ←B +A ,逐一执行后,A 、B 的值分别为________. 解析:∵A =5,B =6, ∴A =6+5=11,B =6. 答案:11、63.对任意非零实数a 、b ,若a ⊗b 的运算原理如图所示,则lg1 000⊗(12)-2=________.解析:令a =lg1 000=3,b =(12)-2=4,∴a <b , 故输出b -1a =4-13=1. 答案:14.如图是一个算法的流程图,最后输出的W =________.解析:第一次循环后知S =1. 第二次循环后知T =3,S =9-1=8. 第三次循环后知T =5,S =25-8=17. 所以输出W =17+5=22. 答案:225.下面的伪代码运行后的输出结果是________.a ←1b ←2c ←3a ←b b ←c c ←aPrint a ,b ,c解析: 第4行开始交换,a =2,b =3,c 为赋值后的a , ∴c =2. 答案: 2,3,26.一个伪代码如图所示,输出的结果是________.S ←1For I From 1 to 10 S ←S +3×I End For Print S解析:由伪代码可知S=1+3×1+3×2+…+3×10=1+3×(1+2+…+10)=166.答案:1667.下面的伪代码输出的结果是________.i←1s←1While i≤4s←s×ii←i+1End WhilePrint s解析:由算法语句知s=1×1×2×3×4=24.答案:248.459与357的最大公约数是________.解析:459=357×1+102,357=102×3+51,102=51×2,所以459与357的最大公约数是51.答案:519.下列算法,当输入数值26时,输出结果是________.Read xIf 9<x<100 Thena←x\10b←Mod(x,10)x←10b+aPrint xEnd If解析:这是一个由条件语句为主体的一个算法,注意算法语言的识别与理解.此算法的目的是交换十位、个位数字得到一个新的二位数.(x\10是取x除以10的商的整数部分).答案: 6210.(广东高考)执行如图所示的程序框图,若输入n的值为4,则输出s的值为________.解析:本题第1次循环:s=1+(1-1)=1,i=1+1=2;第2次循环:s=1+(2-1)=2,i=2+1=3;第3次循环:s=2+(3-1)=4,i=3+1=4;第4次循环:s=4+(4-1)=7,i =4+1=5.循环终止,输出s的值为7.答案: 711.如图所示的流程图输出的结果为________.解析:由题意知,输出的b为24=16.答案:1612.执行如图所示的程序框图,如果输出s=3,那么判断框内应填入的条件是________.解析:依据循环结构运算并结合输出结果确定条件.k=2,s=1,s=1×log23=log23,k=3,s=log23·log34=log24,k=4,s=log24·log45=log25,k=5,s=log25·log56=log26,k=6,s=log26·log67=log27,k=7,s=log27·log78=log28=3.停止,说明判断框内应填k≤7或k<8.答案:k≤7(或k<8)13.下列伪代码运行后输出的结果为________.j ←1While j ≤5 a a +j , j ←j +1End While Print a解析: 第一步:a =mod(1,5)=1,j =2;第二步:a =mod(1+2,5)=3,j =3;第三步:a =mod(3+3,5)=1,j =4;第四步:a =mod(1+4,5)=0,j =5;a =mod(0+5,5)=0,j =6,此时输出,∴a =0.答案:014.执行如图所示的流程图,若输出的结果是8,则判断框内m 的取值范围是________.解析:由题知,k =1,S =0,第一次循环,S =2,k =2;第二次循环,S =2+2×2=6,k =3;……;第六次循环,S =30+2×6=42,k =6+1=7;第七次循环,S =42+2×7=56,k =7+1=8,此时应输出k 的值,从而易知m 的取值范围是(42,56].答案:(42,56]二、解答题(本大题共4小题,共50分)15.(本小题满分12分)写出求最小的奇数I ,使1×3×5×7×…×I >2 012的伪代码. 解:t ←1I ←1While t ≤2 012 t ←t ×I I ←I +2End While Print I -216.(本小题满分12分)高中毕业会考等级规定:成绩在85~100为“A”,70~84为“B”,60~69为“C”,60分以下为“D”.试编制伪代码算法,输入50名学生的考试成绩(百分制,且均为整数),输出其相应的等级.解析: 伪代码如图:While I≤50Read a I学生成绩If a I<60 ThenPrint “D”Else If a I<70 ThenPrint “C”Else If a I<85 ThenPrint “B”ElsePrint “A”End IfI←I+1End While17.(本小题满分12分)下面是计算应纳个人所得税的算法过程,其算法如下:S1 输入工资x(x≤8 000);S2 如果x≤3 500,那么y=0;如果3 500<x≤5 000,那么y=0.03(x-3 500);否则y=45+0.1(x-5 000) S3 输出税款y,结束.请写出该算法的伪代码及流程图.解:伪代码.Read x(x≤8 000)If x≤3 500 Theny←0ElseIf x≤5 000 Theny←0.03(x-3 500)Elsey←45+0.1(x-5 000)End IfEnd IfPrint y流程图18.(本小题满分14分)某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答下列问题:(1)写出该城市人口数y (万人)与年份x (年)的函数关系式; (2)用伪代码表示计算10年以后该城市人口总数的算法;(3)用流程图表示计算大约多少年以后该城市人口将达到120万人的算法. 解:(1)y =100×1.012x(2)伪代码如下:S ←100I ←1.012For x From 1 To 10S ←S ×IEnd For Print S(3)即求满足100×1.012x≥120的最小正整数x ,其算法流程图如图.。
一、算法的设计1.算法设计它与一般意义上的解决问题不同,它是对一类问题的一般解法的抽象与概括,它往往是把问题的解法划分为若干个可执行的步骤,有时是重复多次,但最终都必须在有限个步骤之内完成.2.设计算法时的注意事项(1)与解决该问题的一般方法相联系,从中提炼与概括算法步骤.(2)将解决的问题过程划分为若干步骤.(3)引入有关的参数或变量对算法步骤加以表达.(4)用简炼的语言将各步骤表达出来.二、流程图1.流程图的定义用规定的图框和流程线来准确、直观、形象地表示算法的图形.2.算法的三种基本逻辑结构(1)顺序结构:(2)选择结构:(3)循环结构:3.画流程图的规则(1)使用标准的图框符号.(2)一般按从上到下、从左到右的方向画.(3)除判断框外,其他图框只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一符号.(4)一种判断框分为“是”与“不是”两个分支,而且有且仅有两个结果;另一种是多分支判断,有几种不同的结果.(5)在图形符号内描述的语言要非常简练清楚.三、基本算法语句(1)赋值语句的一般格式:变量←表达式(2)输入语句要求输入的值只能是具体的常数,不能是表达式、变量或函数;输出语句可以输出常量、变量或表达式的值甚至也可以输出字符.(3)条件语句的一般形式:If A ThenBElseCEnd If(4)条件语句的嵌套的一般形式:其相应的流程图如下图所示.(5)循环语句①当型语句:While P循环体End While②直到型语句:Do循环体Until PEnd Do③当循环的次数已经确定,可用“For”语句表示.“For”语句的一般形式为:For I From“初值”To“终值”Step“步长”循环体End For(6)使用算法语句时应注意的几个问题:①一个输入语句可以对多个变量赋值,中间用“,”隔开,输出语句也类似.②赋值号左边只能是变量,而不能是表达式.两边不能对换,若对换,需引入第三个变量.③条件语句一般用在需要对条件进行判断的算法设计中,如判断一个数的正负,确定两数大小等.④当型循环是当条件满足时执行循环体.而直到型循环是当条件不满足时执行循环体.⑤在解决一些需要反复执行的任务时,如累加求和、累乘求积通常都用循环语句来实现,要注意循环变量的控制条件.⑥在循环语句中嵌套条件语句时,要注意书写格式.四、算法案例(求最大公约数)1.更相减损术更相减损术(也叫等值算法)是我国古代数学家在求两个正整数最大公约数时的一个算法,其操作过程是:对于给定的两个正整数,用较大的数减去较小的数,接着把得到的差与较小的数比较,用这两个数中较大的数减去较小的数,继续上述操作(大数减去小数),直到产生一对相等的数为止,那么这个数(等数)即是所求的最大公约数.2.辗转相除法辗转相除法(即欧几里得算法)就是给定两个正整数,用较大的数除以较小的数,若余数不为零,则将较小的数和余数继续上面的除法,直到余数为零,此时的除数就是所求的最大公约数.3.二者的区别与联系辗转相除法进行的是除法运算,即辗转相除,而更相减损术进行的是减法运算,即辗转相减,但实质都是一个递归过程.(时间90分钟,满分120分)一、填空题(本大题共14小题,每小题5分,共70分) 1.如图表示的算法结构是________结构.解析:由流程图知为顺序结构. 答案:顺序2.语句A ←5,B ←6,A ←B +A ,逐一执行后,A 、B 的值分别为________. 解析:∵A =5,B =6, ∴A =6+5=11,B =6. 答案:11、63.对任意非零实数a 、b ,若a ⊗b 的运算原理如图所示,则lg1 000⊗(12)-2=________.解析:令a =lg1 000=3,b =(12)-2=4,∴a <b ,故输出b -1a =4-13=1.答案:14.如图是一个算法的流程图,最后输出的W =________.解析:第一次循环后知S =1. 第二次循环后知T =3,S =9-1=8. 第三次循环后知T =5,S =25-8=17. 所以输出W =17+5=22. 答案:225.下面的伪代码运行后的输出结果是________. a←1b←2c←3a←b b←c c←aPrint a ,b ,c解析: 第4行开始交换,a =2,b =3,c 为赋值后的a , ∴c =2. 答案: 2,3,26.一个伪代码如图所示,输出的结果是________. S←1For I From 1 to 10 S←S+3×I End For Print S解析:由伪代码可知S =1+3×1+3×2+…+3×10=1+3×(1+2+…+10)=166. 答案:1667.下面的伪代码输出的结果是________.i←1s←1While i≤4 s←s×i i←i+1End While Print s解析:由算法语句知s =1×1×2×3×4=24. 答案:248.459与357的最大公约数是________. 解析:459=357×1+102, 357=102×3+51, 102=51×2,所以459与357的最大公约数是51. 答案:519.下列算法,当输入数值26时,输出结果是________. Read xIf 9<x <100 Then a ← x \10 b ← Mod(x,10) x ←10b +a Print x End If解析: 这是一个由条件语句为主体的一个算法,注意算法语言的识别与理解.此算法的目的是交换十位、个位数字得到一个新的二位数.(x \10是取x 除以10的商的整数部分).答案: 6210.(广东高考)执行如图所示的程序框图,若输入n 的值为4,则输出s 的值为________.解析: 本题第1次循环:s =1+(1-1)=1,i =1+1=2;第2次循环:s =1+(2-1)=2,i =2+1=3;第3次循环:s =2+(3-1)=4,i =3+1=4;第4次循环:s =4+(4-1)=7,i =4+1=5.循环终止,输出s 的值为7.答案: 711.如图所示的流程图输出的结果为________.答案:1612.执行如图所示的程序框图,如果输出s=3,那么判断框内应填入的条件是________.解析:依据循环结构运算并结合输出结果确定条件.k=2,s=1,s=1×log23=log23,k=3,s=log23·log34=log24,k=4,s=log24·log45=log25,k=5,s=log25·log56=log26,k=6,s=log26·log67=log27,k=7,s=log27·log78=log28=3.