中考数学总复习 第二轮 中考题型专题 专题复习(六)几何综合题试题
- 格式:doc
- 大小:584.02 KB
- 文档页数:9
中考数学二轮专题复习之一:配方法与换元法把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法.所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
【范例讲析】: 例1: 填空题:1).将二次三项式x 2+2x -2进行配方,其结果为 。
2).方程x 2+y 2+4x -2y+5=0的解是 。
3).已知M=x 2-8x+22,N=-x 2+6x -3,则M 、N 的大小关系为 。
例2.已知△ABC 的三边分别为a 、b 、c ,且a 2+b 2+c 2=ab+bc+ac ,则△ABC 的形状为 。
例3.解方程:422740x x --=【闯关夺冠】 1.已知13x x +=.则221x x+的值为__________. 2.若a 、b 、c 是三角形的三边长,则代数式a 2–2ab+b 2–c 2的值 ( ) A 大于零 B 等于零 C 小于零 D 不能确定 3已知:a 、b 为实数,且a 2+4b 2-2a+4b+2=0,求4a 2-b1的值。
4. 解方程: 211()65()11x x +=--对于某些数学问题,若得知所求结果具有某种确定的形式,则可研究和引入一些尚待确定的系数(或参数)来表示这样的结果.通过变形与比较.建立起含有待定字母系数(或参数)的方程(组),并求出相应字母系数(或参数)的值,进而使问题获解.这种方法称为待定系数法. 【范例讲析】:【例1】二次函数的图象经过A(1,0)、B(3,0)、C(2,-1)三点.(1)求这个函数的解析式.(2)求函数与直线y=-x+1的交点坐标.【例2】一次函数的图象经过反比例函数xy 8-=的图象上的A 、B 两点,且点A 的横坐标与点B 的纵坐标都是2。
(1)求这个一次函数的解析式;(2)若一条抛物线经过点A 、B 及点C (1,7),求抛物线的解析式。
2023年中考数学二轮专题训练:几何探究压轴题1.已知是的中线,点是线段上一点,过点作的平行线,过点作的平行线,两平行线交于点,连结.【方法感知】如图①,当点与点重合时,易证:.(不需证明)【探究应用】如图②,当点与点不重合时,求证:四边形是平行四边形.【拓展延伸】如图③,记与的交点为,的延长线与的交点为,且为的中点.(1)______(2)若,时,则的长为______.2.已知:如图,正方形与正方形.(1)如图①,求证:;(2)如图②,求的值;(3)如图③,分别取的中点,试探究:与的关系,并说明理由.3.在中,,点是射线上的一动点(不与点、重合),以为一边在的右侧作,使,,连接.(1)如图1,当点在线段上,且时,那么________度;(2)设,.①如图2,当点D在线段上,时,请你探究与之间的数量关系,并证明你的结论;②如图3,当点D在线段的延长线上,时,请将图3补充完整;写出此时与之间的数量关系,并说明理由.4.已知,为等边三角形,点在边上.【基本图形】如图1,以为一边作等边三角形,连结.可得(不需证明).【迁移运用】如图2,点是边上一点,以为一边作等边三角.求证:.【类比探究】如图3,点是边的延长线上一点,以为一边作等边三角.试探究线段,,三条线段之间存在怎样的数量关系,请写出你的结论并说明理由.5.综合与实践二轮复习中,刘老师以“最值问题”为专题引导同学们进行复习探究.问题模型:等腰三角形,,,(1)探究:如图,点为等腰三角形底边上一个动点,连接,则的最小值为______,判断依据为______;(2)探究:在探究的结论下,继续探究,作的平分线交于点,点,分别为,上一个动点,求的最小值;(3)探究:在探究的结论下,继续探究,点为线段上一个动点,连接,将顺时针旋转,得到线段,连接,求线段的最小值.6.问题提出(1)如图1,在中,,,将其折叠,使点B落在边上的处,折痕经过点C,交于点D,则的度数为___________;问题探究(2)如图2,正方形的一条对称轴l交于点H,点E在l上,连接.若正方形的边长为2,,求线段的长.问题解决(3)如图3,有一块三角形空地经测量,米,.现要过点C边修建一条小路,满足,点A关于的对称点为D,连接交于点E.若米,请利用所学知识,求的长.7.已知是等腰直角三角形,,(1)如图1,是等腰直角三角形,点D在的延长线上,,连接,求证:;(2)如图2,点F是斜边上动点,点G是延长线上动点,总有,探究的数量关系,并说明理由;(3)如图3,点H是一点,连接FH,若,,,直接写出的面积为____________(用m,n表示).8.课本再现如图1,在等边中,为边上一点,为上一点,且,连接与相交于点.(1)与的数量关系是______,与构成的锐角夹角的度数是______.深入探究(2)将图1中的延长至点,使,连接,,如图2所示.求证:平分.(第一问的结论,本问可直接使用)迁移应用(3)如图3,在等腰中,,,分别是边,上的点,与相交于点.若,且,求的值..四边形中,,为上一点,连、.(1)平分,,①如图1,求证:;②如图2,若平分,交于F,交于N,,(2)在(1)的条件下求的值;,当,时,试探究与的数量关系,证明你的结论.,在中,,为的中点,连接,,试猜想与的数量关系,并加以证(1)独立思考:请解答老师提出的问题;(2)实践探究:希望小组受此问题的启发,将沿着(F为的中点)所在直线折叠,如图②,点C的对应点为,连接并延长交于点G,请判断与的数量关系,并加以证明.问题解决:智慧小组突发奇想,将沿过点对应点为,使于点,折痕交于点,连接,交于点组提出一个问题:若此的面积为20,边长,,求图中阴影部分(四边形)的面积.请你思考此问题,直接写出结果..问题提出:已知矩形,点为上的一点,,交于点.将绕点顺时针旋转得到,则与有怎样的数量关系.【问题探究】探究一:如图,已知正方形,点为上的一点,,交于点.(1)如图1,直接写出的值;(2)将绕点顺时针旋转到如图所示的位置,连接、,猜想与的数量关系,并证明你的结论;探究二:如图,已知矩形,点为上的一点,,交于点.,若四边形为矩形,,将绕点顺时针旋转得到、的对应点分别为、点,连接、,则的值是否随着的变化而变化.若变化,请说明变化情况;若不变,请求出的值.【一般规律】如图,若四边形为矩形,,其它条件都不变,将绕点顺时针旋转得到,连接,,请直接写出与的数量12.定义:有一个角是直角的平行四边形叫做矩形.(1)根据定义判矩形已知:如图1,在平行四边形中,是它的两条对角线,.求证:平行四边形是矩形.(2)动手操作有发现如图2,在矩形中,是的中点,将沿折叠后得到,点在矩形内部,延长交于点.猜想线段与有何数量关系?并证明你的结论.(3)类比探究到一般如图3,将(2)中的矩形改为平行四边形,其它条件不变,(2)中的结论是否仍然成立,请说明理由.(4)解决问题巧应用如图4,保持(2)中的条件不变,若点是的中点,且,请直接写出矩形的面积.13.在中,,,点P是平面内不与点A,C重合的任意一点,连接,将线段绕点P逆时针旋转α得到线段,连接,,.(1)观察猜想如图①,当时,的值是_______,直线与直线相交所成的较小角的度数是________.(2)类比探究如图②,当时,请写出的值及直线与直线相交所成的较小角的度数,并就图②的情形说明理由.14.(1)(问题背景)如图1,在等边中,点M是边上一点,连接,以为边作等边(A,M,N按逆时针方向排列),连接,求证:(2)(变式探究)如图2,已知,指出图中的另外一对相似三角形并进行证明;(3)(拓展应用)如图3,在和中,,,点D在边上,求的值.15.(1)【操作发现】如图1,四边形都是矩形,,,小明将矩形绕点C顺时针转,如图2所示.若的值不变,请求出的值,若变化,请说明理由.在旋转过程中,当点E、F在同一条直线上时,画出图形并求出的长度.)【类比探究】,中,,,为中点,为平面内一个动点,且,将线段绕点D逆时针旋转得到,则四边形面积的最大值为.(直接写出结果),在矩形中,,动点射线方向移动,作关于直线的对称,设点的运动时间为.(1)若.①如图2,当点落在上时,求证:,②是否存在异于图2的时刻,使得是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由.(2)当P点不与C点重合时,若直线与直线相交于点M,且当时存在某一时刻有结论成立,试探究:对于的任意时刻,结论“”总是成立?请说明理由..在正方形中,是边上一点(点不与点、重合),连结.感知:如图①,过点作交于点.求证.探究:如图②,取的中点,过点作交于点,交于点.(1)求证:.(2)连结,若,求的长.应用如图③,取的中点,连结.过点作交于点,连结、.若,求四边形的面积.18.点在四边形的对角线上,直角三角板绕直角顶点旋转,其边、分别交、边于点、.操作发现:如图①,若四边形是正方形,当时,可知四边形是正方形,显然.当与不垂直时,判断确定、之间的数量关系;______.(直接写出结论即可)类比探究:如图②,若四边形是矩形,试说明.拓展应用:如图③,改变四边形、的形状,其他条件不变,且满足,,,时,求的值.参考答案:1.【拓展延伸】(1);(2)2.(2)(3),3.(1)90(2)①,证明见解析;②,5.(1);点到直线的距离垂线段最短(2)(3)6.(1);(2);(3)米7.(2)(3)8.(1);60°(3)39.(1)(2)(3)10.(1),(2),(3)11.[问题探究]探究一:(1);(2),探究二:.[一般规律]12.(2),(3)成立,(4)13.(1)1,;(2),,14.(2)(3);15.(1)①不变,;②或;(2)24 16.(1)②存在,的值为2或6或(2)对于的任意时刻,结论“”总是成立,17.((2)2应用:918.操作发现:;类比探究:拓展应用:。