停止,说明判断框内应填k≤7或k<8.答案:k≤7(或k<8)13.下列伪代码运行后输出的结果为________.a←0j←1While j≤5+j,j←j+1End WhilePrint a解析:第一步:a=mod(1,5)=1,j=2;第二步:a=mod(1+2,5)=3,j=3;第三步:a=mod(3+3,5)=1,j=4;第四步:a=mod(1+4,5)=0,j=5;a=mod(0+5,5)=0,j=6,此时输出,∴a=0.答案:014.执行如图所示的流程图,若输出的结果是8,则判断框内m的取值范围是________.解析:由题知,k=1,S=0,第一次循环,S=2,k=2;第二次循环,S=2+2×2=6,k=3;……;第六次循环,S=30+2×6=42,k=6+1=7;第七次循环,S=42+2×7=56,k=7+1=8,此时应输出k 的值,从而易知m的取值范围是(42,56].答案:(42,56]二、解答题(本大题共4小题,共50分)15.(本小题满分12分)写出求最小的奇数I,使1×3×5×7×…×I>2 012的伪代码.解:t←1I←1While t≤2 012t←t×II←I+2End WhilePrint I-216.(本小题满分12分)高中毕业会考等级规定:成绩在85~100为“A”,70~84为“B”,60~69为“C”,60分以下为“D ”.试编制伪代码算法,输入50名学生的考试成绩(百分制,且均为整数),输出其相应的等级.解析:伪代码如图:I←1While I≤50Read 学生成绩If aI<60 ThenPrint “D”Else If aI<70 ThenPrint “C”Else If aI<85 ThenPrint “B”ElsePrint “A”End IfI←I+1End While17.(本小题满分12分)下面是计算应纳个人所得税的算法过程,其算法如下:S1 输入工资x(x≤8 000);S2 如果x≤3 500,那么y=0;如果3 500<x≤5 000,那么y=0.03(x-3 500);否则y=45+0.1(x-5 000)S3 输出税款y,结束.请写出该算法的伪代码及流程图.解:伪代码.Read x(x≤8 000)If x≤3 500 Theny←0ElseIf x≤5 000 Theny←0.03(x-3 500)Elsey←45+0.1(x-5 000)End IfEnd IfPrint y流程图18.(本小题满分14分)某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答下列问题:(1)写出该城市人口数y(万人)与年份x(年)的函数关系式;(2)用伪代码表示计算10年以后该城市人口总数的算法;(3)用流程图表示计算大约多少年以后该城市人口将达到120万人的算法.解:(1)y=100×1.012x(2)伪代码如下:S←100I←1.012For x From 1 To 10S←S×IEnd ForPrint S(3)即求满足100×1.012x≥120的最小正整数x,其算法流程图如图.。
[新知初探]1.算法的概念对一类问题的机械的、统一的求解方法称为算法.2.算法的特征(1)算法是指用一系列运算规则能在有限步骤内求解某类问题,其中的每条规则必须是明确定义的、可行的.(2)算法从初始步骤开始,每一个步骤只能有一个确定的后继步骤,从而组成一个步骤序列,序列的终止表示问题得到解答或指出问题没有解答.[小试身手]1.下列说法中不是算法的是________.①解方程2x+7=0的过程是移项再把x的系数化为1.②从南京到北京先乘汽车到飞机场,再乘飞机到北京.③解方程:x2-2x-3=0.④利用公式S=πr2计算半径为3的圆的面积为π×32.答案:③2.下列关于算法的说法:①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果.其中正确的有________.解析:由算法的特征知②③④正确,①错误.答案:②③④[典例] 下列语句表达中是算法的有________.①方程x 2-1=0有两个实根.②求1+2+3+4的值,先计算1+2=3,再由3+3=6,6+4=10得最终结果是10. ③12x >2x +4. ④求M (1,2)与N (-3,-5)两点连线的方程,可先求MN 的斜率,再利用点斜式方程求得.[解析] 算法是解决问题的步骤与过程,②④都表达了一种算法.[答案] ②④1.下列有关算法的说法中正确的是________.①算法是解决问题的方法和步骤;②算法中的运算次数是有限的;③算法中的每一步操作都是可执行的,都能得到正确的结果.解析:根据算法的特征可知①②③都正确.答案:①②③2.计算下列各式中的S 值,能设计算法求解的是________.①S =1+2+3+ (100)②S =1+2+3+…+100+….③S =1+2+3+…+n (n ≥1且n ∈N).解析:算法的设计要求步骤是可行的,并且在有限步之内能完成任务.故①③可设计算法求解.答案:①③[典例] (1)试写出解方程x 2-2x -3=0的一个算法;(2)已知直角坐标系中的两点A (-2,3),B (1,-3)写出求直线AB 方程的一个算法.[解] (1)算法一:第一步 计算方程判别式的值并判断它的符号,Δ=(-2)2-4×(-3)=16>0;算法的概念算法的设计第二步 将a =1,b =-2,c =-3代入求根公式x =-b ±b 2-4ac 2a,得x 1=-1,x 2=3.算法二:第一步 移项,得x 2-2x =3; ①第二步 ①式两边同时加上1并配方,得(x -1)2=4; ②第三步 ②式两边开平方,得x -1=±2; ③第四步 解③得x 1=-1,x 2=3.(2)算法一:第一步 求出直线AB 的斜率,k =-3-31-(-2)=-2; 第二步 选定点A (-2,3),用点斜式写出直线AB 的方程:y -3=-2(x +2);第三步 将第二步所得结果化简,得方程2x +y +1=0.算法二:第一步 设直线AB 的方程为y =kx +b ;第二步 将A (-2,3),B (1,-3)代入第一步所设方程,得3=-2k +b ,-3=k +b ; 第三步 解第二步所得方程构成的方程组,得k =-2,b =-1;第四步 将第三步所得结果代入第一步所设方程,得y =-2x -1;第五步 将第四步所得结果整理,得方程2x +y +1=0.算法三:第一步 将A (-2,3),B (1,-3)代入两点式方程,得y -3-3-3=x +21+2; 第二步 将第一步所得结果化简得方程2x +y +1=0.1.已知一个学生的语文成绩为89分,数学成绩为96分,外语成绩为99分.请填入适当文字,使下列步骤成为求他的总分和平均成绩的一个算法:第一步取A=89,B=96,C=99;第二步__________________________________________;第三步__________________________________________.第四步输出结果.答案:计算A+B+C计算13(A+B+C)2.写出求两底半径分别为1和4,高也为4的圆台的侧面积、表面积及体积的算法.解:算法步骤如下:第一步取r1=1,r2=4,h=4;第二步计算l=(r2-r1)2+h2;第三步计算S1=πr21,S2=πr22,S侧=π(r1+r2)l;第四步计算S表=S1+S2+S侧;第五步计算V=13(S1+S1S2+S2)h.[层级一学业水平达标]1.有关算法的描述有下列几种说法:①对一类问题都有效;②对个别问题有效;③可以一步一步地进行,每一步都有唯一的结果;④是一种通法,只要按部就班地做,总能得到结果.其中描述正确的为________.解析:算法通常是指可以用计算机来解决的某一类问题的程序或步骤,所以①正确,②错误.由于算法必须是明确的,有效的,而且在有限步内完成,故③④正确.答案:①③④2.某人坐飞机去外地办一件急事,下面是他自己从家里出发到坐在机舱内的主要算法,请补充完整.第一步,乘车去飞机场售票处;第二步,____________________________;第三步,凭票登机对号入座.答案:在售票处购买飞机票3.已知算法:第一步,输入n .第二步,判断n 是否是2,若n =2,则n 满足条件;若n >2,则执行第三步.第三步,依次检验从2到n -1的整数能不能整除n ,若不能整除n ,满足条件.该算法的功能是________.解析:因为2是质数,且大于2的任何数,只要它不能被2,3,…,n -1整除,则n 一定为质数.故上述步骤是判断n 是否为质数的算法.答案:判断所给的数是否为质数4.写出求长、宽、高分别为3,2,4的长方体表面积的算法:第一步 取a =3,b =2,c =4;第二步 ____________________________________________________;第三步 输出结果S .答案:计算S =2ab +2bc +2ac5.已知函数y =⎩⎪⎨⎪⎧-x 2-1(x ≤-1),x 3(x >-1),试设计一个算法输入x 的值,求对应的函数值. 解:算法如下:第一步 输入x 的值;第二步 当x ≤-1时,计算y =-x 2-1,否则执行第三步;第三步 计算y =x 3;第四步 输出y .[层级二 应试能力达标]1.已知球的表面积为16π,求球的体积的一个算法如下:第一步 取S =16π;第二步 _____________________________________________________;第三步 _____________________________________________________.将其补充完整.答案:计算R =S 4π(由于S =4πR 2) 计算V =43πR 3 2.下面是求2×4×6×8×10的一个算法,请将它补充完整.第一步 计算2×4得8;第二步 将第一步中的运算结果8与6相乘得48;第三步 _________________________________________________________; 第四步 _________________________________________________________.答案:将第二步中的运算结果48与8相乘得384将第三步中的运算结果384与10相乘得3 8403.求二次函数y =ax 2+bx +c (a ≠0)的最值的一个算法如下,请将其补充完整:(1)计算m =4ac -b 24a. (2)________________________________________________________________.(3)________________________________________________________________.解析:m 是最大值还是最小值由a 的正负确定,依据二次函数求最值的方法,确定第二、三步的内容.答案:如果a >0,则得到y min =m ,否则执行第三步得到y max =m4.有蓝和黑两种墨水瓶,但是现在却错把蓝墨水装在黑墨水瓶中,黑墨水装在了蓝墨水瓶中,要求将其互换,下面是将其互换的一个算法,请将其补充完整.第一步 准备一个干净的空瓶;第二步 将黑墨水瓶中的蓝墨水倒入空瓶中,并将黑墨水瓶洗干净;第三步 _______________________________________________________;第四步 _______________________________________________________.答案:将蓝墨水瓶中的黑墨水倒入黑墨水瓶中,并将蓝墨水瓶洗干净 将蓝墨水倒入蓝墨水瓶中5.如下算法:第一步 输入x 的值;第二步 若x ≥0成立,则y =2x ,否则执行第三步;第三步 y =log 2(-x );第四步 输出y 的值.若输出结果y 的值为4,则输入的x 的值为________.解析:算法执行的功能是给定x ,求分段函数y =⎩⎪⎨⎪⎧2x ,x ≥0,log 2(-x ),x <0对应的函数值. 由y =4知2x =4或log 2(-x )=4.∴x =2或-16.答案:2或-166.已知数字序列:2,5,7,8,15,32,18,12,52,8.写出从该序列搜索18的一个算法. 第一步 输入实数a .第二步 __________________________________________________________. 第三步 输出a =18.解析:从序列数字中搜索18,必须依次输入各数字才可以找到.答案:若a =18,则执行第三步,否则返回第一步7.给出下列算法:第一步 输入x 的值.第二步 当x >4时,计算y =x +2;否则执行下一步.第三步 计算y =4-x .第四步 输出y .