专题复习(六) 几何综合题1.(2016·德州)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形.(1)如图1、四边形ABCD 中、点E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点.求证:中点四边形EFGH 是平行四边形;(2)如图2、点P 是四边形ABCD 内一点、且满足PA =PB 、PC =PD 、∠APB =∠CPD.点E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点.猜想中点四边形EFGH 的形状、并证明你的猜想;(3)若改变(2)中的条件、使∠APB=∠CPD=90°、其他条件不变、直接写出中点四边形EFGH 的形状.(不必证明)图1 图2解:(1)证明:连接BD.∵E 、H 分别是AB 、AD 的中点、 ∴EH =12BD 、EH ∥BD.∵F 、G 分别是BC 、CD 的中点、 ∴FG =12BD 、FG ∥BD.∴EH =FG 、EH ∥FG.∴中点四边形EFGH 是平行四边形. (2)中点四边形EFGH 是菱形. 证明:连接AC 、BD.∵∠APB =∠CPD、∴∠APB +∠AP D =∠CPD+∠APD、即∠BPD=∠APC. 又∵PA=PB 、PC =PD 、∴△APC ≌△BPD(SAS ).∴AC=BD.∵点E 、F 、G 分别为边AB 、BC 、CD 的中点、 ∴EF =12AC 、FG =12BD.∴EF=FG.又∵四边形EFGH 是平行四边形、∴中点四边形EFGH 是菱形.图3(3)当∠APB=∠CPD=90°时、如图3、AC 与BD 交于点O 、BD 与EF 、AP 分别交于点M 、Q 、中点四边形EFGH 是正方形.理由如下:由(2)知:△APC≌△BPD、∴∠PAC =∠PBD. 又∵∠AQO=∠BQP、∴∠AOQ =∠APB =90°. 又∵EF∥AC、∴∠OMF =∠AOQ=90°. 又∵EH∥BD、∴∠HEF =∠OMF=90°. 又∵四边形EFGH 是菱形、∴中点四边形EFGH 是正方形.2.(2016·菏泽)如图、△ACB 和△DCE 均为等腰三角形、点A 、D 、E 在同一直线上、连接BE. (1)如图1、若∠CAB=∠CBA=∠CDE=∠CED=50°. ①求证:AD =BE ; ②求∠AEB 的度数;(2)如图2、若∠ACB=∠DCE=120°、CM 为△DCE 中DE 边上的高、BN 为△ABE 中AE 边上的高、试证明:AE =23CM +233BN.图1 图2解:(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED、∴AC =BC 、CD =CE. ∵∠CAB =∠CBA=∠CDE=∠CED、 ∴∠ACB =∠DCE.∴∠ACD=∠BCE. ∴△ACD ≌△BCE(SAS ).∴AD=BE. ②由①得△ACD≌△BCE、∴∠ADC =∠BEC=180°-∠CDE=130°.∴∠AEB =∠BEC-∠CED=130°-50°=80°.(2)证明:在等腰△DCE 中、∵CD =CE 、∠DCE =120°、CM ⊥DE 、 ∴∠DCM =12∠DCE=60°、DM =EM.在Rt △CDM 中、DM =CM·tan ∠DCM =CM·tan 60°=3CM 、∴DE =23CM. 由(1)、得∠ADC =∠BEC=150°、AD =BE 、 ∴∠AEB =∠BEC-∠CED=120°. ∴∠BEN =60°. 在Rt △BEN 中、BE =BN sin 60°=233BN.∴AD =BE =233BN.又∵AE=DE +AD 、∴AE =23CM +233BN.3.(2016·东营)如图1、△ABC 是等腰直角三角形、∠BAC =90°、AB =AC 、四边形ADEF 是正方形、点B 、C 分别在边AD 、AF 上、此时BD =CF 、BD ⊥CF 成立.(1)当△ABC 绕点A 逆时针旋转θ(0°<θ<90°)时、如图2、BD =CF 成立吗?若成立、请证明;若不成立、请说明理由.(2)当△ABC 绕点A 逆时针旋转45°时、如图3、延长DB 交CF 于点H 、交AF 于点N. ①求证:BD⊥CF;②当AB =2、AD =32时、求线段DH 的长.图1 图2 图3解:(1)BD =CF 成立.证明:∵AB=AC 、∠BAD =∠CAF=θ、AD =AF 、 ∴△ABD ≌△ACF(SAS ).∴BD =CF.(2)①证明:由(1)得、△ABD ≌△ACF 、 ∴∠HFN =∠ADN. 又∵∠HNF=∠AND、 ∴∠NHF =∠NAD=90°. ∴HD ⊥HF 、即BD⊥CF.②连接DF 、延长AB 交DF 于点M.在△MAD 中、∵∠MAD =∠MDA=45°、 ∴∠BMD =90°.∵AD =32、四边形ADEF 是正方形、 ∴MA =MD =322=3、FD =6.∴MB =3-2=1、DB =12+32=10. 在Rt △BMD 和Rt △FHD 中、 ∵∠MDB =∠HDF、 ∴△BMD ∽△FHD. ∴MD HD =BD FD 、即3HD =106.∴DH=9105.4.(2016·宁夏)在矩形ABCD 中、AB =3、AD =4、动点Q 从点A 出发、以每秒1个单位的速度、沿AB 向点B 移动;同时点P 从点B 出发、仍以每秒1个单位的速度、沿BC 向点C 移动、连接QP 、QD 、PD.若两个点同时运动的时间为x 秒(0<x≤3)、解答下列问题:(1)设△QPD 的面积为S 、用含x 的函数关系式表示S ;当x 为何值时、S 有最大值?并求出最小值; (2)是否存在x 的值、使得QP⊥DP?试说明理由.解:(1)∵四边形ABCD 为矩形、∴BC =AD =4、CD =AB =3. 当运动x 秒时、则AQ =x 、BP =x 、∴BQ =AB -AQ =3-x 、CP =BC -BP =4-x. ∴S △ADQ =12AD ·AQ=12×4x=2x 、S △BPQ =12BQ·BP=12(3-x)x =32x -12x 2、S △PCD =12PC·CD=12·(4-x)×3=6-32x.又S 矩形ABCD =AB·BC=3×4=12、∴S =S 矩形ABCD -S △ADQ -S △BPQ -S △PCD =12-2x -(32x -12x 2)-(6-32x)=12x 2-2x +6=12(x -2)2+4、即S =12(x -2)2+4.∴S 为开口向上的二次函数、且对称轴为直线x =2.∴当0<x≤2时、S 随x 的增大而减小; 当2<x≤3时、S 随x 的增大而增大、 又当x =0时、S =6、当S =3时、S =92.但x 的范围内取不到x =0、∴S 不存在最大值. 当x =2时、S 有最小值、最小值为4.(2)存在、理由:由(1)可知BQ =3-x 、BP =x 、CP =4-x. 当QP⊥DP 时、则∠BPQ+∠DPC=∠DPC+∠PDC、 ∴∠BPQ =∠PDC.又∵∠B=∠C、 ∴△BPQ ∽△CDP. ∴BQ PC =BP CD 、即3-x 4-x =x 3、解得x =7+132(舍去)或x =7-132. ∴当x =7-132时、QP ⊥DP.5.(2016·泰安)(1)已知:△ABC 是等腰三角形、其底边是BC 、点D 在线段AB 上、E 是直线BC 上一点、且∠DEC =∠DCE、若∠A=60°(如图1)、求证:EB =AD ;(2)若将(1)中的“点D 在线段AB 上”改为“点D 在线段AB 的延长线上”、其他条件不变(如图2)、(1)的结论是否成立、并说明理由;(3)若将(1)中的“若∠A=60°”改为“∠A=90°”、其他条件不变、则EBAD 的值是多少?(直接写出结论、不要求写解答过程)图1 图2解:(1)证明:过D 点作BC 的平行线交AC 于点F. ∵△ABC 是等腰三角形、∠A =60°、 ∴△ABC 是等边三角形.∴∠ABC=60°. ∵DF ∥BC 、∴∠ADF =∠ABC=60°. ∴△ADF 是等边三角形. ∴AD =DF 、∠AFD =60°.∴∠DFC =180°-60°=120°.∵∠DBE =180°-60°=120°、∴∠DFC =∠DBE. 又∵∠FDC=∠DCE、∠DCE =∠DEC、 ∴∠FDC =∠DEC、ED =CD. ∴△DBE ≌△CFD(AAS ). ∴EB =DF.∴EB=AD.(2)EB =AD 成立.理由如下:过D 点作BC 的平行线交AC 的延长线于点F. 同(1)可证△ADF 是等边三角形、 ∴AD =DF 、∠AFD =60°.∵∠DBE =∠ABC=60°、∴∠DBE =∠AFD. ∵∠FDC =∠D CE 、∠DCE =∠DEC、 ∴∠FDC =∠DEC、ED =CD. ∴△DBE ≌△CFD(AAS ). ∴EB =DF.∴EB=AD. (3)EBAD= 2.理由如下: 如图3、过D 点作BC 的平行线交AC 于点G.图3∵△ABC 是等腰三角形、∠A =90°、 ∴∠ABC =∠ACB=45°、∴∠DBE =180°-45°=135°. ∵DG ∥BC 、∴∠GDC =∠DCE、∠DGC =180°-45°=135°. ∴∠DBE =∠DGC. ∵∠DCE =∠DEC、∴ED =CD 、∠DEC =∠GDC.∴△DBE ≌△CGD(AAS ).∴BE=GD. ∵∠ADG =∠ABC=45°、∠A =90°、 ∴△ADG 是等腰直角三角形. ∴DG =2AD.∴BE=2AD.∴EBAD = 2.6.(2016·烟台)【探究证明】(1)在矩形ABCD 中、EF ⊥GH 、EF 分别交AB 、CD 于点E 、F 、GH 分别交AD 、BC 于点G 、H.求证:EF GH =ADAB ;【结论应用】(2)如图2、在满足(1)的条件下、又AM⊥BN、点M 、N 分别在边BC 、CD 上.若EF GH =1115、则BNAM 的值为________;【联系拓展】(3)如图3、四边形ABCD 中、∠ABC =90°、AB =AD =10、BC =CD =5、AM ⊥DN 、点M 、N 分别在边BC 、AB 上、求DNAM 的值.图1 图2 图3解:(1)证明:过点A 作AP∥EF、交CD 于点P 、过点B 作BQ∥GH、交AD 于点Q. ∵四边形ABCD 是矩形、∴AB ∥DC 、AD ∥BC.∴四边形AEFP 、四边形BHGQ 都是平行四边形.∴AP=EF 、GH =BQ. 又∵GH⊥EF、∴AP ⊥BQ.∴∠QAP +∠AQB=90°.∵四边形ABCD 是矩形、∴∠DAB =∠D=90°. ∴∠DAP +∠DPA=90°.∴∠AQB =∠DPA. ∴△PDA ∽△QAB.∴AP BQ =AD AB .∴EF GH =ADAB .(2)∵EF⊥GH、AM ⊥BN 、∴由(1)中的结论可得EF GH =AD AB 、BN AM =ADAB、∴BN AM =EF GH =1115.故答案为1115. (3)连接AC 、过点D 作AB 的平行线交BC 的延长线于点E 、作AF⊥AB 交直线DE 于点F. ∵∠BAF =∠B=∠E=90°、 ∴四边形ABEF 是矩形.易证△ADC≌△ABC、∴∠ADC =∠ABC=90°. ∴∠FDA +∠EDC=90°.又∵∠EDC+∠ECD=90°、∴∠FDA =∠ECD. 又∵∠E=∠F、 ∴△ADF ∽△DCE. ∴DE AF =DC AD =510=12. 设DE =x 、则AF =2x 、DF =10-x.在Rt △ADF 中、AF 2+DF 2=AD 2、即(2x)2+(10-x)2=100、解得x 1=4、x 2=0(舍去). ∴AF =2x =8.∴DN AM =AF AB =810=45.7.(2016·武汉)在△ABC 中、P 为边AB 上一点.(1)如图1、若∠ACP=∠B、求证:AC 2=AP·AB; (2)若M 为CP 的中点、AC =2.①如图2、若∠PBM=∠ACP、AB =3、求BP 的长;②如图3、若∠ABC=45°、∠A =∠BMP=60°、直接写出BP 的长.图1 图2 图3解:(1)证明:∵∠ACP=∠B、∠CAP =∠BAC、 ∴△ACP ∽△ABC. ∴AC AB =AP AC、即AC 2=AP·AB. (2)①作CQ∥BM 交AB 的延长线于点Q 、则∠PBM=∠Q. ∵∠PBM =∠ACP、∴∠ACP =∠Q. 又∠PAC=∠CAQ、∴△APC ∽△ACQ. ∴AC AQ =AP AC、即AC 2=AP·AQ. 又∵M 为PC 的中点、BM ∥CQ 、∴设BP =x 、则BQ =x.∴AP=3-x 、AQ =3+x. ∴22=(3-x)(3+x)、解得x 1=5、x 2=-5(不合题意、舍去). ∴BP = 5. ②BP =7-1.作CQ⊥AB 于点Q 、作CP 0=CP 交AB 于点P 0. ∵AC =2、∴AQ =1、CQ =BQ = 3.设AP 0=x 、则P 0Q =PQ =1-x 、BP =3-1+x 、 ∵∠BPM =∠CP 0A 、∠BMP =∠CAP 0、 ∴△AP 0C ∽△MPB 、∴AP 0MP =P 0CBP.解得x =7-3或x =-7-3(舍去).∴BP =3-1+7-3=7-1.8.(2016·岳阳)数学活动——旋转变换(1)如图1、在△ABC 中、∠ABC =130°、将△ABC 绕点C 逆时针旋转50°得到△A′B′C、连接B B′.求∠A′B′B 的大小; (2)如图2、在△ABC 中、∠ABC =150°、AB =3、BC =5、将△ABC 绕点C 逆时针旋转60°得到△A ′B ′C 、连接BB′.以A′为圆心、A ′B ′长为半径作圆.①猜想:直线BB′与⊙A′的位置关系、并证明你的结论; ②连接A′B、求线段A′B 的长度;(3)如图3、在△ABC 中、∠ABC =α(90°<α<180°)、AB =m 、BC =n 、将△ABC 绕点C 逆时针旋转2β角度(0°<2β<180°)得到△A′B′C、连接A′B 和BB′.以A′为圆心、A ′B ′长为半径作圆.问:角α与角β满足什么条件时、直线BB′与⊙A′相切、请说明理由.并求此条件下线段A′B 的长度.(结果用角α或角β的三角函数及字母m 、n 所组成的式子表示)图1 图2 图3解:(1)由旋转得:∠A′B′C=∠ABC=130°、CB =CB′、∠BCB ′=50°、 ∴∠BB ′C =12(180°-∠BCB′)=65°.∴∠A ′B ′B =∠A′B′C-∠BB′C=130°-65°=65°. (2)①猜想:直线BB′与⊙A′相切.证明:由旋转得:∠A′B′C=∠ABC=150°、CB =CB′、∠BCB ′=60°、 ∴∠BB ′C =12(180°-∠BCB′)=60°.∴∠A ′B ′B =∠A′B′C-∠BB′C=150°-60°=90°、即B′B⊥A′B′. 又A′B′为半径、∴直线BB′与⊙A′相切.②由旋转得:A′B′=AB =3、B ′C =BC =5、∠BCB ′=60°、 ∴△BCB ′为等边三角形.∴BB′=BC =5.在Rt △A ′B ′B 中、A ′B =(A′B′)2+(BB′)2=32+52=34. (3)满足的条件:α+β=180°.理由:在△BB′C 中、∠BB ′C =180°-2β2=90°-β、∴∠A ′B ′B =α-∠BB′C=α-(90°-β)=α+β-90°.∵α+β=180°、∴∠A ′B ′B =α+β-90°=180°-90°=90°、即B′B⊥A′B′. ∴直线BB′与⊙A′相切. 过点C 作CD⊥BB′于点D. ∴∠B ′CD =12∠BCB′=β.在Rt △B ′CD 中、B ′D =B′C·s in β=BC·sin β=n sin β、∴BB ′=2B′D=2n sin β. 由α+β=180°得到△A′B′B 为直角三角形、9.(2016·宜昌)在△ABC 中、AB =6、AC =8、BC =10.D 是△ABC 内部或BC 边上的一个动点(与B 、C 不重合).以D 为顶点作△DEF、使△DEF∽△ABC(相似比k>1)、EF ∥BC. (1)求∠D 的度数;(2)若两三角形重叠部分的形状始终是四边形AGDH.①连接GH 、AD 、当GH⊥AD 时、请判断四边形AGDH 的形状、并证明;②当四边形AGDH 的面积最大时、过A 作AP⊥EF 于P 、且AP =AD 、求k 的值.解:(1)∵AB 2+AC 2=62+82=102=BC 2、 ∴∠BAC =90°.又∵△DEF∽△ABC、∴∠D =∠BAC =90°. (2)①四边形AGDH 是正方形.证明:延长ED 、FD 分别交BC 于点M 、N. ∵△DEF ∽△ABC 、∴∠E =∠B. 又∵EF∥BC、∴∠E =∠EMC.∴∠B=∠EMC.∴ED∥BA. 同理FD∥AC.∴四边形AGDH 是平行四边形.又∵∠FDE=90°、∴四边形AGDH 是矩形. 又∵AD⊥GH、∴四边形AGDH 是正方形.②当D 点在△ABC 内部时、四边形AGDH 的面积不可能最大.其理由是:如图1、点D 在内部时、延长GD 到D′、过D′作MD′⊥AC 于点M 、则四边形GD′MA 的面积大于矩形AGDH 的面积、∴当点D 在△ABC 内部时、四边形AGDH 的面积不可能最大. 按上述理由、只有当D 点在BC 边上时、面积才有可能最大.图1 图2如图2、D 在BC 上时、易证明DG∥AC、 ∴△GDB ∽△ACB. ∴BG BA =GD AC 、即BA -AG BA =AH AC . ∴6-AG 6=AH 8、即AH =8-43AG. ∴S 矩形AGDH =AG·AH=AG×(8-43AG)=-43AG 2+8AG =-43(AG -3)2+12.当AG =3时、S 矩形AGDH 最大、此时DG =AH =4.即当AG =3、AH =4、S 矩形AG DH 最大.在Rt △BGD 中、BD =BG 2+DG 2=5、则DC =BC -BD =5. 即D 为B C 上的中点时、S 矩形AGDH 最大.∴在Rt △ABC 中、AD =BC2=5、∴PA =AD =5.延长PA 交BC 于点Q 、∵EF ∥BC 、QP ⊥EF 、 ∴QP ⊥BC.∴QP 是EF 、BC 之间的距离. ∴D 到EF 的距离为PQ 的长. 在Rt △ABC 中、12AB·AC=12BC·AQ、∴AQ =4.8.又∵△DEF∽△ABC、∴k =PQ AQ =PA +AQ AQ =5+4.84.8=4924.10.(2016·河南)(1)发现如图1、点A 为线段BC 外一动点、且BC =a 、AB =b.填空:当点A 位于CB 延长线上时、线段AC 的长取得最大值、且最大值为a +b .(用含a 、b 的式子表示)图1(2)应用点A 为线段BC 外一动点、且BC =3、AB =1.如图2所示、分别以AB 、AC 为边、作等边三角形ABD 和等边三角形ACE 、连接CD 、BE.①请找出图中与BE 相等的线段、并说明理由; ②直接写出线段BE 长的最大值. (3)拓展如图3、在平面直角坐标系中、点A 的坐标为(2、0)、点B 的坐标为(5、0)、点P 为线段AB 外一动点、且PA =2、PM =PB 、∠BPM =90°.请直接写出线段AM 长的最大值及此时点P 的坐标.图2 图3 备用图解:(2)①DC=BE.理由如下: ∵△ABD 和△ACE 为等边三角形、∴AD =AB 、AC =AE 、∠BAD =∠CA E =60°.∴∠BAD +∠BAC=∠CAE+∠BAC、即∠CAD=∠EAB. ∴△CAD ≌△EAB.∴DC =BE. ②BE 长的最大值是4.(3)AM 的最大值为3+22、点P 的坐标为(2-2、2).提示:如图3、构造△BNP≌△MAP、则NB =AM 、易得△APN 是等腰直角三角形、AP =2、∴AN =2 2.由(1)知、当点N 在BA 的延长线上时、NB 有最大值(如备用图).∴AM=NB =AB +AN =3+2 2. 过点P 作PE⊥x 轴于点E 、PE =AE = 2. 又∵A(2、0)、∴P(2-2、2).。
专题复习(6)几何综合题【2021中考数学二轮复习】题型1与三角形、四边形有关的几何综合题类型1类比探究的几何综合题1 • (2020•青海)在4ABC中,AB=AC,CG±BA交BA的延长线于点G.特例感知:(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC重合,另一条直角边恰好经过点B.通过观察、测量BF与CG的长度,得到BF=CG.请给予证明. 猜想论证:(2)当三角尺沿AC方向移动到图2所示的位置时,一条直角边仍与AC边重合,另一条直角边交BC于点D,过点D作DE±BA,垂足为E.此时请你通过观察、测量DE,DF与CG的长度,猜想并写出DE,DF与CG之间存在的数量关系,并证明你的猜想.联系拓展:(3)当三角尺在图2的基础上沿AC方向继续移动到图3所示的位置(点F在线段AC上,且点F 与点C不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)解:(1)证明:在4FAB和aGAC中,ZF=ZG,{ZFAB = ZCAG,AB=AC,AFABAGACC^S). .\FB=CG.(2)猜想:CG=DE+DF.理由:连接AD.;S..ABC=S;.ABD+S,\ADC,B ?DF«LAC,CG_LAB ♦.\!A B CG=1A B DE+|A C DF. 4^0 4^0VAB=AC,,CG=DE+DF.(3)猜想仍然成立,CG=DE+DF.ZEDF=yZBAD,AE=2,DF=5,求菱形ABCD 的边长.ZT L-DAAADC^AACB,AAC2=AD AB.(2)V四边形ABCD是平行四边形,AAD=BC,ZA=ZC.又•••/BFE=NA,・・・NBFE=NC.又••,NFBE=NCBF,・••△BFEs/^BCF.,BF?=BE BC.,BC =器=单JDt D.\AD=y.(3)分别延长EF,DC相交于点G.•・•四边形ABCD是菱形,・,.AB〃DC,ZBAC=yZBAD.・・・AC〃EF,.•.四边形AEGC为平行四边形.,AC=EG,CG=AE,ZEAC=ZG,AE=CG=2.V ZEDF=|ZBAD,, NEDF= NBAC= NG.又YNDEFuNGED AAEDF^AEGD.ADE2=EFEG.又•••EG=AC=2EF,,DE2=2EF2.,DE=gEF.又•嚅喑,・・.DG=W DF=5",DC=DG-CG=5 •一2. 33 • (2020•德州)问题探究:小红遇到这样一个问题:如图1,itAABC中,AB = 6,AC=4,AD是中线,求AD的取值范围.她的做法是:延长AD到点E,使DE=AD,连接BE,证明△BED^^CAD,经过推理和计算使问题得到解决.请回答:(1)小红证明△BEDgZkCAD的判定定理是:SAS.(2)AD的取值范围是1<AD<5.方法运用:(3)如图2,AD是AABC的中线,在AD上取一点F,连接BF并延长交AC于点E,使AE =EF,求证:BF=AC.(4)如图3,在矩形ABCD中,||=|,在BD上取一点F,以BF为斜边作^rABEF,且器=;,点G是DF的中点,连接EG,CG,求证:EG=CG. tert证明:(3)延长AD至点",使AD=AD,连接BA:〈AD是AABC的中线,ABD=CD.{AD=A A D,ZADC=ZA'DB,CD=BD,AAADC^AA r DB(S^S).,NCAD=NA,,AC=AB又•••AE=EF,,ZCAD=ZAFE.,ZA r= ZAFE.又•••/AFE=NBFD,ZBFD=ZA\ABF=AB.又TAB = AC,VBF=AC.(4)延长CG 至点H,使HG=CG,连接HF,CE,HE.•••G 为FD 的中点,,FG=DG.fHG=CG,在△HGF 和ACGD 中,y ZHGF=ZCGD,L FG=DG,AAHGF^ACGD(S4S).A HF=CD,ZHFG=ZCDG.EF 1 1在用4BEF 中,> :.tan ZEBF=^.又在矩形ABCD中‘黑制,J祟=4・JD J 乙N/.tan ZADB=^./. ZEBF=ZADB.又•••AB〃DC,,NADB=NDBC.,ZEBF= ZADB = ZDBC.又,•,NEFD为ABEF的外角,ZEFD= ZEBF+ ZBEF,即NEFH+NHFD=NEBF+9(r.V ZADB+ZBDC=90° ,,ZEFH+ ZHFD= NEBF+ ZADB + ZBDC.,NEFH=2NEBF,即NEFH=NEBC.在△EFH和4EBC中,EF_1 HF_1 . EF_HFBE ' BC 2 '•宜BC又•••/EBC=NEFH,・••△EFH S AEBC.,ZFEH=ZBEC.,NHEC + /CEF= ZBEF+ZCEF.,NHEC = NBEF=90° .•••△CEH 是直角三角形.VG 为CH 的中点,,EG=£C H,即EG=CG.4 • (2020・陕西)问题提出(1)如图1,在RtAABC中,NACB=90‘ ,AC>BC,ZACB的平分线交AB于点D,过点D分别作DEJ_AC,DF_LBC,垂足分别为E,F,则图1中与线段CE相等的线段是CF,DE,DF.问题探究(2)如图2,AB是半圆O的直径,AB = 8,P是上一点,且=2,连接AP,BP,ZAPB的平分线交AB于点C,过点C分别作CE±AP,CF1BP,垂足分别为E,F,求线段CF的长. 问题解决(3)如图3是某公园内“少儿活动中心”的设计示意图,已知。