当输入x =10时,输出y =__________.解析:∵x =10>4,∴计算y =x +2=12.答案:128.下面给出一个问题的算法:第一步 输入x ;第二步 若x ≥4,则执行第三步,否则执行第四步;第三步 输出2x -1;第四步 输出x 2-2x +3.(1)这个算法解决的问题是______________________________________________.(2)当输入x 值为________时输出的值最小?解析:(1)这个算法解决的问题是求分段函数f (x )=⎩⎪⎨⎪⎧ 2x -1,x ≥4,x 2-2x +3,x <4的函数值问题. (2)当x ≥4时,f (x )=2x -1≥7,当x <4时,f (x )=x 2-2x +3=(x -1)2+2≥2.∴当x =1时,f (x )min =2.即当输入x 的值为1时,输出的值最小.答案:(1)求函数f (x )=⎩⎪⎨⎪⎧2x -1,x ≥4,x 2-2x +3,x <4的函数值 (2)19.写出求a ,b ,c 中最小值的算法.解:算法如下:第一步 比较a ,b 的大小,当a >b 时,令“最小值”为b ;否则,令“最小值”为a ; 第二步 比较第一步中的“最小值”与c 的大小,当“最小值”大于c 时,令“最小值”为c ;否则,“最小值”不变;第三步 “最小值”就是a ,b ,c 中的最小值,输出“最小值”.10.已知直线l 1:3x -y +12=0和l 2:3x +2y -6=0,求l 1,l 2,y 轴围成的三角形的面积.写出解决本题的一个算法.解:算法如下:第一步 解方程组⎩⎪⎨⎪⎧ 3x -y +12=0,3x +2y -6=0得l 1,l 2的交点P (-2,6);第二步 在方程3x -y +12=0中令x =0得y =12,从而得到A (0,12);第三步 在方程3x +2y -6=0中令x =0得y =3,得到B (0,3);第四步 求出△ABP 底边AB 的长AB =12-3=9;第五步 求出△ABP 的底边AB 上的高h =2;第六步 代入三角形的面积公式计算S =12AB ·h ; 第七步 输出结果.流程图。
2.1.1简单随机抽样[新知初探]1.简单随机抽样从个体数为N的总体中逐个不放回地取出n个个体作为样本(n<N),如果每个个体都有相同的机会被取到,那么这样的抽样方法称为简单随机抽样.2.抽签法实施步骤(1)将总体中的N个个体编号;(2)将这N个号码写在形状、大小相同的号签上;(3)将号签放在同一箱中,并搅拌均匀;(4)从箱中每次抽出1个号签,连续抽取k次;(5)将总体中与抽到的号签的编号一致的k个个体取出.3.随机数表法实施步骤(1)将总体中的个体编号(每个号码位数一致);(2)在随机数表中任选一个数作为开始;(3)从选定的数开始按一定的方向读下去,若得到的号码在编号中,则取出;若得到的号码不在编号中或前面已经取出,则跳过,如此继续下去,直到取满为止;(4)根据选定的号码抽取样本.[点睛]抽签法的优点是简单易行,缺点是当总体的容量非常大时,不方便.随机数表法当总体容量稍大时,比抽签法简便.[小试身手]1.为了了解全校300名高一学生的体重情况,从中抽取60名学生进行测量,下列说法正确的是________(填序号).①总体是300;②个体是每一名学生;③样本是60名学生;④样本容量是60.答案:④2.某校有40个班,每班50人,每班选派3人参加“学代会”,在这个问题中样本容量是________.答案:1203.下列抽取样本的方式不是简单随机抽样的序号是________.①从无限多个个体中抽取50个个体作为样本.②箱子里有100支铅笔,从中选取10支进行检验,在抽样操作时从中任意拿出一支检测后再放回箱子里.③从50个个体中一次性抽取5个个体作为样本.答案:①②③简单随机抽样的判断单随[典例]下列抽样方法是简单随机抽样吗?为什么?(1)从无限多个个体中抽取100个个体作为样本.(2)从20个零件中一次性抽取3个进行质量检验.(3)从班上50名同学中选数学成绩最好的2名同学参加数学竞赛.(4)某班45名同学,指定个子最高的5名同学参加学校组织的某项活动.[解](1)不是简单随机抽样,因为被抽取样本的总体的个数是无限的,而不是有限的.(2)不是简单随机抽样,因为简单随机抽样是逐个抽取个体,而不是一次性抽取个体.(3)不是简单随机抽样,因为每个个体被抽取的可能性不相等.(4)不是简单随机抽样,不符合“等可能性”,因为五名同学是指定的,而不是随机抽取的.下列问题中,最适合用简单随机抽样方法抽样的是________(填序号).①从10台电冰箱中抽出3台进行质量检查;②某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人,教育部门为了了解学校机构改革意见,要从中抽取一个容量为20的样本;③某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田的平均产量.解析:①的总体容量较小,用简单随机抽样比较方便;②由于学校各类人员对这一问题的看法可能差异很大,不宜用简单随机抽样;③总体容量较大,并且各类田地的产量差别很大,也不宜用简单随机抽样.答案:①[典例] 某班有40名同学,随机抽取其中10名同学参加某项活动,请写出采用抽签法抽取的过程.[解] 第一步,对这40名学生进行编号,可以编为1,2,3, (40)第二步,将号码写在形状、大小相同的号签上. 第三步,将号签放在同一不透明的箱中,并搅拌均匀.第四步,从箱中每次抽取1个号签,连续抽取10次. 第五步,将与号签上的号码对应的同学抽出即得样本.抽签法的应[活学活用]上海某中学从40名学生中选1名学生作为上海男篮拉拉队成员,采用下面两种方法选取.方法一:将40名学生按1~40进行编号,相应制作1~40的40个号签,把这40个号签放在一个暗箱中搅拌均匀,最后随机地从中抽取1个号签,与这个号签号码一致的学生幸运入选;方法二:将39个白球与1个红球混合放在一个暗箱中搅匀,让40名学生逐一从中摸取1个球,摸到红球的学生成为拉拉队成员.试问这两种方法是否都是抽签法?为什么?解:抽签法抽样时给总体中的N个个体编号各不相同,由此可知方法一是抽签法,因为抽签法要求所有的号签编号互不相同,而方法二中39个白球无法相互区分,故方法二不是抽签法.这两种方法的相同之处在于每名学生被选中的机会都相等.随机数表法的应用[典例]为了检验某公司生产的800袋面粉质量是否达标,现从800袋面粉中抽取80袋进行检验.写出用随机数表法抽取样本的过程.[解]第一步,将800袋面粉编号,号码为001,002,…,799,800.第二步,在随机数表中,任选一个数作为开始,如选第3行第6列的数2.第三步,从选定的数2开始向右读(读数的方向还可以向左、向下、向上),得到一个三位数227,由于227<799,说明号码227在总体内,将它取出;继续向右读,得到665,由于665<799,说明665在总体中,将它取出,若得到的号码不在编号中或前面已经取出,则跳过;按照这种方法继续向右读,依次下去,直到将样本的80个号码全部取出为止.第四步,对照号码,把对应编号的面粉抽出,这样就得到一个容量为80的样本.本例若改成质检人员从生产的100袋面粉中,用随机数表法抽取10袋检查.对100袋面粉采用下面编号方法:①01,02,03,…,100;②001,002,003,…100;③00,01,02,…,99其中最恰当的编号方法是______(填序号).解析:只有编号时数字位数相同,才能达到随机等可能抽样.否则的话,由①是先选二位数字呢?还是先选三位数字呢?那就破坏了随机抽样.②③的编号位数相同,可以采用随机数表法,但②中号码是三位数,读数费时,③省时.答案:③层级一 学业水平达标1.采用简单随机抽样从含有6个个体的总体中抽取一个容量为3的样本,某个个体前两次未被抽到,第三次被抽到的机会是________.解析:采用简单随机抽样时,每个个体被抽到的机会相等,与第几次抽取无关.答案:162.下列抽样中是简单随机抽样的是________.①从100个号签中一次取出5个作为样本②某连队从200名党员官兵中,挑选出50名最优秀的官兵参加救灾工作③一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地逐个抽出6个号签④从某班56名(30名男生,26名女生)学生中随机抽取2名男生,2名女生参加乒乓球混双比赛解析:①不是逐个抽取,所以不是简单随机抽样;②④不满足等可能抽样,所以不是简单随机抽样;③是简单随机抽样.答案:③3.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的可能性为________.解析:可能性为5100=120. 答案:1204.对于简单随机抽样的下列说法:①它要求被抽取的总体个数有限;②它是从总体中逐个地抽取;③它是一种不放回抽样. 其中正确的序号是________.解析:由简单随机抽样的特点知,①②③均正确.答案:①②③5.从个体总数N=500的总体中抽取一个容量为n=10的样本,使用随机数表法进行抽取,要取三位数.写出你抽得的样本,并写出抽选过程(起点在第几行第几列,具体方法).解:第一步:将总体中的个体编号(三位数)为000,001,002, (499)第二步:在随机数表中随机地确定一个数作为开始.如第6行第13列的数5开始;第三步:从数5开始向右读下去,每次读三位,凡不在000~499中的数跳过去,遇到已经读过的数也跳过去,便可依次得到354,378,384,263,491,442,175,331,455,068.这10个号码就是所需抽取的10个样本个体的号码.层级二应试能力达标1.为了了解某校高一学生的期末考试情况,要从该年级700名学生中抽取120名学生进行数据分析,则在这次考查中,考查总体数为________,样本容量是________.答案:7001202.在简单随机抽样中,某一个体被抽到的可能性与顺序________(填“无关”或“有关”).解析:简单随机抽样中,每个个体被抽到的可能性相同,与顺序无关.答案:无关3.在用抽签法抽样时,有下列五个步骤:(1)从箱中每次抽出1个号签,并记录其编号,连续抽取k次;(2)将总体中的所有个体编号;(3)制作号签;(4)将总体中与抽到的签的编号相一致的个体取出构成样本;(5)将号签放在同一箱中,并搅拌均匀.以上步骤的次序是____________________________________________________.答案:(2)(3)(5)(1)(4)4.要检查一个工厂产品的合格率,从1 000件产品中抽出50件进行检查,检查者在其中逐一抽取了50件,这种抽样法可称为______________.解析:该题总体中个数为1 000,样本容量为50,总体的个数较少,所抽样本的个数也较少,可用简单随机抽样方法抽取.答案:简单随机抽样5.某校有50个班,每班50人,现抽查250名同学进行摸底考试,则每位同学被抽到的可能性为________.解析:根据简单随机抽样的特征,总量为50×50=2 500人.∴每位同学被抽到的可能性为2502 500=110. 答案:1106.下列抽样实验中,适合用抽签法的有________.①从某厂生产3 000件产品中抽取600件进行质量检验②从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验③从甲、乙两工厂生产的两箱(每箱15件)产品中抽取6件进行质量检验④从某厂生产的3 000件产品中抽取10件进行质量检验解析:①④中总体容量较大,不适合.③中甲、乙两厂生产的产品质量可能差异明显. 答案:②7.某工厂共有n 名工人,为了调查工人的健康情况,从中随机抽取20名工人作为调查对象,若每位工人被抽到的可能性为15,则n =________. 解析:∵简单随机抽样为机会均等的抽样,∴20n =15,即n =100. 答案:1008.(江西高考)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为______.解析:从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出的数字为08,02,14,07,01,…,故选出的第5个个体的编号为01.答案:019.某班有50名同学,要从中随机抽取6人参加一项活动,请用抽签法进行抽选,并写出过程.解:①将50名学生编号01,02,03, (50)②按编号制签;③将签放入同一个箱里,搅均;④每次从中抽取一个签,连续抽取6次;⑤取出与签号相应的学生,组成样本.10.说出下列抽取样本时运用了哪种抽样方法?并说明原因.设一个总体中的个体数N=345,要抽取一个容量为n=15的样本,现采用如下方法:从随机数表中任意选取三列构成三位数字号码,从中依次取出不同的三位数字号码,当数在001~345之间时,该号码抽入样本;当数在401~745之间时,则该数减去400的号码抽入样本中,其余的000,346~400,746~999的号码都不要;当某号码已抽入样本中,而再次遇到该号码被抽入样本时,只算一次.解:运用了简单随机抽样中的随机数表法.简单随机抽样的要求是给个体编号,逐个不放回抽取,操作的个体数量不宜太多,每个个体被抽取的机会均等,只有符合这些特点才是简单随机抽样.本题虽然取数时,设计了特别的规则,但是从随机数表中任意取数符合简单随机抽样的每个特点,所以本题运用了简单随机抽样法中的随机数表法.。