中考数学复习专题:⼏何综合题(含答案解析)⼏何综合题1.已知△ABC 中,AD 是BAC ∠的平分线,且AD =AB ,过点C 作AD 的垂线,交 AD 的延长线于点H .(1)如图1,若60BAC ∠=?①直接写出B ∠和ACB ∠的度数;②若AB =2,求AC 和AH 的长;(2)如图2,⽤等式表⽰线段AH 与AB +AC 之间的数量关系,并证明.答案:(1)①75B ∠=?,45ACB ∠=?;②作DE ⊥AC 交AC 于点E .Rt △ADE 中,由30DAC ∠=?,AD=2可得DE =1,AE 3=. Rt △CDE 中,由45ACD ∠=?,DE=1,可得EC =1. ∴AC 31=.Rt △ACH 中,由30DAC ∠=?,可得AH 33+=;(2)线段AH 与AB +AC 之间的数量关系:2AH =AB +AC证明:延长AB 和CH 交于点F ,取BF 中点G ,连接GH .易证△ACH ≌△AFH .∴AC AF =,HC HF =. ∴GH BC ∥. ∵AB AD =,∴ ABD ADB ∠=∠. ∴ AGH AHG ∠=∠ . ∴ AG AH =.∴()2222AB AC AB AF AB BF AB BG AG AH +=+=+=+==.2.正⽅形ABCD 的边长为2,将射线AB 绕点A 顺时针旋转α,所得射线与线段BD 交于点M ,作CE AM ⊥于点E ,点N 与点M 关于直线CE 对称,连接CN .(1)如图1,当045α?<②⽤等式表⽰NCE ∠与BAM ∠之间的数量关系:__________.(2)当4590α?<CDBA图1备⽤图C DBAM答案:(1)①补全的图形如图7所⽰.(2)当45°<α<90°时,=1802NCE BAM ∠?-∠.证明:如图8,连接CM ,设射线AM 与CD 的交点为H .∵四边形ABCD 为正⽅形,∴∠BAD=∠ADC=∠BCD=90°,直线BD为正⽅形ABCD的对称轴,点A与点C关于直线BD对称.∵射线AM与线段BD交于点M,∴∠BAM=∠BCM=α.-.∴∠1=∠2=90α∵CE⊥AM,∴∠CEH=90°,∠3+∠5=90°.⼜∵∠1+∠4=90°,∠4=∠5,∴∠1=∠3.-.∴∠3=∠2=90α∵点N与点M关于直线CE对称,-∠.∴∠NCE=∠MCE=∠2+∠3=1802BAM(313. 如图,已知60AOB ∠=?,点P 为射线OA 上的⼀个动点,过点P 作PE OB ⊥,交OB 于点E ,点D 在AOB ∠内,且满⾜DPA OPE ∠=∠,6DP PE +=. (1)当DP PE =时,求DE 的长;(2)在点P 的运动过程中,请判断是否存在⼀个定点M ,证明你的判断.答案:(1)作PF ⊥DE 交DE 于F . ∵PE ⊥BO ,60AOB ∠=o,∴30OPE ∠=o.∴30DPA OPE ∠=∠=o.∴120EPD ∠=o∴cos30DF PD =??=∴2DE DF ==(2)当M 点在射线OA 上且满⾜OM =DMME的值不变,始终为1.理由如下:当点P 与点M 不重合时,延长EP 到K 使得PK PD =.∵,DPA OPE OPE KPA ∠=∠∠=∠,∴KPA DPA ∠=∠. ∴KPMDPM ∠=∠.∵PK PD =,PM 是公共边, ∴KPM △≌DPM △. ∴MKMD =.作ML ⊥OE 于L ,MN ⊥EK 于N . ∵3,60MO MOL =∠=o,∴sin 603ML MO =?=o.∵PE ⊥BO ,ML ⊥OE ,MN ⊥EK ,∴四边形MNEL 为矩形. ∴3EN ML ==.∵6EK PE PK PE PD =+=+=, ∴EN NK =. ∵MN ⊥EK , ∴MKME =.∴ME MKMD ==,即1DMME=. 当点P 与点M 重合时,由上过程可知结论成⽴.4. 如图,在菱形ABCD 中,∠DAB =60°,点E 为AB 边上⼀动点(与点A ,B 不重合),连接CE ,将∠ACE 的两边所在射线CE ,CA 以点C 为中⼼,顺时针旋转120°,分别交射线AD 于点F ,G. (1)依题意补全图形;(2)若∠ACE=α,求∠AFC 的⼤⼩(⽤含α的式⼦表⽰);(3)⽤等式表⽰线段AE 、AF 与CG 之间的数量关系,并证明.答案:(1)补全的图形如图所⽰.(2)解:由题意可知,∠ECF=∠ACG=120°.∴∠FCG=∠ACE=α.∵四边形ABCD 是菱形,∠DAB=60°,∴∠DAC=∠BAC= 30°. ∴∠AGC=30°. ∴∠AFC =α+30°.证明:作CH ⊥AG 于点H.由(2)可知∠BAC=∠DAC=∠AGC=30°.∴CA=CG. ∴HG =21AG. ∵∠ACE =∠GCF ,∠CAE =∠CGF ,∴△ACE ≌△GCF. ∴AE =FG .在Rt △HCG 中, .23cos CG CGH CG HG =∠?= ∴AG =3CG .即AF+AE =3CG .5.如图,Rt △ABC 中,∠ACB = 90°,CA = CB ,过点C 在△ABC 外作射线CE ,且∠BCE = α,点B 关于CE 的对称点为点D ,连接AD ,BD ,CD ,其中AD ,BD 分别交射线CE 于点M ,N . (1)依题意补全图形;(2)当α= 30°时,直接写出∠CMA 的度数;(3)当0°<α< 45°时,⽤等式表⽰线段AM ,CN 之间的数量关系,并证明.答案:(1)如图;ABCE(2)45°;(3)结论:AM CN.证明:作AG⊥EC的延长线于点G.∵点B与点D关于CE对称,∴CE是BD的垂直平分线.∴CB=CD.∴∠1=∠2=α.∵CA=CB,∴CA=CD.∴∠3=∠CAD.∵∠4=90°,∴∠3=12(180°-∠ACD)=12(180°-90°-α-α)=45°-α.∵∠4=90°,CE是BD的垂直平分线,∴∠1+∠7=90°,∠1+∠6=90°.∴∠6=∠7.∵AG⊥EC,∴∠G=90°=∠8.∴在△BCN和△CAG中,∠8=∠G,∠7=∠6,BC=CA,∴△BCN≌△CAG.∴CN=AG.∵Rt△AMG中,∠G=90°,∠5=45°,∴AM AG.∴AM CN.6.在正⽅形ABCD中,M是BC边上⼀点,点P在射线AM上,将线段AP绕点A顺时针旋转90°得到线段AQ,连接BP,DQ.(1)依题意补全图1;答案:(1)补全图形略(2)①证明:连接BD ,如图2,∵线段AP 绕点A 顺时针旋转90°得到线段AQ ,∴AQ AP =,90QAP ∠=°.∵四边形ABCD 是正⽅形,∴AD AB =,90DAB ∠=°.∴12∠=∠.∴△ADQ ≌△ABP .∴DQ BP =,3Q ∠=∠.∵在Rt QAP ?中,90Q QPA ∠+∠=°,∴390BPD QPA ∠=∠+∠=°.∵在Rt BPD ?中,222DP BP BD +=,⼜∵DQ BP =,222BD AB =,∴2222DP DQ AB +=.②BP AB =.7.如图,在等腰直⾓△ABC 中,∠CAB=90°,F 是AB 边上⼀点,作射线CF ,过点B 作BG ⊥C F 于点G ,连接AG .(1)求证:∠ABG =∠ACF ;(2)⽤等式表⽰线段C G ,AG ,BG 之间∵∠CAB=90°. ∵ BG ⊥CF 于点G ,∴∠BGF =∠CAB =90°. ∵∠GFB =∠CFA . ∴∠ABG =∠ACF .(2)CG =2AG +BG .证明:在CG 上截取CH =BG ,连接AH ,∵△ABC 是等腰直⾓三⾓形,∴∠CAB =90°,AB =AC . ∵∠ABG =∠ACH . ∴△ABG ≌△ACH . ∴ AG =AH ,∠GAB =∠HAC . ∴∠GAH =90°. ∴ 222AG AH GH +=. ∴ GH =2AG . ∴ CG =CH +GH =2AG +BG .8.如图,在正⽅形ABCD 中,E 是BC 边上⼀点,连接AE ,延长CB ⾄点F ,使BF=BE ,过点F 作FH ⊥AE 于点H ,射线FH 分别交AB 、CD 于点M 、N ,交对⾓线AC 于点P ,连接AF .(1)依题意补全图形;(2)求证:∠FAC =∠APF ;(3)判断线段FM 与PN 的数量关系,并加以证明.答案:(1)补全图如图所⽰.(2)证明∵正⽅形ABCD ,∴∠BAC =∠BCA =45°,∠ABC =90°,∴∠PAH =45°-∠BAE .∵FH ⊥AE .EDCBAM H PDAC∴∠APF=45°+∠BAE.∵BF=BE,∴AF=AE,∠BAF=∠BAE.∴∠FAC=45°+∠BAF.∴∠FAC=∠APF.(3)判断:FM=PN.证明:过B作BQ∥MN交CD于点Q,∴MN=BQ,BQ⊥AE.∵正⽅形ABCD,∴AB=BC,∠ABC=∠BCD=90°.∴∠BAE=∠CBQ.∴△ABE≌△BCQ.∴AE=BQ.∴AE=MN.∵∠FAC=∠APF,∴FP=MN.∴FM=PN.9.如图所⽰,点P位于等边ABC△的内部,且∠ACP=∠CBP.(1) ∠BPC的度数为________°;(2) 延长BP⾄点D,使得PD=PC,连接AD,CD.①依题意,补全图形;②证明:AD+CD=BD;(3)在(2)的条件下,若BD的长为2,求四边形ABCD的⾯积.M HPD AC解:(1)120°. ----------------------------2分(2)①∵如图1所⽰.②在等边ABC △中,60ACB ∠=?,∴60.ACP BCP ∠+∠=? ∵=ACP CBP ∠∠,∴60.CBP BCP ∠+∠=?∴()180120.BPC CBP BCP ∠=?-∠+∠=?∴18060.CPD BPC ∠=?-∠=? ∵=PD PC ,∴CDP △为等边三⾓形.∵60ACD ACP ACP BCP ∠+∠=∠+∠=?,∴.ACD BCP ∠=∠在ACD △和BCP △中,AC BC ACD BCP CD CP =??∠=∠??=?,,,∴()SAS ACD BCP △≌△. ∴.AD BP =∴.AD CD BP PD BD +=+=-----------------------------------------4分(3)如图2,作BM AD ⊥于点M ,BN DC ⊥延长线于点N .∵=60ADB ADC PDC ∠∠-∠=?,∴=60.ADB CDB ∠∠=?∴=60.ADB CDB ∠∠=?D∴=BM BN BD == ⼜由(2)得,=2AD CD BD +=,ABD BCD ABCD S S S ∴△△四边形=+1122AD BM CD BN =22==-----------------------------------7分10.