2013年全国青年歌手电视大奖赛决赛中十位评委在第一轮决赛中给某选手打分是:9,9,8,9,10,9,8,10,9,9.问题1:根据初中学过的知识,能计算得分的平均数吗?提示:能.x=110(9+9+8+9+10+9+8+10+9+9)=9.问题2:想一想,还有其它计算平均分的方法吗?提示:有.x=110(8×2+9×6+10×2)=9.1.平均数的概念一组数据的总和除以数据的个数所得的商就是这组数据的平均数(或均值),一般记为:a=a1+a2+…+a nn.2.平均数的计算(1)定义法:n个数据a1,a2,…,a n的平均数为:a=a1+a2+…+a nn.(2)平均数公式:①在n个数据中,如果x1出现f1次,x2出现f2次,…,x k出现f k次(f1+f2+…+f k=n),则这n个数的平均数为:x=x1f1+x2f2+…+x k f kn.②若取值为x1,x2,…,x n的频率分别为p1,p2,…,p n,则其平均数为x=x1p1+x2p2+…+x n p n.2013年9月某军校大一新生军训期间,甲、乙两同学在相同条件下练习射击,每人打5发子弹,命中环数如下:问题1提示:x甲=8,x乙=8.问题2:利用x甲和x乙的大小关系能否判断两同学的射击水平的高低?提示:不能.因为x甲=x乙.问题3:观察比较上面表格中的两组数据,哪个同学的射击更稳定些?提示:甲各次的命中环数更靠近在命中的平均环数8附近,故甲的射击更稳定些.问题4:除观察分析外是否有更准确的方法判断上述问题?提示:有.极差、方差、标准差:(1)极差:一组数据的最大值与最小值的差.(2)方差与标准差:设一组样本数据x1,x2,…,x n,其平均数为x,则称s2=1n ∑i=1n(x i-x)2为这个样本的方差,其算术平方根s=1n∑i=1n(x i-x)2为样本的标准差,分别简称样本方差、样本标准差.其中,标准差的单位与原始测量单位相同,方差的单位是原始数据单位的平方.(3)方差及标准差的意义:刻画一组数据的稳定程度.1.众数、中位数及平均数都是描述一组数据集中趋势的量,平均数是最重要的量.由于平均数与每一个样本数据有关,所以,任何一个样本数据的改变都会引起平均数的改变.这是中位数、众数都不具有的性质.2.标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小.[例1] 某公司的33名职工的月工资(以元为单位)如下:(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到 30 000元,那么新的平均数又是什么(精确到元)(3)你认为平均数能否反映这个公司员工的工资水平?结合此问题谈一谈你的看法. [思路点拨]先求出平均数,再根据平均数的意义及影响平均数的因素作答.[精解详析](1)平均数是x =133(5 500+5 000+2×3 500+3 000+5×2 500+3×2 000+20×1 500)=69 00033≈2 091(元).(2)平均数x ′=133(30 000+20 000+2×3 500+3 000+5×2 500+3×2 000+20×1500)=108 50033≈3 288(元).(3)在这个问题中,因为公司中少数人的工资额与大多数人的工资额差别较大,所以平均数不能反映这个公司员工的工资水平.[一点通]1.计算平均数时可直接套用公式计算.2.众数体现了样本数据的最大集中点,中位数是样本数据的“中心”,平均数则描述了数据的平均水平.1.一位同学种了甲、乙两种树苗各1株,分别观察了9次、10次后,得到树苗高度的数据的茎叶图如图(单位:厘米).则甲种树苗高度平均为________;乙种树苗的高度平均为________;甲、乙两种树苗高度平均为________.解析:根据茎叶图可得,观察甲树苗9次得到的树苗高度分别为:14,20,21,23,24,30,32,33,37;观察乙树苗10次得到的树苗高度分别为:10,11,14,24,26,30,44,46,46,47,易得甲树苗高度平均为2349=26,乙树苗高度平均为29810=29.8,甲、乙两种树苗高度平均为119(234+298)=28. 答案:26 29.8 282.某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:(1)(2)假设销售部负责人把每位营销员的月销售额定为320件,你认为是否合理?为什么?如不合理,请你制定一个较合理的销售定额,并说明理由.解:(1)平均数为: x =1×1 800+1×510+3×250+5×210+3×150+2×1201+1+3+5+3+2=320(件).中位数为210件;众数为210件.(2)不合理.因为15人中有13人的销售额达不到320件,320虽是所给数据的平均数,它却不能反映营销人员的一般水平,销售额定为210件合适一些,因为210既是中位数,又是众数,是大部分人能达到的定额.[例2] 从甲、乙两种玉米苗中各抽10株,分别测得它们的株高如下(单位:cm): 甲:25 41 40 37 22 14 19 39 21 42乙:27 16 44 27 44 16 40 40 16 40 问:(1)哪种玉米苗长得高? (2)哪种玉米苗长得齐?[思路点拨] 计算均值与方差后,作出结论. [精解详析] (1)∵x 甲=110(25+41+40+37+22+14+19+39+21+42)=110×300=30(cm),x 乙=110(27+16+44+27+44+16+40+40+16+40) =110×310=31(cm). ∴x 甲<x 乙,即乙种玉米苗长得高. (2)s 2甲=110[(25-30)2+(41-30)2+(40-30)2+(37-30)2+(22-30)2+(14-30)2+(19-30)2+(39-30)2+(21-30)2+(42-30)2]=110(25+121+100+49+64+256+121+81+81+144) =110×1 042=104.2, s 2乙=110[(2×272+3×162+3×402+2×442)-10×312] =110×1 288=128.8, ∴s 2甲<s 2乙,即甲种玉米苗长得齐.[一点通] 数据的离散程度可以通过极差、方差或标准差来描述.(1)极差是数据的最大值与最小值的差.它反映了一组数据变化的最大幅度,它对一组数据中的极端值非常敏感.(2)方差则反映了一组数据围绕平均数波动的大小.为了得到以样本数据的单位表示的波动幅度通常用标准差,即样本方差的算术平方根,是样本数据到平均数的一种平均距离.3.为了分析某篮球运动员在比赛中发挥的稳定程度,统计了该运动员在6场比赛中的得分,用茎叶图表示如图,则该组数据的方差为________.解析:该运动员6场的总得分为14+17+18+18+20+21=108,平均得分为1086=18,1 4 7 8 8 20 1方差=16[(14-18)2+(17-18)2+(18-18)2+(18-18)2+(20-18)2+(21-18)2]=5.答案:54.对划艇运动员甲、乙两人在相同条件下进行了6次测试,测得他们最大速度(单位:m/s)的数据如下:甲 27,38,30,37,35,31; 乙 33,29,38,34,28,36.根据以上数据,可以判断________更优秀. 解析:x甲=16(27+38+30+37+35+31)=33(m/s). s 2甲=16[(27-33)2+(38-33)2+…+(31-33)2]=946≈15.7(m 2/s 2). x乙=16(33+29+38+34+28+36)=33(m/s), s 2乙=16×[(33-33)2+(29-33)2+…+(36-33)2]=766≈12.7(m 2/s 2) ∴x甲=x 乙,s 2甲>s 2乙,说明甲乙两人的最大速度的平均值相同,但乙比甲更稳定,乙比甲更优秀.答案:乙[例3] (12分)从高三年级中抽出50名学生参加数学竞赛,由成绩得到如下的频率分布直方图,如图.试利用频率分布直方图估计: (1)这50名学生成绩的众数与中位数; (2)高三年级学生的平均成绩.[思路点拨] 由频率分布直方图读取数据后结合众数、中位数、平均数的含义作出分析. [精解详析] (1)由众数的概念可知,众数是出现次数最多的数.在直方图中高度最高的小矩形的中间值的横坐标即为所求,所以众数应为分)由于中位数是所有数据中的中间值,故在频率分布直方图中中位数左边和右边的频数应相等,即频率也相等,从而小矩形的面积和相等.因此,在频率分布直方图中将所有小矩形的面积一分为二的直线所对应的成绩即为所求.∵0.004×10+0.006×10+0.02×10=0.04+0.06+0.2=0.3,∴前三个小矩形的面积和为0.3,而第四个小矩形的面积为0.03×10=0.3,且0.3+0.3>0.5,∴中位数应位于第四个小矩形内.(6分)设中位数为x,又第四个小矩形的高为0.03,令0.03(x-70)=0.2得x≈76.7,故中位数为76.7. (8分)(2)样本平均数是频率分布直方图的“重心”,即所有数据的平均数,取每个小矩形底边的中点值乘以每个小矩形的面积再求和即可.(10分) 故平均成绩为45×(0.004×10)+55×(0.006×10)+65×(0.02×10)+75×(0.03×10)+85×(0.024×10)+95×(0.016×10)=76.2. (12分) [一点通]利用频率分布直方图估计数字特征:(1)众数是最高的矩形的底边的中点.(2)中位数左右两边直方图的面积应相等.(3)平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和.5.甲、乙两人在相同条件下各打靶10次,每次打靶的成绩情况如图所示:(1)请填写下表:(2)①从平均数和中位数相结合看,谁的成绩好些?②从平均数和命中9环以上(含9环)的次数相结合看,谁的成绩好些? ③从折线图中两人射击命中环数的走势看,谁更有潜力? 解:(1)由题图可知甲的平均数是7,中位数是7.5, 命中9环以上(含9环)的次数是3;乙的平均数是7,中位数是7,命中9环以上(含9环)的次数是1. (2)由(1)知,甲、乙的平均数相同.①甲、乙的平均数相同,甲的中位数比乙的中位数大,所以甲成绩较好.②甲、乙的平均数相同,甲命中9环以上(含9环)的次数比乙多,所以甲成绩较好. ③从折线图中看,在后半部分,甲呈上升趋势,而乙呈下降趋势,故甲更有潜力. 6.一名射击运动员射击8次所中环数如下: 9.9 10.3 9.8 10.1 10.4 10 9.8 9.7(1)求这8次射击的平均数x 是多少?标准差是多少?(2)环数落在①x -s 与x +s 之间;②x -2s 与x +2s 之间的各有几次,所占百分比各是多少?解:(1)x =9.9+10.3+9.8+10.1+10.4+10+9.8+9.78=10(环);s 2=18[(9.9-10)2+(10.3-10)2+(9.8-10)2+(10.1-10)2+(10.4-10)2+(10-10)2+(9.8-10)2+(9.7-10)2]=18(0.01+0.09+…+0.09)=0.448=0.055(环2) 所以s =0.055≈0.235(环) (2)①x -s =10-0.235=9.765,x +s =10+0.235=10.235,在这两个数据之间的数有5个,占到58=62.5%;②x -2s =10-0.235×2=9.53,x +2s =10+0.235×2=10.47,在这两个数据之间的数有8个,占到100%.1.利用直方图求众数、中位数、平均数均为近似值,往往与实际数据得出的不一致.但它们能粗略估计其众数、中位数和平均数.2.在实际问题中,仅靠平均数不能完全反映问题,因此还要研究样本数据偏离平均数的离散程度(即方差或标准差),标准差大说明样本数据分散性大,标准差小说明样本数据分散性小或者样本数据集中稳定.课下能力提升(十三)一、填空题1.一个样本数据按从小到大的顺序排列为13,14,19,x,23,27,28,31,中位数为22,则x 等于________.解析:由于中间数有两个, 故x +232=22,即x =21. 答案:212.