如图1,在等边三⾓形ABC 中,CD 为中线,点Q 在线段CD 上运动,将线段QA 绕点Q 顺时针旋转,使得点A的对应点E 落在射线BC 上,连接BQ ,设∠DAQ =α(0°<α<60°且α≠30°). (1)当0°<α<30°时,①在图1中依题意画出图形,并求∠BQE (⽤含α的式⼦表⽰);②探究线段CE ,AC ,CQ 之间的数量关系,并加以证明;(2)当30°<α<60°时,直接写出线段CE ,AC ,CQ 之间的数量关系.解:(1)①3-. ………………………………………………………………………… 1分② 0≤QL.……………………………………………………………… 2分(2)设直线+33y x =与x 轴,y 轴的交点分别为点A ,点B,可得A ,(0,3)B .∴OA =3OB =,30OAB ∠=?.由0≤Q①如图13,当⊙D 与x 轴相切时,相应的圆⼼1D 满⾜题意,其横坐标取到最⼤值.作11D E x ⊥轴于点1E ,可得11D E ∥OB ,111D E AE BO AO=.∵⊙D 的半径为1,∴ 111D E =.∴1AE =11OE OA AE =-=.∴1D x =②如图14,当⊙D与直线y =相切时,相应的圆⼼2D 满⾜题意,其横坐标取到最⼩值.作22D E x ⊥轴于点2E ,则22D E ⊥OA .设直线y =与直线+3y =的交点为F .可得60AOF ∠=?,OF ⊥AB .则9cos 2AF OA OAF =?∠==.图13∵⊙D 的半径为1,∴ 21D F =.∴2272AD AF D F =-=.=?∠72==,22OE OA AE =-=.∴2D x =.由①②可得,D x≤D x≤. ………………………………………… 5分(3)画图见图15..……………………………… 7分11.如图,在等边ABC △中, ,D E 分别是边,AC BC 上的点,且CD CE = ,30DBC ∠对称,连接,AF FE ,FE 交BD 于G .(1)连接,DE DF ,则,DE DF 之间的数量关系是;(2)若DBC α∠=,求FEC ∠的⼤⼩; (⽤α的式⼦表⽰)(3)⽤等式表⽰线段,BG GF 和FA 之间的数量关系,并证明.GFEDCBA图15(1)DE DF =;(2)解:连接DE ,DF ,∵△ABC 是等边三⾓形,∴60C ∠=?. ∵DBC α∠=,∴120BDC α∠=?-.∴120BDF BDC α∠=∠=?-,DF DC =. ∴1202FDC α∠=?+. 由(1)知DE DF =.∴F ,E ,C 在以D 为圆⼼,DC 为半径的圆上.∴1602FEC FDC ∠=∠=?+α.(3)BG GF FA =+.理由如下:连接BF ,延长AF ,BD 交于点H ,∵△ABC 是等边三⾓形,∴60ABC BAC ∠=∠=?,AB BC CA ==. ∵点C 与点F 关于BD 对称,∴BF BC =,FBD CBD ∠=∠.GFEDCBA∴BF BA =. ∴BAF BFA ∠=∠. 设CBD α∠=,则602ABF α∠=?-. ∴60BAF α∠=?+. ∴FAD α∠=.∴FAD DBC ∠=∠.由(2)知60FEC α∠=?+. ∴60BGE FEC DBC ∠=∠-∠=?. ∴120FGB ∠=?,60FGD ∠=?.四边形AFGB 中,360120AFE FAB ABG FGB ∠=?-∠-∠-∠=?. ∴60HFG ∠=?.∴△FGH 是等边三⾓形. ∴FH FG =,60H ∠=?. ∵CD CE =,∴DA EB =.在△AHD 与△BGE 中,,,.AHD BGE HAD GBE AD BE ∠=∠??∠=∠??=?∴△△AHD BGE ?. ∴BG AH =.∵AH HF FA GF FA =+=+,∴BG GF FA =+.HGFEDCBA12.如图,在△ABC中,AB=AC,∠BAC=90°,M是BC的中点,延长AM到点D,AE= AD,∠EAD=90°,CE交AB于点F,CD=DF.(1)∠CAD= 度;(2)求∠CDF的度数;(3)⽤等式表⽰线段CD和CE之间的数量关系,并证明.解:(1)45 ……………………………………………………………1分(2)解:如图,连接DB.∵90,°,M是BC的中点,AB AC BAC=∠=∴∠BAD=∠CAD=45°.∴△BAD≌△CAD. ………………………………2分∴∠DBA=∠DCA,BD = CD.∵CD=DF,∴B D=DF. ………………………………………3分∴∠DBA=∠DFB=∠DCA.∵∠DFB+∠DFA =180°,∴∠DCA+∠DFA =180°.∴∠BAC+∠CDF =180°.∴∠CDF =90°. ………………………………………4分21CD. ……………………………………5分(3)CE=)证明:∵90∠=°,EAD∴∠EAF =∠DAF =45°. ∵AD =AE ,∴△EAF ≌△DAF . …………………………………6分∴DF =EF .由②可知,CF. …………………………7分∴CE=)1C D .13.如图,正⽅形ABCD 中,点E 是BC 边上的⼀个动点,连接AE ,将线段AE 绕点A 逆时针旋转90°,得到AF ,连接EF ,交对⾓线BD 于点G ,连接AG .(1)根据题意补全图形;(2)判定AG 与EF 的位置关系并证明;(3)当AB = 3,BE = 2时,求线段BG 的长.解:(1)图形补全后如图…………………1分(2)结论:AG ⊥EF . …………………2分证明:连接FD ,过F 点FM ∥BC ,交BD 的延长线于点M .∵四边形ABCD 是正⽅形,∴AB=DA=DC=BC ,∠DAB =∠ABE =∠ADC =90°,∠ADB =∠5=45°.∵线段AE 绕点A 逆时针旋转90°,得到AF ,A BC ED∴AE=AF ,∠FAE =90°.∴∠1=∠2.∴△FDA ≌△EBA . …………………3分∴∠FDA =∠EBA =90°,FD=BE .∵∠ADC =90°,∴∠FDA +∠ADC =180°。
2020年中考数学二轮专项冲刺复习——几何综合、压轴题1、(2019河南•中考第22题•10分)在△ABC中,CA=CB,∠ACB=α.点P是平面内不与点A,C重合的任意一点.连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,BD,CP.(1)观察猜想如图1,当α=60°时,的值是1,直线BD与直线CP相交所成的较小角的度数是60°.(2)类比探究如图2,当α=90°时,请写出的值及直线BD与直线CP相交所成的小角的度数,并就图2的情形说明理由.(3)解决问题当α=90°时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时的值.【考点】相似形综合题.【分析】(1)如图1中,延长CP交BD的延长线于E,设AB交EC于点O.证明△CAP≌△BAD(SAS),即可解决问题.(2)如图2中,设BD交AC于点O,BD交PC于点E.证明△DAB∽△P AC,即可解决问题.(3)分两种情形:①如图3﹣1中,当点D在线段PC上时,延长AD交BC的延长线于H.证明AD=DC即可解决问题.②如图3﹣2中,当点P在线段CD上时,同法可证:DA=DC解决问题.【解答】解:(1)如图1中,延长CP交BD的延长线于E,设AB交EC于点O.∵∠P AD=∠CAB=60°,∴∠CAP=∠BAD,∵CA=BA,P A=DA,∴△CAP≌△BAD(SAS),∴PC=BD,∠ACP=∠ABD,∵∠AOC=∠BOE,∴∠BEO=∠CAO=60°,∴=1,线BD与直线CP相交所成的较小角的度数是60°,故答案为1,60°.(2)如图2中,设BD交AC于点O,BD交PC于点E.∵∠P AD=∠CAB=45°,∴∠P AC=∠DAB,∵==,∴△DAB∽△P AC,∴∠PCA=∠DBA,==,∵∠EOC=∠AOB,∴∠CEO=∠OABB=45°,∴直线BD与直线CP相交所成的小角的度数为45°.(3)如图3﹣1中,当点D在线段PC上时,延长AD交BC的延长线于H.∵CE=EA,CF=FB,∴EF∥AB,∴∠EFC=∠ABC=45°,∵∠P AO=45°,∴∠P AO=∠OFH,∵∠POA=∠FOH,∴∠H=∠APO,∵∠APC=90°,EA=EC,∴PE=EA=EC,∴∠EP A=∠EAP=∠BAH,∴∠H=∠BAH,∴BH=BA,∵∠ADP=∠BDC=45°,∴∠ADB=90°,∴BD⊥AH,∴∠DBA=∠DBC=22.5°,∵∠ADB=∠ACB=90°,∴A,D,C,B四点共圆,∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°,∴∠DAC=∠DCA=22.5°,∴DA=DC,设AD=a,则DC=AD=a,PD=a,∴==2﹣.如图3﹣2中,当点P在线段CD上时,同法可证:DA=DC,设AD=a,则CD=AD=a,PD=a,∴PC=a﹣a,∴==2+.2、(2019陕西•中考第22题•9分)在图1,2,3中,已知ABCDY,120ABC∠=︒,点E为线段BC上的动点,连接AE,以AE为边向上作菱形AEFG,且120EAG∠=︒.(1)如图1,当点E与点B重合时,CEF∠=60︒;(2)如图2,连接AF.①填空:FAD∠EAB∠(填“>”,“<“,“=”);②求证:点F在ABC∠的平分线上;(3)如图3,连接EG,DG,并延长DG交BA的延长线于点H,当四边形AEGH是平行四边形时,求BCAB的值.【考点】相似形综合题【分析】(1)根据菱形的性质计算;(2)①证明60DAB FAE∠=∠=︒,根据角的运算解答;②作FM BC⊥于M,FN BA⊥交BA的延长线于N,证明AFN EFM∆≅∆,根据全等三角形的性质得到FN FM=,根据角平分线的判定定理证明结论;(3)根据直角三角形的性质得到2GH AH=,证明四边形ABEH为菱形,根据菱形的性质计算,得到答案.【解答】解:(1)Q四边形AEFG是菱形,18060AEF EAG∴∠=︒-∠=︒,60CEF AEC AEF∴∠=∠-∠=︒,故答案为:60︒;(2)①Q四边形ABCD是平行四边形,18060DAB ABC ∴∠=︒-∠=︒,Q 四边形AEFG 是菱形,120EAG ∠=︒,60FAE ∴∠=︒,FAD EAB ∴∠=∠,故答案为:=;②作FM BC ⊥于M ,FN BA ⊥交BA 的延长线于N ,则90FNB FMB ∠=∠=︒,60NFM ∴∠=︒,又60AFE ∠=︒,AFN EFM ∴∠=∠,EF EA =Q ,60FAE ∠=︒,AEF ∴∆为等边三角形,FA FE ∴=,在AFN ∆和EFM ∆中,AFN EFM FNA FME FA FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AFN EFM AAS ∴∆≅∆,FN FM ∴=,又FM BC ⊥,FN BA ⊥,∴点F 在ABC ∠的平分线上;(3)Q 四边形AEFG 是菱形,120EAG ∠=︒,60AGF ∴∠=︒,30FGE AGE ∴∠=∠=︒,Q 四边形AEGH 为平行四边形,//GE AH ∴,30GAH AGE ∴∠=∠=︒,30H FGE ∠=∠=︒,90GAH ∴∠=︒,又30AGE ∠=︒,2GH AH ∴=,60DAB ∠=︒Q ,30H ∠=︒,30ADH ∴∠=︒,AD AH GE ∴==,Q 四边形ABEH 为平行四边形,BC AD ∴=,BC GE ∴=,Q 四边形ABEH 为平行四边形,30HAE EAB ∠=∠=︒,∴平行四边形ABEH 为菱形,AB AH HE ∴==,3GE AB ∴=, ∴3BC AB=.3、(2019上海•中考 第22题•10分)图1是某小型汽车的侧面示意图,其中矩形ABCD 表示该车的后备箱,在打开后备箱的过程中,箱盖ADE 可以绕点A 逆时针方向旋转,当旋转角为60︒时,箱盖ADE 落在AD E ''的位置(如图2所示).