一组数据的方差是s 2,将这组数据中的每一个数据都乘以2,所得到的一组数据的方差是________.解析:s ′2=[(2x 1-2x )2+(2x 2-2x )2+…+(2x n -2x )2]n =4[(x 1-x )2+(x 2-x )2+…+(x n -x )2]n =4s 2答案:4s 23.甲、乙两名同学在5次体育测试中的成绩统计如茎叶图所示,若甲、乙两人的平均成绩分别是X 甲、X 乙,则下列结论正确的有________.甲 乙 8 7 2 7 8 6 8 2 8 291 5①X 甲<X 乙,乙比甲成绩稳定 ②X 甲>X 乙,甲比乙成绩稳定 ③X 甲>X 乙,乙比甲成绩稳定④X 甲<X 乙,甲比乙成绩稳定解析:∵甲同学的成绩为78,77,72,86,92,乙同学的成绩为78,82,88,91,95, ∴X 甲=78+77+72+86+925=81,X 乙=78+82+88+91+955=86.8,∴X 甲<X 乙,从茎叶图上数据的分布情况看,乙同学的成绩更集中于平均值附近,这说明乙比甲成绩稳定.答案:①4.若样本x 1+1,x 2+1,…,x n +1的平均数为10,其方差为2,则对于样本x 1+2,x 2+2,…,x n +2的平均数为________,方差为________.解析:∵(x 1+1)+(x 2+1)+…+(x n +1)n =10, 故x 1+x 2+…+x n =10n -n =9n , 故x 1+x 2+…+x n +2n =11n , ∴(x 1+2)+(x 2+2)+…+(x n +2)n=11, s 21=1n [(x 1+1-10)2+(x 2+1-10)2+…+(x n +1-10)2]=1n [(x 1-9)2+(x 2-9)2+…+(x n-9)2]=1n [(x 1+2-11)2+(x 2+2-11)2+…+(x n +2-11)2] =s 22.故所求的平均数为11,方差为2. 答案:11 25.某人5次上班途中所花的时间(单位:分钟)分别为x 、y 、10、11、9.已知这组数据的平均数为10,方差为2,则|x -y |的值为________.解析:x =x +y +10+11+95=10,可得x +y =20,①根据方差的计算公式s 2=15[(x -10)2+(y -10)2+12+12]=2,可得x 2+y 2-20(x +y )+200=8,②由①②得|x -y |=4. 答案:4 二、解答题6.一次选拔运动员的比赛中,测得7名选手的身高(单位:cm)分布茎叶图如图,测得平均身高为177 cm ,有一名运动员的身高记录不清楚,其末位数记为x .(1)求x ; (2)求方差s 2.解:(1)180+181+170+173+178+179+170+x =177×7,即1231+x =1239, ∴x =8.(2)s 2=17(72+42+1+1+22+32+42)=967.7.假定以下数据是甲、乙两个供货商的交货时间(单位:天): 甲:10 9 10 10 11 11 9 11 10 10 乙:8 10 14 7 10 11 10 8 15 12估计两个供货商的交货情况,并判断哪个供货商的交货时间短一些,哪个供货商的交货时间比较具有一致性与可靠性.解:x 甲=110(10+9+10+10+11+11+9+11+10+10)=10.1(天) s 2甲=110[(10-10.1)2+(9-10.1)2+(10-10.1)2+(10-10.1)2+(11-10.1)2+(11-10.1)2+(9-10.1)2+(11-10.1)2+(10-10.1)2+(10-10.1)2]=0.49(天2);x乙=110(8+10+14+7+10+11+10+8+15+12)=10.5(天), s 2乙=110[(8-10.5)2+(10-10.5)2+(14-10.5)2+(7-10.5)2+(10-10.5)2+(11-10.5)2+(10-10.5)2+(8-10.5)2+(15-10.5)2+(12-10.5)2]=6.05(天2).从交货时间的平均数来看,甲供货商的交货时间短一些;从交货时间的方差来看,甲供货商的交货时间较稳定,因此甲供货商的交货时间比较具有一致性与可靠性.8.(安徽高考)为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如图.17 0 3 x 8 9 180 1(1)计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x 1,x 2,估计x 1-x 2的值.解:(1)设甲校高三年级学生总人数为n . 由题意知30n=0.05,解得n =600.样本中甲校高三年级学生数学成绩不及格人数为5,据此估计甲校高三年级这次联考数学成绩的及格率为1-530=56. (2)设甲、乙两校样本平均数分别为x ′1,x ′2.根据样本茎叶图可知30(x ′1-x ′2)=30x ′1-30x ′2 =(7-5)+(55+8-14)+(24-12-65)+(26-24-79)+(22-20)+92 =2+49-53-77+2+92 =15.因此x ′1-x ′2=0.5.故x 1-x 2的估计值为0.5分.。
2.3.2 方差与标准差[新知初探]1.极差、方差、标准差(1)极差:一组数据的最大值与最小值的差. (2)方差与标准差:设一组样本数据x 1,x 2,…,x n ,其平均数为x ,则称s 2=1n ∑i =1n(x i -x )2为这个样本的方差,其算术平方根s =1n ∑i =1nx i -x2为样本的标准差.2.方差与标准差的作用标准差与方差描述一组数据围绕平均数波动的大小,标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小.方差、标准差刻画了一组数据的稳定程度.[小试身手]1.数据0,1,3,4,7的极差为________,方差为________. 答案:7 62.一组数据1,2,3,4,a 的平均数是3,则数据的方差为________,标准差为________. 答案:223.若1,2,3,x 的平均数是5,而1,3,3,x ,y 的平均数是6,则1,2,3,x ,y 的方差是________. 解析:由5=1+2+3+x4得x =14.同理y =9.由s 2=15(12+22+32+142+92)-5.82=24.56.答案:24.56[典例] 甲、乙两机床同时加工直径为100 cm 的零件,为检验质量,各从中抽取6件测量,数据(单位:cm)为:甲:99 100 98 100 100 103; 乙:99 100 102 99 100 100. (1)分别计算两组数据的平均数及方差;(2)根据计算结果判断哪台机床加工零件的质量更稳定. [解] (1)x 甲=16(99+100+98+100+100+103)=100, x乙=16(99+100+102+99+100+100)=100. s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73. s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1.(2)两台机床所加工零件的直径的平均数相同,又s 2甲>s 2乙,所以乙机床加工零件的质量更稳定.方差、标准差的计算及应用[活学活用]某工厂甲、乙两个车间包装同一种产品,在自动包装传送带上每隔一小时抽一包产品,称其重量(单位:g)是否合格,分别记录抽查数据,获得重量数据茎叶图如下图:根据样本数据,计算甲、乙两个车间产品重量的均值与方差,并说明哪个车间的产品的重量相对稳定.解:设甲、乙两个车间产品重量的均值分别为x甲、x 乙,方差分别为s 2甲、s 2乙,则x 甲=122+114+113+111+111+1076=113,x 乙=124+110+112+115+108+1096=113,s 2甲=16[(122-113)2+(114-113)2+(113-113)2+(111-113)2+(111-113)2+(107-113)2]=21,s 2乙=16[(124-113)2+(110-113)2+(112-113)2+(115-113)2+(108-113)2+(109-113)2]=2913,由于s 2甲<s 2乙,所以甲车间的产品的重量相对稳定.方差的性质[典例] 设数据x 1,x 2,…,x n 的方差为s 2,求下列各组数据的方差. (1) x 1+b ,x 2+b ,…,x n +b ; (2)ax 1, ax 2,…,ax n ; (3)ax 1+b, ax 2+b ,…,ax n +b .[解] 设数据x 1,x 2,…,x n 的平均数为x , 则数据x 1+b ,x 2+b ,… ,x n +b 的平均数为x +b , 数据ax 1,ax 2,…,ax n 的平均数为a x ,数据ax 1+b ,ax 2+b ,…,ax n +b 的平均数为a x +b , 设数据x 1+b ,x 2+b ,…, x n +b 的方差为s 21, 数据ax 1,ax 2,…,ax n 的方差为s 22,数据ax 1+b ,ax 2+b ,…,ax n +b 的方差为s 23,(1) s 21=1n [(x 1+b -x -b )2+(x 2+b -x -b )2+…+(x n +b -x -b )2] =1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]=s 2, (2)s 22=1n [(ax 1-a x )2+(ax 2-a x )2+…+(ax n -a x )2] =a 2·1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]=a 2s 2,(3)s 23=1n [(ax 1+b -a x -b )2+(ax 2+b -a x -b )2+…+(ax n +b -a x -b )2] =1n [(ax 1-a x )2+(ax 2-a x )2+…+(ax n -a x )2] =a 2·1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]=a 2s 2.[活学活用]1.已知一组数据x1,x2,…,x8的平均数是2,方差为6,则数据x1-1,x2-1,…,x8-1的平均数是________,方差是________.答案:1 62.已知一组数据x1,x2,…,x n的平均数是-2,方差是4,则数据2x1+3,2x2+3,…,2x n+3的平均数是________,方差是________.答案:-116统计图表中的方差问题[典例](广东高考)某工厂36名工人的年龄数据如下表.(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据.(2)计算(1)中样本的均值x和方差s2.(3)36名工人中年龄在x-s与x+s之间有多少人?所占的百分比是多少(精确到0.01%)?[解] (1)36人分成9组,每组4人,其中第一组的工人年龄为44,所以它在组中的编号为2,所以所有样本数据的编号为4n -2(n =1,2,…,9), 其年龄数据为:44,40,36,43,36,37,44,43,37. (2)由均值公式知:x =44+40+…+379=40,由方差公式知:s 2=19[(44-40)2+(40-40)2+…+(37-40)2]=1009.(3)因为s 2=1009,s =103,所以36名工人中年龄在x -s 和x +s 之间的人数等于年龄在区间[37,43]上的人数, 即40,40,41,…,39,共23人.所以36名工人中年龄在x -s 和x +s 之间的人数所占的百分比为2336×100%≈63.89%.[活学活用]从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?解:(1)如图所示:(2)质量指标值的样本平均数为x=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为s2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定.层级一学业水平达标1.给出下列说法:①一组数据不可能有两个众数;②一组数据中的方差必须是正数;③将一组数据中的每一个数据加上或减去同一常数后,方差恒不变;④在频率分布直方图中,每个小长方形的面积等于相应小组的频率,其中错误的个数有________个.答案:22.某老师从星期一到星期五收到电子邮件数分别是10,6,8,5,6,则该组数据的方差s 2=________.解析:5个数据的平均数x =10+6+8+5+65=7,所以s 2=15×[(10-7)2+(6-7)2+(8-7)2+(5-7)2+(6-7)2]=3.2.