已知90AD =厘米,30DE =厘米,40EC =厘米.(1)求点D '到BC 的距离;(2)求E 、E '两点的距离.【考点】解直角三角形的应用;矩形的性质【分析】(1)过点D '作D H BC '⊥,垂足为点H ,交AD 于点F ,利用旋转的性质可得出90AD AD '==厘米,60DAD ∠'=︒,利用矩形的性质可得出90AFD BHD ∠'=∠'=︒,在Rt △AD F '中,通过解直角三角形可求出D F '的长,结合FH DC DE CE ==+及D H D F FH '='+可求出点D '到BC 的距离;(2)连接AE ,AE ',EE ',利用旋转的性质可得出AE AE '=,60EAE ∠'=︒,进而可得出AEE ∆'是等边三角形,利用等边三角形的性质可得出EE AE '=,在Rt ADE ∆中,利用勾股定理可求出AE 的长度,结合EE AE '=可得出E 、E '两点的距离.【解答】解:(1)过点D '作D H BC '⊥,垂足为点H ,交AD 于点F ,如图3所示.由题意,得:90AD AD '==厘米,60DAD ∠'=︒.Q 四边形ABCD 是矩形,//AD BC ∴,90∴∠'=∠'=︒.AFD BHD在Rt△AD F'中,sin90sin60453g厘米.D F AD DAD'='∠'=⨯︒=又40Q厘米,30DE=厘米,CE=∴==+=厘米,FH DC DE CE70∴'='+=+厘米.D H D F FH(45370)答:点D'到BC的距离为(45370)+厘米.(2)连接AE,AE',EE',如图4所示.由题意,得:AE AE'=,60∠'=︒,EAE∴∆'是等边三角形,AEE∴'=.EE AEQ四边形ABCD是矩形,90∴∠=︒.ADE在Rt ADEDE=厘米,AD=厘米,30∆中,90223010∴=+=厘米,AE AD DE∴'=厘米.EE3010答:E、E'两点的距离是3010厘米.4、(2019河南•中考第17题•9分)如图,在△ABC中,BA=BC,∠ABC=90°,以AB为直径的半圆O交AC于点D,点E是上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC于点G.(1)求证:△ADF≌△BDG;(2)填空:①若AB=4,且点E是的中点,则DF的长为4﹣2;②取的中点H,当∠EAB的度数为30°时,四边形OBEH为菱形.【考点】圆的综合题.【分析】(1)利用直径所对的圆周角是直角,可得∠ADB=∠AEB=90°,再应用同角的余角相等可得∠DAF=∠DBG,易得AD=BD,△ADF≌△BDG得证;(2)作FH⊥AB,应用等弧所对的圆周角相等得∠BAE=∠DAE,再应用角平分线性质可得结论;由菱形的性质可得BE=OB,结合三角函数特殊值可得∠EAB=30°.【解答】解:(1)证明:如图1,∵BA=BC,∠ABC=90°,∴∠BAC=45°∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∴∠DAF+∠BGD=∠DBG+∠BGD=90°∴∠DAF=∠DBG∵∠ABD+∠BAC=90°∴∠ABD=∠BAC=45°∴AD=BD∴△ADF≌△BDG(ASA);(2)①如图2,过F作FH⊥AB于H,∵点E是的中点,∴∠BAE=∠DAE∵FD⊥AD,FH⊥AB∴FH=FD∵=sin∠ABD=sin45°=,∴,即BF=FD∵AB=4,∴BD=4cos45°=2,即BF+FD=2,(+1)FD=2∴FD==4﹣2故答案为.②连接OE,EH,∵点H是的中点,∴OH⊥AE,∵∠AEB=90°∴BE⊥AE∴BE∥OH∵四边形OBEH为菱形,∴BE=OH=OB=AB∴sin∠EAB==∴∠EAB=30°.故答案为:30°5、(2019河北•中考第23题•9分)如图,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,边AD与边BC交于点P(不与点B,C重合),点B,E在AD异侧,I为△APC的内心.(1)求证:∠BAD=∠CAE;(2)设AP=x,请用含x的式子表示PD,并求PD的最大值;(3)当AB⊥AC时,∠AIC的取值范围为m°<∠AIC<n°,分别直接写出m,n的值.【考点】圆的综合题.【分析】(1)由条件易证△ABC≌△ADE,得∠BAC=∠DAE,∴∠BAD=∠CAE.(2)PD=AD﹣AP=6﹣x,∵点P在线段BC上且不与B、C重合,∴AP的最小值即AP⊥BC时AP的长度,此时PD可得最大值.(3)I为△APC的内心,即I为△APC角平分线的交点,应用“三角形内角和等于180°“及角平分线定义即可表示出∠AIC,从而得到m,n的值.【解答】解:(1)在△ABC和△ADE中,(如图1)∴△ABC≌△ADE(SAS)∴∠BAC=∠DAE即∠BAD+∠DAC=∠DAC+∠CAE∴∠BAD=∠CAE.(2)∵AD=6,AP=x,∴PD=6﹣x当AD⊥BC时,AP=AB=3最小,即PD=6﹣3=3为PD的最大值.(3)如图2,设∠BAP=α,则∠APC=α+30°,∵AB⊥AC∴∠BAC=90°,∠PCA=60°,∠P AC=90°﹣α,∵I为△APC的内心∴AI、CI分别平分∠P AC,∠PCA,∴∠IAC=∠P AC,∠ICA=∠PCA∴∠AIC=180°﹣(∠IAC+∠ICA)=180°﹣(∠P AC+∠PCA)=180°﹣(90°﹣α+60°)=α+105°∵0<α<90°,∴105°<α+105°<150°,即105°<∠AIC<150°,∴m=105,n=150.6、(2019海南•中考第21题•13分)如图,在边长为1的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A、D不重合),射线PE与BC的延长线交于点Q.(1)求证:△PDE≌△QCE;(2)过点E作EF∥BC交PB于点F,连结AF,当PB=PQ时,①求证:四边形AFEP是平行四边形;②请判断四边形AFEP是否为菱形,并说明理由.【考点】四边形综合题.【分析】(1)由四边形ABCD是正方形知∠D=∠ECQ=90°,由E是CD的中点知DE=CE,结合∠DEP=∠CEQ即可得证;(2)①由PB=PQ知∠PBQ=∠Q,结合AD∥BC得∠APB=∠PBQ=∠Q=∠EPD,由△PDE≌△QCE知PE =QE,再由EF∥BQ知PF=BF,根据Rt△P AB中AF=PF=BF知∠APF=∠P AF,从而得∠P AF=∠EPD,据此即可证得PE∥AF,从而得证;②设AP=x,则PD=1﹣x,若四边形AFEP是菱形,则PE=P A=x,由PD2+DE2=PE2得关于x的方程,解之求得x的值,从而得出四边形AFEP为菱形的情况.【解答】解:(1)∵四边形ABCD是正方形,∴∠D=∠ECQ=90°,∵E是CD的中点,∴DE=CE,又∵∠DEP=∠CEQ,∴△PDE≌△QCE(ASA);(2)①∵PB=PQ,∴∠PBQ=∠Q,∵AD∥BC,∴∠APB=∠PBQ=∠Q=∠EPD,∵△PDE≌△QCE,∴PE=QE,∵EF∥BQ,∴PF=BF,∴在Rt△P AB中,AF=PF=BF,∴∠APF=∠P AF,∴∠P AF=∠EPD,∴PE∥AF,∵EF∥BQ∥AD,∴四边形AFEP是平行四边形;②当AP=时,四边形AFEP是菱形.设AP=x,则PD=1﹣x,若四边形AFEP是菱形,则PE=P A=x,∵CD=1,E是CD中点,∴DE=,在Rt△PDE中,由PD2+DE2=PE2得(1﹣x)2+()2=x2,解得x=,即当AP=时,四边形AFEP是菱形.7、(2019福建•中考第21题•8分)在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点A顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.(1)当点E恰好在AC上时,如图1,求∠ADE的大小;(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.【考点】平行四边形的判定;旋转的性质.【分析】(1)如图1,利用旋转的性质得CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,再根据等腰三角形的性质和三角形内角和计算出∠CAD,从而利用互余和计算出∠ADE的度数;(2)如图2,利用直角三角形斜边上的中线性质得到BF=AC,利用含30度的直角三角形三边的关系得到AB =AC,则BF=AB,再根据旋转的性质得到∠BCE=∠ACD=60°,CB=CE,DE=AB,从而得到DE=BF,△ACD和△BCE为等边三角形,接着证明△CFD≌△ABC得到DF=BC,然后根据平行四边形的判定方法得到结论.【解答】(1)解:如图1,∵△ABC绕点A顺时针旋转α得到△DEC,点E恰好在AC上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,∵CA=CD,∴∠CAD=∠CDA=(180°﹣30°)=75°,∴∠ADE=90°﹣75°=15°;(2)证明:如图2,∵点F是边AC中点,∴BF=AC,∵∠ACB=30°,∴AB=AC,∴BF=AB,∵△ABC绕点A顺时针旋转60得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,DE=AB,∴DE=BF,△ACD和△BCE为等边三角形,∴BE=CB,∵点F为△ACD的边AC的中点,∴DF⊥AC,易证得△CFD≌△ABC,∴DF=BC,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形.8、(2019北京•中考第20题•5分)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G=,求AO的长.【考点】全等三角形的判定与性质;菱形的性质;解直角三角形.【分析】(1)由菱形的性质得出AB=AD,AC⊥BD,OB=OD,得出AB:BE=AD:DF,证出EF∥BD即可得出结论;(2)由平行线的性质得出∠G=∠ADO,由三角函数得出tan G=tan∠ADO==,得出OA=OD,由BD =4,得出OD=2,得出OA=1.【解答】(1)证明:连接BD,如图1所示:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,OB=OD,∵BE=DF,∴AB:BE=AD:DF,∴EF∥BD,∴AC⊥EF;(2)解:如图2所示:∵由(1)得:EF∥BD,∴∠G=∠ADO,∴tan G=tan∠ADO==,∴OA=OD,∵BD=4,∴OD=2,∴OA=1.10、(2019北京•中考第27题•7分)已知∠AOB=30°,H为射线OA上一定点,OH=+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M总有ON=QP,并证明.【考点】三角形综合题.【分析】(1)根据题意画出图形.