答案:3.23.抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:则成绩较为稳定(方差较小)的那位运动员成绩的方差为________.解析:易知均值都是90,甲的方差为s 2甲=15×[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2]=4.乙的方差为s 2乙=15×[(89-90)2+(90-90)2+(91-90)2+(88-90)2+(92-90)2]=2.∴s 2甲>s 2乙答案:24.如图是某市歌手大奖赛七位评委为某位选手打出分数的茎叶图,若去掉一个最高分和一个最低分,则剩余分数的方差为________.解析:去掉一个最高分和一个最低分,所剩数据为84,84,84,86,87,其均值为85,方差为s 2=15[(84-85)2×3+(86-85)2+(87-85)2]=85.答案:855.从甲、乙两种玉米苗中各抽10株,分别测得它们的株高如下(单位:cm): 甲:25 41 40 37 22 14 19 39 21 42 乙:27 16 44 27 44 16 40 40 16 40 问:(1)哪种玉米苗长得高? (2)哪种玉米苗长得齐?解:(1)∵x甲=110(25+41+40+37+22+14+19+39+21+42)=110×300=30(cm),x乙=110(27+16+44+27+44+16+40+40+16+40)=110×310=31(cm).∴x甲<x乙,即乙种玉米苗长得高.(2)s2甲=110[(25-30)2+(41-30)2+(40-30)2+(37-30)2+(22-30)2+(14-30)2+(19-30)2+(39-30)2+(21-30)2+(42-30)2]=110(25+121+100+49+64+256+121+81+81+144)=110×1 042=104.2,s2乙=110(2×272+3×162+3×402+2×442)-312=128.8,∴s2甲<s2乙,即甲种玉米苗长得齐.层级二应试能力达标1.甲、乙、丙、丁四人参加奥运会射击项目选拔赛,四人的平均成绩和方差见表:则参加奥运会的最佳人选应为________.解析:由平均数及方差的定义知,丙的平均成绩较高且较稳定.答案:丙2.某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是________.①这种抽样方法是一种分层抽样;②这种抽样方法是一种系统抽样;③这五名男生成绩的方差大于这五名女生成绩的方差;④该班级男生成绩的平均数小于该班女生成绩的平均数.解析:对①,分层抽样要求男女生总人数之比等于男女生抽样人数之比,所以①错.对②,系统抽样要求先对个体进行编号再抽样,所以②错.对③,男生方差为8,女生方差为6,所以③正确.对④,抽取的样本平均成绩不能代表总体平均成绩.所以④错.答案:③3.某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9.已知这组数据的平均数为10,方差为2,则x 2+y 2的值为________.解析:由15(x +y +10+11+9)=10,15[(x -10)2+(y -10)2+0+1+1]=2,联立解得x 2+y 2=208.答案:2084.若10个正数的平方和是370,方差是33,则平均数为________. 解析:由s 2=110(x 21+x 22+…+x 210)-x 2,得33=110×370-x 2,解得x =2. 答案:25.样本容量为10的一组数据,它们的平均数是5,频率条形图如图,则其标准差等于________.解析:由条形图知2与8的个数相等,且多于5的个数,于是这10个数分别为2,2,2,2,5,5,8,8,8,8.∵x =5,∴s 2=110[(2-5)2+(2-5)2+(2-5)2+(2-5)2+(5-5)2+(5-5)2+(8-5)2+(8-5)2+(8-5)2+(8-5)2]=110×8×9=365.∴s =655.答案:6556.甲、乙两名同学在五次考试中的数学成绩统计用茎叶图表示如图所示,则成绩的方差较小的为________.解析:x 甲=15(98+99+105+115+118)=107, x乙=15(95+106+108+112+114)=107. s 2甲=15[(98-107)2+(99-107)2+(105-107)2+(115-107)2+(118-107)2]=66.8.s2乙=15[(95-107)2+(106-107)2+(108-107)2+(112-107)2+(114-107)2]=44.∴成绩的方差较小的为乙.答案:乙7.一组数据的每一个数据都减去80,得到一组新数据,若求得的新数据的平均数是1.2,方差是4.4,则原来的数据的平均数和方差分别是________.解析:由平均数与方差的性质知原来数据的平均数1.2+80=81.2.方差不变.答案:81.2,4.48.为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为s1,s2,s3,则它们的大小关系为________.解析:由直方图容易求得甲、乙、丙三个社区“家庭每月日常消费额”的平均值分别为2 200 元、2 250 元、2 150 元,又由直方图可知甲的数据偏离平均值最大,故标准差最大,乙的数据偏离平均值最小,故标准差最小,即标准差的大小关系是s1>s3>s2.故填s1>s3>s2.答案:s1>s3>s29.对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下表:(1)(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、中位数、标准差,并判断选谁参加比赛更合适.解:(1)画茎叶图如图所示,中间数为数据的十位数.从这个茎叶图中可以看出,甲、乙的得分情况都是分布均匀的,只是乙更好一些;乙的中位数是33.5,甲的中位数是33.因此,乙发挥比较稳定,总体得分情况比甲好.(2)可求x甲=33,x乙=33,s甲≈3.96,s乙≈3.56,甲的中位数是33,乙的中位数是33.5,综合比较,乙参加比赛较合适.10.总体的各个个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,且总体的中位数为10.5,求使该总体的方差最小时a,b的取值.解:∵数据共有10个,且总体的中位数为10.5,∴a+b=21,经计算,此时样本数据的平均数是10,∴使该总体的方差最小,则只要(a-10)2+(b-10)2最小即可,而(a-10)2+(b-10)2=(a-10)2+(a-11)2=2a2-42a+221,由二次函数的图象可知当a=10.5时,该总体的方差最小,此时b=10.5.。
1.2.3 循环结构[新知初探]1.循环结构的定义需要重复执行同一操作的结构称为循环结构. 2.循环结构的结构形式(1)当型循环:先判断所给条件p 是否成立,若p 成立,则执行A ,再判断条件p 是否成立;若p 仍成立,则又执行A ,如此反复,直到某一次条件p 不成立时为止(如右图).(2)直到型循环:先执行A ,再判断所给条件p 是否成立,若p 不成立,则再执行A ,如此反复,直到p 成立,该循环过程结束(如右图).[点睛](1)构成循环结构的三要素: 循环变量、循环体、循环终止条件.(2)当型循环的顺序是:先判断再执行再循环. 直到型循环的顺序是:先执行再判断再循环.[小试身手]1.①任何一种算法都离不开顺序结构,顺序结构是算法的最基本形式; ②循环结构一定包含选择结构; ③循环结构只有一个入口和一个出口; ④循环结构的形式有且只有一种;以上四种说法中正确个数有________.答案:32.解决下列问题可能需用循环结构的是________.①求函数y=|x-1|的函数值;②求函数y=2x在x=1,2,3,…,10时的函数值;③求1+2+3+…+10的值.答案:②③循环结构的认识[典例]图1、图2是两个循环结构的流程图,分别指出它们是哪种类型的循环结构、循环变量、循环次数、循环终止条件、循环体及输出的结果.[解]图1表示的循环结构是直到型循环结构,循环变量是S及i,循环次数9次,循环终止条件是i>10,循环体是S←S+i和i←i+1,输出结果为55.图2表示的循环结构是当型循环结构,循环变量是S及i,循环次数10次,循环终止条件是i>10,循环体是S←S+i和i←i+1,输出结果为55.某流程图如图,则此循环结构是______循环结构,循环变量是________,若输入的i 为2,则输出的S 值是______.答案:当型 S 和n 3[典例] 设计一种流程图计算1×2×3×4×…×n (n ≥2). [解] 法一:当型流程图如图所示:法二:直到型流程图如图所示:循环结构的设计[活学活用]写出求1×3×5×7×9×11的值的一个算法,并画出流程图.解:法一:算法如下:S1T←1;S2I←3;S3T←T×I;S4I←I+2;S5如果I>11,那么转S6,否则转S3;S6输出T.上述算法用流程图表示为如图所示.法二:算法如下:S1T←1;S2I←3;S3如果I≤11,那么转S4,否则转S6;S4T←T×I;S5I←I+2,转S3;S6输出T.上述算法用流程图表示为如图所示.循环结构的实际应用[典例]某专家称,中国的通货膨胀率保持在3%左右对中国经济的稳定有利无害.所谓通货膨胀率为3%,指的是每年消费品的价格增长率为3%.在这种情形下,某种品牌的钢琴2016年的价格是10 000元,请用流程图描述这种钢琴今后4年的价格变化情况,并输出4年后钢琴的价格.[解]由题意知n年后钢琴价格为P=10 000(1+R)n(R=0.03,1≤n≤4)故流程图为某班共有学生50人,在一次数学测试中,要搜索出测试中及格(60分及以上)的成绩,试设计一个算法,并画出流程图.解:算法如下:S1i=1.S2输入x,S3若x≥60,则输出,S4i=i+1.S5判断i>50,是结束;否则执行S2.流程图如下:[层级一学业水平达标]1.已知下列说法:①虽然算法叙述的形式有很多类型,但算法表示为流程图按其逻辑结构分类仅有三种;②循环结构中,循环体根据条件是否成立会被反复无休止的执行;③求函数f(x)=a(1+r)x(r>-1且r≠0),当x=0,1,2,3,…,100时的函数值时可用循环结构;④选择结构中根据条件是否成立有不同的流向.其中正确说法的序号为________.答案:①③④2.如图流程图中,输出的结果为________.解析:S=1+3+5+…+19=100;答案:1003.按如图所示的流程图运算,若输出k=2,则输入x的取值范围是________.解析:第一次运行x=2x+1,k=1,第二次运行x=2(2x+1)+1,k=2,此时输出x的值,则2x+1≤115且2(2x+1)+1>115,解得28<x≤57.答案:(28,57]4.某程序框图如图所示,若该程序运行后输出的值是95,则a =________.解析:由程序框图及最后输出的值为95可知,当k =1时,S =1,k >a 不成立, 故S =1+11×2=32,k =2>a 不成立,故S =32+12×3=53,k =3>a 不成立,故S =53+13×4=74,k =4>a 不成立,故S =74+14×5=95,此时k =5>a 成立, ∴a =4. 答案:45.用循环结构写出计算11×3+12×4+13×5+…+1100×102的流程图.解:如图所示:[层级二应试能力达标]1.如图所示的流程图的算法功能是__________________________.输出的结果i=________,i+2=________.答案:求积为624的相邻的两个偶数24262.执行如图所示的流程图,输入l=2,m=3,n=5,则输出的y值是________.解析:l=2,m=3,n=5,l2+m2+n2≠0,y=70×2+21×3+15×5=278>105,y=278-105=173>105,y=173-105=68,此时输出的y值为68.答案:683.如图是为求1~1 000的所有偶数的和而设计的一个流程图,则①处应填________,②处应填________.解析:因为当i ≤1 000时开始执行①②两部分结合循环结构的形式可知,该程序为当型循环结构,又i =2,sum =0,且计算2+4+6+…+1 000的值,故①②两处分别填sum =sum +i ,i =i +2.答案:sum ←sum +i i ←i +24.(浙江高考)若某流程图如图所示,则该程序运行后输出的值是________.解析:运行程序后,T =1,i =2;T =12,i =3;T =16,i =4;T =124,i =5;T =1120,i=6>5,循环结束.