(2)由旋转可得∠MPN=150°,故∠OPN=150°﹣∠OPM;由∠AOB=30°和三角形内角和180°可得∠OMP =180°﹣30°﹣∠OPM=150°﹣∠OPM,得证.(3)根据题意画出图形,以ON=QP为已知条件反推OP的长度.由(2)的结论∠OMP=∠OPN联想到其补角相等,又因为旋转有PM=PN,已具备一边一角相等,过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,即可构造出△PDM≌△NCP,进而得PD=NC,DM=CP.此时加上ON=QP,则易证得△OCN≌△QDP,所以OC=QD.利用∠AOB=30°,设PD=NC=a,则OP=2a,OD=a.再设DM=CP=x,所以QD=OC=OP+PC =2a+x,MQ=DM+QD=2a+2x.由于点M、Q关于点H对称,即点H为MQ中点,故MH=MQ=a+x,DH =MH﹣DM=a,所以OH=OD+DH=a+a=+1,求得a=1,故OP=2.证明过程则把推理过程反过来,以OP=2为条件,利用构造全等证得ON=QP.【解答】解:(1)如图1所示为所求.(2)设∠OPM=α,∵线段PM绕点P顺时针旋转150°得到线段PN∴∠MPN=150°,PM=PN∴∠OPN=∠MPN﹣∠OPM=150°﹣α∵∠AOB=30°∴∠OMP=180°﹣∠AOB﹣∠OPM=180°﹣30°﹣α=150°﹣α∴∠OMP=∠OPN(3)OP=2时,总有ON=QP,证明如下:过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,如图2∴∠NCP=∠PDM=∠PDQ=90°∵∠AOB=30°,OP=2∴PD=OP=1∴OD=∵OH=+1∴DH=OH﹣OD=1∵∠OMP=∠OPN∴180°﹣∠OMP=180°﹣∠OPN即∠PMD=∠NPC在△PDM与△NCP中∴△PDM≌△NCP(AAS)∴PD=NC,DM=CP设DM=CP=x,则OC=OP+PC=2+x,MH=MD+DH=x+1∵点M关于点H的对称点为Q∴HQ=MH=x+1∴DQ=DH+HQ=1+x+1=2+x∴OC=DQ在△OCN与△QDP中∴△OCN≌△QDP(SAS)∴ON=QP11、(2019北京•中考第28题•7分)在△ABC中,D,E分别是△ABC两边的中点,如果上的所有点都在△ABC的内部或边上,则称为△ABC的中内弧.例如,图1中是△ABC的一条中内弧.(1)如图2,在Rt△ABC中,AB=AC=,D,E分别是AB,AC的中点,画出△ABC的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t>0),在△ABC中,D,E分别是AB,AC的中点.①若t=,求△ABC的中内弧所在圆的圆心P的纵坐标的取值范围;②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.【考点】圆的综合题.【分析】(1)由三角函数值及等腰直角三角形性质可求得DE=2,最长中内弧即以DE为直径的半圆,的长即以DE为直径的圆周长的一半;(2)根据三角形中内弧定义可知,圆心一定在DE的中垂线上,①当t=时,要注意圆心P在DE上方的中垂线上均符合要求,在DE下方时必须AC与半径PE的夹角∠AEP满足90°≤∠AEP<135°;②根据题意,t的最大值即圆心P在AC上时求得的t值.【解答】解:(1)如图2,以DE为直径的半圆弧,就是△ABC的最长的中内弧,连接DE,∵∠A=90°,AB=AC=,D,E分别是AB,AC的中点,∴BC===4,DE=BC=×4=2,∴弧=×2π=π;(2)如图3,由垂径定理可知,圆心一定在线段DE的垂直平分线上,连接DE,作DE垂直平分线FP,作EG ⊥AC交FP于G,①当t=时,C(2,0),∴D(0,1),E(1,1),F(,1),设P(,m)由三角形中内弧定义可知,圆心线段DE上方射线FP上均可,∴m≥1,∵OA=OC,∠AOC=90°∴∠ACO=45°,∵DE∥OC∴∠AED=∠ACO=45°作EG⊥AC交直线FP于G,FG=EF=根据三角形中内弧的定义可知,圆心在点G的下方(含点G)直线FP上时也符合要求;∴m≤综上所述,m≤或m≥1.②如图4,设圆心P在AC上,∵P在DE中垂线上,∴P为AE中点,作PM⊥OC于M,则PM=,∴P(t,),∵DE∥BC∴∠ADE=∠AOB=90°∴AE===,∵PD=PE,∴∠AED=∠PDE∵∠AED+∠DAE=∠PDE+∠ADP=90°,∴∠DAE=∠ADP∴AP=PD=PE=AE由三角形中内弧定义知,PD≤PM∴AE≤,AE≤3,即≤3,解得:t≤,∵t>0∴0<t≤.12、(2019安徽•中考第20题•10分)如图,点E在ABCDY内部,//AF BE,//DF CE.(1)求证:BCE ADF∆≅∆;(2)设ABCDY的面积为S,四边形AEDF的面积为T,求ST的值.【考点】全等三角形的判定与性质;平行四边形的性质【分析】(1)根据ASA 证明:BCE ADF ∆≅∆;(2)根据点E 在ABCD Y 内部,可知:12BEC AED ABCD S S S ∆∆+=Y ,可得结论. 【解答】解:(1)Q 四边形ABCD 是平行四边形,AD BC ∴=,//AD BC ,180ABC BAD ∴∠+∠=︒,//AF BE Q ,180EAB BAF ∴∠+∠=︒,CBE DAF ∴∠=∠,同理得BCE ADF ∠=∠,在BCE ∆和ADF ∆中,Q CBE DAF BC AD BCE ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()BCE ADF ASA ∴∆≅∆;(2)Q 点E 在ABCD Y 内部,12BEC AED ABCD S S S ∆∆∴+=Y , 由(1)知:BCE ADF ∆≅∆,BCE ADF S S ∆∆∴=,12ADF AED BEC AED ABCD AEDF S S S S S S ∆∆∆∆∴=+=+=Y 四边形, ABCD QY 的面积为S ,四边形AEDF 的面积为T , ∴212S S T S ==. 13、如图,矩形ABCD 中,点E 在边CD 上,将BCE ∆沿BE 折叠,点C 落在AD 边上的点F 处,过点F 作//FG CD 交BE 于点G ,连接CG .(1)求证:四边形CEFG 是菱形;(2)若6AB =,10AD =,求四边形CEFG 的面积.【考点】LA:菱形的判定与性质;PB:翻折变换(折叠问题);LB:矩形的性质【分析】(1)根据题意和翻着的性质,可以得到BCE BFE∆≅∆,再根据全等三角形的性质和菱形的判定方法即可证明结论成立;(2)根据题意和勾股定理,可以求得AF的长,进而求得EF和DF的值,从而可以得到四边形CEFG的面积.【解答】(1)证明:由题意可得,BCE BFE∆≅∆,BEC BEF∴∠=∠,FE CE=,//FG CEQ,FGE CEB∴∠=∠,FGE FEG∴∠=∠,FG FE∴=,FG EC∴=,∴四边形CEFG是平行四边形,又CE FE=Q,∴四边形CEFG是菱形;(2)Q矩形ABCD中,6AB=,10AD=,BC BF=,90BAF∴∠=︒,10AD BC BF===,8AF∴=,2DF∴=,设EF x=,则CE x=,6DE x=-,90FDE=︒Q,2222(6)x x∴+-=,解得,103x=,103CE∴=,∴四边形CEFG的面积是:1020233 CE DF=⨯=g.14、(2019成都•中考第27题•10分)如图1,在ABC∆中,20AB AC==,3tan4B=,点D为BC边上的动点(点D 不与点B ,C 重合).以D 为顶点作ADE B ∠=∠,射线DE 交AC 边于点E ,过点A 作AF AD ⊥交射线DE 于点F ,连接CF .(1)求证:ABD DCE ∆∆∽;(2)当//DE AB 时(如图2),求AE 的长;(3)点D 在BC 边上运动的过程中,是否存在某个位置,使得DF CF =?若存在,求出此时BD 的长;若不存在,请说明理由.【考点】SO :相似形综合题【分析】(1)根据两角对应相等的两个三角形相似证明即可.(2)解直角三角形求出BC ,由ABD CBA ∆∆∽,推出AB DB CB AB =,可得222025322AB DB CB ===,由//DE AB ,推出AE BD AC BC=,求出AE 即可. (3)点D 在BC 边上运动的过程中,存在某个位置,使得DF CF =.作FH BC ⊥于H ,AM BC ⊥于M ,AN FH ⊥于N .则90NHM AMH ANH ∠=∠=∠=︒,由AFN ADM ∆∆∽,可得3tan tan 4AN AF ADF B AM AD ==∠==,推出3312944AN AM ==⨯=,推出1697CH CM MH CM AN =-=-=-=,再利用等腰三角形的性质,求出CD 即可解决问题.【解答】(1)证明:AB AC =Q ,B ACB ∴∠=∠,ADE CDE B BAD ∠+∠=∠+∠Q ,ADE B ∠=∠,BAD CDE ∴∠=∠,BAD DCE ∴∆∆∽.(2)解:如图2中,作AM BC ⊥于M .在Rt ABM∆中,设4BM k=,则3tan434AM BM B k k ==⨯=g,由勾股定理,得到222AB AM BM=+,22220(3)(4)k k∴=+,4k∴=或4-(舍弃),AB AC=Q,AM BC⊥,22432BC BM k∴===g,//DE ABQ,BAD ADE∴∠=∠,ADE B∠=∠Q,B ACB∠=∠,BAD ACB∴∠=∠,ABD CBA∠=∠Q,ABD CBA∴∆∆∽,∴AB DBCB AB=,222025322ABDBCB∴===,//DE ABQ,∴AE BDAC BC=,252012523216AC BDAEBC⨯∴===g.(3)点D在BC边上运动的过程中,存在某个位置,使得DF CF=.理由:作FH BC⊥于H,AM BC⊥于M,AN FH⊥于N.则90NHM AMH ANH∠=∠=∠=︒,∴四边形AMHN为矩形,90MAN∴∠=︒,MH AN=,AB AC=Q,AM BC⊥,11321622BM CM BC∴===⨯=,在Rt ABM ∆中,由勾股定理,得12AM ==, AN FH ⊥Q ,AM BC ⊥,90ANF AMD ∴∠=︒=∠,90DAF MAN ∠=︒=∠Q ,NAF MAD ∴∠=∠,AFN ADM ∴∆∆∽, ∴3tan tan 4AN AF ADF B AM AD ==∠==, 3312944AN AM ∴==⨯=, 1697CH CM MH CM AN ∴=-=-=-=, 当DF CF =时,由点D 不与点C 重合,可知DFC ∆为等腰三角形, FH DC ⊥Q ,214CD CH ∴==,321418BD BC CD ∴=-=-=,∴点D 在BC 边上运动的过程中,存在某个位置,使得DF CF =,此时18BD =.。