则输出的值为1120.答案:11205.执行如图所示的流程图,则共经过________次判断,经过________次循环体.答案:35346.如图所示的流程图,则该流程图表示的算法的功能是________.答案:计算连续正奇数相乘,所得积不小于10 000时的最后一个奇数7.依不同条件写出下列流程图的运行结果.(1)图(1)中箭头a指向①时,输出sum=________,指向②时,输出sum=________.(2)图(2)中箭头b指向①时,输出sum=________,指向②时,输出sum=________. 答案:(1)515(2)6208.如图所示的流程图表示的算法功能是__________.答案:计算函数f(x)=ln x,当自变量x=1,2,…,100时的函数值9.以下是某次考试中某班15名同学的数学成绩:72,91,58,63,84,88,90,55,61,73,64, 77,82,94,60.要求将80分以上的同学的平均分求出来.画出流程图.解:流程图如下所示:面的问题:(1)其中正确的流程图有哪几个?错误的流程图有哪几个?错误的要指出错在哪里?(2)错误的流程图中,按该流程图所蕴含的算法,能执行到底吗?若能执行到底,最后输出的结果是什么?解:(1)正确的流程图只有图③,图①有三处错误:第一处错误,第二个图框中i←42,应该是i←4,因为本流程图中的计数变量是i,不是i2,在22,42,…,1002中,指数都是2,而底数2,4,6,8,…,100是变化的,但前后两项的底数相差2,因此计数变量是顺加2.第二处错误,第三个图框中的内容错误,累加的是i2而不是i,故应改为p←p+i2.第三处错误,第四个图框中的内容,其中的指令i←i+1,应改为i←i+2,原因是底数前后两项相差2.图②所示的流程图中有一处错误,即判断框中的内容错误,应将框内的内容“i<100”改为“i≤100”或改为“i>100”且判断框下面的流程线上标注的Y和N互换.(2)图①虽然能进行到底,但执行的结果不是所期望的结果,按照这个流程图最终输出的结果是p=22+42+(42+1)+(42+2)+…+(42+84).图②虽然能进行到底,但最终输出的结果不是预期的结果而是22+42+62+ (982)少了1002.。
问题1:如何求12与20的最大公约数? 提示:短除法.一般情况下数字不应过大.问题2:若求6 750与3 492的最大公约数,上述方法还奏效吗? 提示:数值很大时短除法不方便用.问题3:对于问题1中12与20的最大公约数是4.若用20除以12余8,再用8去除12余4,再用4去除8余数为0,也可求得最大公约数为4.若对较大两数可否用此法求公约数?提示:可以.1.孙子问题(1)问题名称:人们将“韩信点兵——孙子问题”这种问题的通用解法称为“孙子剩余定理”或“中国剩余定理”.(2)问题思想:“孙子问题”相当于求关于x ,y ,z 的不定方程组⎩⎪⎨⎪⎧m =3x +2m =5y +3的正整数解.m =7z +22.欧几里得辗转相除法(1)含义:公元前3世纪,欧几里得在《原本》第七篇中介绍了求两个正整数a ,b (a >b )的最大公约数的方法,这种方法称为“欧几里得辗转相除法”.(2)步骤:计算出a ÷b 的余数r ,若r =0,则b 即为a ,b 的最大公约数;若r ≠0,则把前面的除数b 作为新的被除数,把余数r 作为新的除数,继续运算,直到余数为0,此时的除数即为a ,b 的最大公约数.3.两个常用函数(1)Mod(a ,b )表示a 除以b 所得的余数. (2)Int(x )表示不超过x 的最大整数.1.由除法和减法的性质可知,对于任意两个正整数,辗转相除法或更相减损术总可以在有限步之后完成,故总能用这两种方法求出任意两个正整数的最大公约数.2.辗转相除法的理论依据是:由a=nb+r⇒r=a-nb得a、b与b、r有相同的公约数.[例1]有3个连续的正整数,其中最小的能被15整除,中间的能被17整除,最大的能被19整除,画出求满足要求的一组三个连续正整数的流程图,并写出伪代码.[思路点拨]设这三个数分别为m,m+1,m+2,则m满足的条件是Mod(m,15)=0且Mod(m+1,17)=0且Mod(m+2,19)=0.[精解详析]流程图:伪代码:m←2While Mod(m,15)≠0orMod(m+1,17)≠0orMod(m+2,19)≠0m←m+1End WhilePrint m,m+1,m+2[一点通]解决此类问题的方法就是从m=2开始,对每一个正整数逐一检验,当m满足所有已知条件时,结束循环,输出m .1.如图所示的流程图,输出的结果是________.解析:m =10时,不满足条件,则m ←10+7. m =17时,Mod(m,3)=2且Mod(m,5)=2成立, 故输出17. 答案:172.下面一段伪代码的功能是________. m ←2While Mod(m,2)≠1 orMod(m,3)≠2 or Mod(m,5)≠3 m ←m +1 End While Print m解析:由代码含义可知,m 满足的条件是除以2余1,除以3余2,除以5余3,又m 逐个增大,故输出的m 是满足条件的最小正整数.答案:求关于x 、y 、z 的不定方程组⎩⎪⎨⎪⎧m =2x +1m =3y +2m =5z +3的最小正整数解[例2] 设计用辗转相除法求8 251与6 105的最大公约数的算法,并画出流程图,写出伪代码.[思路点拨] 按照辗转相除法的步骤设计算法、画流程图,根据流程图,写出伪代码. [精解详析] 算法如下 S1 a ←8 251; S2 b ←6 105;S3 如果Mod(a ,b )≠0,那么转S4,否则转S7; S4 r ←Mod(a ,b ); S5 a ←b ; S6 b ←r ,转S3; S7 输出b . 流程图与伪代码:[一点通] 辗转相除法是当大数被小数除尽时,结束除法运算,较小的数就是最大公约数.3.下图表示的流程图,输出的结果是________.a ←8 251b ←6 105While Mod (a ,b )≠0 r ←Mod (a ,b )a ←b b ←r End While Print b解析:第一次执行循环体:r=34,a=119,b=34,第二次执行循环体r=17,a=34,b=17.第三次执行循环体r=0,输出b=17.答案:174.求三个数168,56,264的最大公约数.解:先求168与56的最大公约数.∵168=56×3,故168与56的最大公约数是56.再求56与264的最大公约数.∵264=56×4+40,56=40×1+16,40=16×2+8,16=8×2.故56与264的最大公约数是8.因此168,56,264的最大公约数是8.[例3](12分)设计用二分法求方程x3-2=0在区间[1,2]内的近似解(误差不超过0.005)的流程图,写出伪代码.[思路点拨] 根据二分法求方程近似解的步骤画出流程图,然后根据流程图写出算法伪代码.[精解详析] 流程图如图:(6分)伪代码如下: a ←1 b ←2 c ←0.005 Do x 0←2a b+ f (a )←a 3-2f (x 0)←30x -2If f (x 0)=0 Then Exit DoIf f (a )f (x 0)<0 Then b ←x 0 Else a ←x 0 End If Until |a -b |<cEnd DoPrint x0(12分)[一点通]针对这个类型的题目书写伪代码时一定要注意伪代码的具体格式,另外循环语句中一定包含有条件结构的语句.求高次方程近似解时,一定要给出精确度.5.下面的流程图表示的算法的功能是________.答案:用二分法求方程x2-3x+1=0在区间[0,1]内的一个近似解(误差不超过0.001) 6.写出用区间二分法求方程x3-2x-3=0在区间[1,2]内的一个近似解(误差不超过0.001)的算法伪代码,并画出流程图.解:该问题的流程图如图所示.伪代码:Read a,b,c Dox0←a+b 2f(a)←a3-2a-3f(x0)←x30-2x0-3If f(x0)=0Then ExitDoIf f(a)×f(x0)<0Thenb←x0Elsea←x0End IfUntil|a-b|<cEnd DoPrint x01.用辗转相除法求两个数最大公约数的操作过程是先用较大的数除以较小的数,得商和余数,再用除数除以余数,重复操作,直到余数为零.这时小数就是要求的最大公约数,终止循环的条件是余数为零.2.用二分法求方程的近似解就是逐步把“解”所在的区间缩短,直到求出近似解或方程的解所在的区间长度小于误差为止.课下能力提升(七)一、填空题1.用辗转相除法求294和84的最大公约数时,需要做除法的次数是________.解析:294=84×3+42,84=42×2, 故需要做2次. 答案:22.下列伪代码运行的一个结果是________. m ←2While Mod(m,4)≠2 orMod(m,5)≠3 or Mod(m,7)≠3 m ←m +1 End While Print m解析:此伪代码的功能是求⎩⎪⎨⎪⎧m =4x +2,m =5x +3,m =7x +3 的最小正整数∴m =38. 答案: 383.如图所示的流程图,输出的结果是________.解析:由86>68得a =18,b =68,由68>18得b =50,a =18;由50>18得b =32,a =18;由32>18得b =14,a =18;由18>14得a =4,b =14;由14>4得b =10,a =4;由10>4得b =6,a =4;由6>4得b =2,a =4;由4>2得a =2,b =2.满足a =b ,输出2.答案:24.84和32的最小公倍数是________. 解析:先求84和32的最大公约数.84=32×2+2032=20+1220=12+812=8+48=4×2.故84和32的最大公约数是4.所以84和32的最小公倍数为84×32÷4=672.答案:6725.下列伪代码的运行结果是________.a←120b←252While a≠bIf a>ba←a-bElseb←b-aEnd IfEnd WhilePrint a解析:此伪代码的功能是求两个正整数的最大公约数.a,b的值依次是:(120,252)→(120,132)→(120,12)→(108,12)→(96,12)→(84,12)→(72,12)→(60,12)→(48,12)→(36,12)→(24,12)→(12,12),∴输出12.答案:12二、解答题6.已知如图所示的流程图(其中的m、n为正整数):Array(1)这个算法的功能是什么?(2)当m=286,n=91时,运行的结果是什么?解:(1)这个算法的功能是用辗转相除法求两个正整数的最大公约数.(2)∵286=91×3+13,91=13×7,∴286与91的最大公约数是13.故运行结果为13.7.试写出用二分法求方程x3+x2-1=0在[0,1]上的近似解的伪代码(精确度为0.01).解:伪代码如下:a←0b←1ε←0.01Dox0←(a+b)/2f(a)←a3+a2-1f(x0)←x30+x20-1If f(x0)=0 Then Exit DoIf f(a)f(x0)>0Thena←x0Elseb←x0End IfUntil |a-b|<εEnd DoPrint x08.有一堆围棋子,5个5个地数余2,7个7个地数余3,9个9个地数余4,请画出求这堆围棋子共有多少个的流程图,并写出伪代码.解:流程图:伪代码:m←2While Mod(m,5)≠2orMod(m,7)≠3orMod(m,9)≠4m←m+1End WhilePrint m。
一、抽样方法抽样方法有:简单随机抽样、系统抽样、分层抽样.简单随机抽样有抽签法、随机数表法.1.抽签法的步骤(1)编号:给总体中所有的个体编号(号码可以从1到N);(2)制签:将1~N这N个号码写在形状、大小都相同的号签上;(3)搅拌:将号签放在一个容器中,搅拌均匀;(4)抽签:每次从容器中不放回地抽取一个号签,并记录其编号,连续抽取n次;(5)取样:从总体中,将与抽到的号签编号一致的个体取出.2.系统抽样的步骤从元素个数为N的总体中抽取容量为n的样本的步骤如下:(1)编号:先将总体的N个个体编号;(2)分段:确定分段间隔k,对编号进行分段;(3)确定初始编号:在第一段用简单随机抽样确定第一个个体编号l(l≤k);(4)抽取样本:按照一定的规则抽取样本.3.分层抽样的步骤(1)分层,求抽样比:确定抽样比k=n N;(2)求各层抽样数:按比例确定每层抽取个体的个数n i=N i×k;(3)各层抽样:各层分别用简单随机抽样或系统抽样法抽取个体;(4)组成样本:综合每层抽取的个体,组成样本.二、总体分布的估计1.作频率分布直方图的步骤(1)求全距.(2)决定组距与组数,注意样本容量越大,所分组数越多.(3)将数据分组.(4)计算各小组的频率,作频率分布表,各小组的频率=各小组频数样本容量.(5)画频率分布直方图.2.茎叶图刻画数据的优缺点(1)所有信息都可以从图中得到;(2)便于记录和表示;(3)数据较多时不方便.3.用样本的频率分布估计总体的分布时的注意事项(1)对于同一组样本数据,确定的组距不同,得到的组数及分组也不同,绘制的频率分布直方图就会有差异,但都是对总体的近似估计.(2)应用频率分布直方图时,需明确纵轴表示的是频率/组距,进而进行相关计算.(3)绘制茎叶图时需注意同一组数据中的相同数据要一一列出.4.样本的数字特征(1)样本的数字特征可分为两大类:一类是反映样本数据集中趋势的,包括众数、中位数和平均数;另一类是反映样本波动大小的,包括方差及标准差.我们常通过样本的数字特征估计总体的数字特征.(2)在用样本的数字特征估计总体的数字特征时应注意:①任何一个样本数据的改变都会引起平均数的改变.特殊情况下,平均数可能受某几个极端值的影响,而偏离一般情况.②标准差的平方是方差,标准差的单位与样本数据的单位一致.③用样本的平均数和标准差估计总体的平均数和标准差时,样本的平均数和标准差只是总体的平均数和标准差的近似值.三、线性回归方程(1)两个随机变量x 和y 之间相关关系的确定方法有:①散点图法:通过散点图,观察它们的分布是否存在一定规律,直观地判断; ②表格、关系式法:结合表格或关系式进行判断. (2)用公式求线性回归方程的一般步骤是: ①列表x i ,y i ,x i y i .②计算x ,y ,∑i =1nx 2i ,∑i =1nx i y i .③代入公式计算b 、a 的值. ④写出线性回归方程. (3)学习变量的相关性时:①注意通过实例辨析确定性关系(函数关系)与相关关系.根据散点图分析两个变量间的相关关系是正相关还是负相关.②学会用最小平方法求已知样本数据的线性回归方程.用回归方程对数据进行估计时,得到的结果不是准确值.(时间90分钟,满分120分)一、填空题(本大题共14小题,每小题5分,共70分)1.在下列各图中,两个变量具有线性相关关系的图是________.解析:由散点图知(1)为函数关系,(4)不具有相关关系,故(2)(3)正确. 答案:(2)(3)2.某农场在三种地上种玉米,其中平地210亩,河沟地120亩,山坡地180亩,估计产量时要从中抽取17亩作为样本,则平地、河沟地、山坡地应抽取的亩数分别是________.解析:应抽取的亩数分别为210×17510=7(亩),120×17510=4(亩),180×17510=6(亩). 答案:7,4,63.设有一个直线回归方程为y ^=2-1.5x ,则变量x 增加一个单位时,y ^减少________个单位.解析:由y ^=2-1.5x 知当x 增加一个单位时,y ^减少1.5个单位. 答案:1.54.某校有老师200人,男学生1 200人,女学生1 000人,现用分层抽样的方法从所有师生中抽取一个容量为n 的样本.已知从女生中抽取80人,则n =________.解析:因为80∶1 000=8∶100,所以n ∶(200+1 200+1 000)=8∶100,所以n =192. 答案:1925.在样本频率分布直方图中共有11个小矩形,若中间一个小矩形的面积等于所有各小矩形面积和的14,样本容量是160,则中间一组的频数是________.解析:因为所有小矩形的面积和为1,所以中间这个小矩形的面积是14=0.25,即这一组样本数据的频率是0.25,所以这组的频数是160×0.25=40.答案:406.一组数据的方差是s 2,将这组数据中的每一个数都乘3,所得的一组新数据的方差是________.解析:设数据x 1,x 2,…,x n 的平均数为x ,则3x 1,3x 2,…,3x n 的平均数为x ′=1n (3x 1+3x 2+…+3x n )=3x ,∴s ′2=1n [(3x 1-3x )2+(3x 2-3x )2+…+(3x n -3x )2]=9×1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]=9s 2.答案:9s 27.已知x ,y 的取值如下表:从散点图可以看出y 与x 线性相关,且线性回归方程为y ^=0.95x +a ,则a =________. 解析:由数据得x =2,y =4.5,而回归直线必过(x ,y ),将(2,4.5)代入线性回归方程,得4.5=0.95×2+a ,故a =2.6. 答案:2.68.为了解一片大约一万株树木的生长情况,随机测量了其中100株树木的底部周长(单位:cm).根据所得数据画出的样本频率分布直方图如图所示,那么在这片树木中,底部周长小于110 cm 的株数大约是________.解析:底部周长小于110 cm 的频率为:(0.01+0.02+0.04)×10=0.7,所以底部周长小于110 cm 的株数大约是10 000×0.7=7 000.答案:7 0009.某校为了了解学生做家务情况,随机调查了50名学生,得到他们在某一天各自做家务所用时间的数据,结果如图所示,则可得到这50名学生在这一天平均每人做家务的时间为________h.解析:由题图可知,在调查的50名学生中有5人做家务时间为0 h ,有5人做家务时间为2.0 h ,有10人做家务时间为1.0 h ,有10人做家务时间为1.5 h ,有20人做家务时间为0.5 h ,所以一天中平均每人做家务的时间为(5×0+5×2+10×1+10×1.5+20×0.5)÷50=45÷50=0.9(h).答案:0.910.把容量为100的某个样本数据分为10组,并填写频率分布表,若前七组的频率之和为0.79,而剩下三组的频数满足:第一组频数是第二组频数的14,而第三组频数则是第二组频数的4倍.那么剩下三组中频数最高的一组的频数是________.解析:由题意知后三组的频率之和为1-0.79=0.21, 故后三组的频数之和为0.21×100=21.设后三组中第二组的频数为a ,则14a +a +4a =21,∴a =4.即后三组的频数依次为1,4,16.故后三组中频数最高的一组的频数是16. 答案:1611.在样本的频率分布直方图中,共有4个长方形,这4个小长方形的面积分别为S 、2S 、3S 、4S ,且样本容量为400,则小长方形面积最大的一组的频数为________.解析:∵S +2S +3S +4S =1,∴S =0.1.∴4S=0.4.∴0.4×400=160.答案:16012.某赛季甲、乙两名篮球运动员各13场比赛得分情况用茎叶图表示如下:甲乙988 1 7799610 2 25679 95320 3 02 37104根据上图对这两名运动员的成绩进行比较,某同学得到下列四个结论:①甲运动员得分的极差大于乙运动员得分的极差;②甲运动员得分的中位数大于乙运动员得分的中位数;③甲运动员得分的平均值大于乙运动员得分的平均值;④甲运动员的成绩比乙运动员的成绩稳定.则其中所有错误结论的序号是________.解析:①甲得分的极差为47-18=29,乙得分的极差为33-17=16,故①正确;②甲得分的中位数为30,乙得分的中位数为26,②正确;③x甲>x乙正确,s2甲<s2乙;④错误.答案:④13.某班50名学生期末考试数学成绩(单位:分)的频率分布直方图如图所示,其中数据不在分点上,对图中提供的信息作出如下的判断:(1)成绩在49.5~59.5分段的人数与89.5~99.5分段的人数相等;(2)从左到右数,第四小组的频率是0.03;(3)成绩在79.5分以上的学生有20人;(4)本次考试,成绩的中位数在第三小组.其中正确的判断有________.解析:(1)49.5~59.5与89.5~99.5两段所在矩形的高相等,所以人数相等.(2)从左到右数,第四小组的频率/组距的值为0.03,频率为0.03×10=0.3.(3)79.5分以上的学生共有:50×(0.03+0.01)×10=20人.(4)49.5~59.5与89.5~99.5段的人数相等,69.5~79.5段的人数比79.5~89.5的人数多,所以中位数在69.5~79.5段,即在第三小组.答案:(1)(3)(4)14.已知总体的各个体的值由小到大依次为2,3,3,7,a ,b,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a ,b 的取值分别是________.解析:因为总体中位数是10.5,所以a +b2=10.5,即a +b =21,b =21-a , 所以总体平均数是x =110(2+3+3+7+a +b +12+13.7+18.3+20)=79+(a +b )10=79+2110=10; 总体方差是s 2=110[(2-10)2+(3-10)2+…+(a -10)2+(b -10)2+…+(20-10)2]=a 2+b 210+13.758=a 2+(21-a )210+13.758 =15a 2-215a +57.858 =15(a -212)2+35.808.因为7≤a ≤b ≤12,所以当a =10.5时,s 2取得最小值35.808,b =10.5.答案:10.5,10.5二、解答题(本大题共4小题,共50分)15.(本小题满分12分)如图是甲、乙两人在射击比赛中中靶的情况(击中靶中心的圆面为10环,靶中各数字表示该数字所在圆环被击中所得的环数),每人射击了6次.(1)请用列表法将甲、乙两人的射击成绩统计出来;(2)请你用学过的统计知识,对甲、乙两人这次的射击情况进行比较.解:(1)(2)x 甲=9环,x 乙=9环,s 2甲=23,s 2乙=1,因为x 甲=x 乙,s 2甲<s 2乙,所以甲与乙的平均成绩相同,但甲的发挥比乙稳定.16.(本小题满分12分)已知10只狗的血球体积及红血球的测量值如下(1)画出上表的散点图;(2)求出回归直线并且画出图形;(3)回归直线必经过的一点是哪一点? 解:(1)散点图如图(2)x =110(45+42+46+48+42+35+58+40+39+50)=44.50,y =110(6.53+6.30+9.52+7.50+6.99+5.90+9.49+6.20+6.55+7.72)=7.27,∑i =1n x i y i =3 283.9,n x - y -=3 235.15,∑i =1n x 2i =20 183,n x 2=19 802.5,设回归直线方程为y ^=bx +a ,则a =∑i =1nx i y i -n x y∑i =1nx 2i -n x2≈0.13,b =y -a x ≈1.49所以所求回归直线的方程为y ^=0.13x +1.49,图形如下:(3)回归直线必经过(x ,y )即(44.50,7.27).17.(本小题满分12分)为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛,为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:(1)填充频率分布表的空格(将答案直接填在表格内); (2)补全频率分布直方图;(3)若成绩在[75,85)分的学生为二等奖,问获得二等奖的学生约为多少人? 解:(1)(2)(3)成绩在[75,80)分的学生占70~80分的学生的510,因为成绩在[70,80)分的学生频率为0.2,所以成绩在[75,80)分的学生频率为0.1;成绩在[80,85)分的学生占80~90分的学生的510,因为成绩在[80,90)分的学生频率为0.32, 所以成绩在[80,85)分的学生频率为0.16, 所以成绩在[75,85)分的学生频率为0.26, 由于有900名学生参加了这次竞赛,所以该校获得二等奖的学生约为0.26×900=234(人).18.(本小题满分14分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据.(1)(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y ^=bx +a ; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5) 解:(1)如图.(2)∑i =1nx i y i =3×2.5+4×3+5×4+6×4.5=66.5.x =3+4+5+64=4.5. y =2.5+3+4+4.54=3.5.∑i =1nx 2i =32+42+52+62=86.b =66.5-4×4.5×3.586-4×4.52=66.5-6386-81=0.7.a =y -b x =3.5-0.7×4.5=0.35. 故线性回归方程为y ^=0.7x +0.35.数学(3)根据回归方程的预测,现在生产100吨产品消耗的标准煤的数量为0.7×100+0.35=70.35,故耗能减少了90-70.35=19.65(吨).。