2020年中考数学二轮专题——二次函数与几何图形综合(压轴)题型一、基础过关1. (2019宿迁)如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,-3).(1)求抛物线的函数表达式;(2)如图①,连接AC,点P在抛物线上,且满足∠P AB=2∠ACO.求点P的坐标;(3)如图②,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.第1题图2. (2019贺州)如图,在平面直角坐标系中,已知点B的坐标为(-1,0),且OA=OC=4OB,抛物线y =ax2+bx+c(a≠0)图象经过A,B,C三点.(1)求A,C两点的坐标;(2)求抛物线的解析式;(3)若点P是直线AC下方的抛物线上的一个动点,作PD⊥AC于点D,当PD的值最大时,求此时点P 的坐标及PD的最大值.第2题图二、能力提升1. (2019菏泽)如图,抛物线与x 轴交于A ,B 两点,与y 轴交于点C (0,-2),点A 的坐标是(2,0),P 为抛物线上的一个动点,过点P 作PD ⊥x 轴于点D ,交直线BC 于点E ,抛物线的对称轴是直线x =-1.(1)求抛物线的函数表达式;(2)若点P 在第二象限内,且PE =14OD ,求△PBE 的面积;(3)在(2)的条件下,若M 为直线BC 上一点,在x 轴的上方,是否存在点M ,使△BDM 是以BD 为腰的等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由.第1题图三、满分冲关1. (2019襄阳)如图,在直角坐标系中,直线y =-12x +3与x 轴,y 轴分别交于点B ,点C ,对称轴为x=1的抛物线过B , C 两点,且交x 轴于另一点A ,连接A C.(1)直接写出点A ,点B ,点C 的坐标和抛物线的解析式;(2)已知点P 为第一象限内抛物线上一点,当点P 到直线BC 的距离最大时,求点P 的坐标; (3)抛物线上是否存在一点Q (点C 除外),使以点Q ,A ,B 为顶点的三角形与△ABC 相似?若存在,求出点Q 的坐标;若不存在,请说明理由.第1题图2、(2019滨州)如图①,抛物线y =-18x 2+12x +4与y 轴交于点A ,与x 轴交于点B ,C ,将直线AB 绕点A 逆时针旋转90°,所得直线与x 轴交于点D .(1)求直线AD 的函数解析式;(2)如图②,若点P 是直线AD 上方抛物线上的一个动点. ①当点P 到直线AD 的距离最大时,求点P 的坐标和最大距离; ②当点P 到直线AD 的距离为524时,求sin ∠P AD 的值.3、(2019金牛区一诊)如图,在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)与x 轴的两个交点分别为A (-3,0)、B (1,0),与y 轴交于点D (0,3),过顶点C 作CH ⊥x 轴于点H .(1)求抛物线的解析式和顶点C 的坐标;(2)连接AD 、CD ,若点E 为抛物线上一动点(点E 与顶点C 不重合),当△ADE 与△ACD 面积相等时,求点E 的坐标;(3)若点P 为抛物线上一动点(点P 与顶点C 不重合),过点P 向CD 所在的直线作垂线,垂足为点Q ,以P 、C 、Q 为顶点的三角形与△ACH 相似时,求点P 的坐标.第1题图备用图参考答案一、基础过关1. 解:(1)把A (1,0),C (0,-3)代入y =x 2+bx +c 得,⎩⎪⎨⎪⎧1+b +c =0c =-3,解得⎩⎪⎨⎪⎧b =2c =-3, ∴抛物线的函数表达式为y =x 2+2x -3;(2)如解图,作点A 关于y 轴的对称点A ′,连接A ′C ,作AD ⊥A ′C 于点D , ∴点A ′的坐标为(-1,0), 则AA ′=2,OC =3,A ′C =10, ∵S △A ′AC =12AA ′·OC =12A ′C ·AD ,∴AD =AA ′·OC A ′C =3105,在Rt △A ′AD 中,∵A ′D 2+AD 2=A ′A 2, ∴A ′D 2+(3105)2=22.解得A ′D =105(负值已舍去), ∴DC =4105,∴tan ∠ACA ′=AD DC =34. 由对称可得∠ACD =2∠ACO ,则∠P AB =∠ACA ′, 设P (a ,a 2+2a -3),①如解图,当点P 在x 轴的上方时,作P 1H 1⊥x 轴于点H 1, ∴tan ∠P 1AB =P 1H 1AH 1=a 2+2a -31-a =34,解得a 1=1(舍),a 2=-154,把a =-154代入得P (-154,5716);②如解图,当点P 在x 轴的下方时,作P 2H 2⊥x 轴于点H 2, ∴tan ∠P 2AB =P 2H 2AH 2=-a 2-2a +31-a =34,解得a 3=1(舍),a 4=-94,把a =-94代入得P (-94,-3916),综上所述,点P 的坐标为(-154,5716)或(-94,-3916);第1题解图(3)是.设Q (m ,m 2+2m -3),则-3<m <1. 设直线AQ 的解析式为y =k 1x +b 1,把A (1,0),Q (m ,m 2+2m -3),代入解析式解得⎩⎪⎨⎪⎧k 1=m +3b 1=m -3, ∴y =(m +3)x -m -3, 当x =-1时,y =-2m -6, 设直线BQ 的解析式为y =k 2x +b 2,把B (-3,0),Q (m ,m 2+2m -3)代入y =k 2x +b 2,解得⎩⎪⎨⎪⎧k 2=m -1b 2=3m -3,∴y =(m -1)x +3m -3, 当x =-1时,y =2m -2, ∴DM =2m +6,DN =-2m +2, ∴DM +DN =2m +6-2m +2=8. 2. 解:(1)∵B (-1,0), ∴OB =1.又∵OA =OC =4OB , ∴OA =OC =4, ∴A (4,0),C (0,-4);(2)将A 、B 、C 三点坐标代入y =ax 2+bx +c 得,⎩⎪⎨⎪⎧16a +4b +c =0a -b +c =0c =-4,解得⎩⎪⎨⎪⎧a =1b =-3c =-4, ∴抛物线的解析式为y =x 2-3x -4;(3)如解图,过点P 作PE ⊥x 轴交AC 于点E , ∴PE ∥y 轴. ∵OA =OC ,∴∠PED =∠OCA =45°, ∴△DEP 为等腰直角三角形, ∴PD =22PE , ∴当PE 取得最大值时,PD 取得最大值, 易得直线AC 的解析式为y =x -4, 设P (x ,x 2-3x -4),则E (x ,x -4),则PE =(x -4)-(x 2-3x -4)=-x 2+4x =-(x -2)2+4, ∵0<x <4,∴当x =2时,PE 取得最大值,最大值为4, 此时PD 取得最大值,最大值为4×22=22,∴点P 的坐标为(2,-6).第2题解图二、能力提升1. 解:(1)∵抛物线与x 轴交于A ,B 两点,点A 的坐标为(2,0),抛物线的对称轴为直线x =-1, ∴点B 的坐标为(-4,0).∴设抛物线的函数表达式为y =a (x +4)(x -2),将点C (0,-2)代入得-8a =-2,解得a =14.∴抛物线的函数表达式为y =14(x +4)(x -2)=14x 2+12x -2;(2)设点P 的坐标为(x ,14x 2+12x -2),则点D 的坐标为(x ,0),设BC 所在直线的表达式为y =kx +b , 将B (-4,0),C (0,-2)代入得,⎩⎪⎨⎪⎧-4k +b =0b =-2,解得⎩⎪⎨⎪⎧k =-12b =-2, ∴BC 所在直线的表达式为y =-12x -2.∴点E 的坐标为(x ,-12x -2).∴PE =14x 2+x .∵PE =14OD ,∴14x 2+x =-14x ,即14x 2+54x =0, 解得x =-5或x =0(舍). ∴PE =54,BD =1,∴S △PBE =12PE ·BD =12×54×1=58;(3)存在.①当DM =DB =1时,如解图①,过点M 作MF ⊥x 轴于点F , 设M (m ,-12m -2),则MF =-12m -2,DF =-m -5,∵MF 2+DF 2=DM 2,∴(-12m -2)2+(-m -5)2=1,解得m =-285或m =-4(舍去).∴点M 的坐标为(-285,45);第1题解图①②当BD =BM =1时,如解图②,过点M 作x 轴的垂线,垂足为N , ∵DE ⊥x 轴, ∴DE ∥MN ,∴BN ∶BD =BM ∶BE ,∴BN ∶1=1∶BE . ∵E (-5,12),∴DE =12,∴BE =52, ∴BN ∶1=1∶52,解得BN =255. ∴点M 的横坐标为-4-255,将x =-4-255代入y =-12x -2,得y =55,即点M 的坐标为(-4-255,55).综上所述,点M 的坐标为(-285,45)或(-4-255,55).第1题解图②三、满分冲关1. 解:(1)A (-4,0),B (6,0),C (0,3),抛物线的解析式为y =-18x 2+14x +3;【解法提示】令y =-12x +3=0,解得x =6,令x =0,得y =3,∴B (6,0),C (0,3).∵抛物线的对称轴为x =1,且过点B 、A ,∴抛物线与x 轴的另一交点A 坐标为(-4,0),设抛物线的解析式为y =a (x +4)(x -6),将点C (0,3)代入得-24a =3,解得a =-18.∴y =-18(x +4)(x -6)=-18x 2+14x +3(2)如解图①,过点P 作PG ⊥x 轴于点G ,交BC 于点Q ,过点P 作PH ⊥BC 于点H . ∵OC =3,OB =6, ∴BC =OC 2+OB 2=3 5. 又∵∠HQP =∠GQB , ∴∠HPQ =∠CBO , ∴sin ∠HPQ =sin ∠CBO =55. 故点P 到直线BC 的距离最大,即PQ 最大. 设P (m ,-18m 2+14m +3),Q (m ,-12m +3),∴PQ =-18m 2+14m +3-(-12m +3)=-18(m -3)2+98.∵-18<0,∴当m =3时,PQ 有最大值为98.∴P (3,218);第1题解图①(3)存在.由(1)得A (-4,0)、B (6,0)、C (0,3), ∴AB =10,AC =32+42=5. 分为两种情况分类讨论:①当△ABC ∽△AQB 时,如解图②所示. ∴AC AB =ABAQ,∠CAB =∠BAQ . ∴AQ =AB 2AC =1025=20,过点Q 作QD ⊥x 轴,垂足为点D , ∴QD =AQ ·sin ∠BAQ =20×35=12,AD =AQ ·cos ∠BAQ =20×45=16.∴Q (12,-12).第1题解图②②当△ABC ∽△BQA 时,如解图③所示, ∴AB BQ =ACAB,∠CAB =∠ABQ . ∴BQ =AB 2AC=20,过点Q 作QE ⊥x 轴,垂足为E ,同理可得QE =BQ ·sin ∠ABQ =20×35=12,BE =BQ ·cos ∠ABQ =20×45=16, ∴Q (-10,-12).综上所述,点Q 的坐标是(12,-12)或(-10,-12).第1题解图③2、解:(1)抛物线y =-18x 2+12x +4, 令x =0,可得A 点的坐标为(0,4),令y =0,可得B 点的坐标为(-4,0),C 点的坐标为(8,0).易得直线AB 的函数解析式为y =x +4,∵OA =OB ,∴∠BAO =45°.又∵直线AD 由直线AB 逆时针旋转90°而来,∴∠BAD =90°,∴∠OAD =45°,△OAD 为等腰直角三角形,∴OD =OA =4,D (4,0),易得直线AD 的函数解析式为y =-x +4;(2)①如解图①,过点P 作PE ⊥x 轴交AD 于点E ,PF ⊥AD 于点F ,第1题解图①易得△PEF 为等腰直角三角形,∴PF =22PE , ∴当PE 取得最大值时,PF 取得最大值,设P (x ,-18x 2+12x +4), 则E (x ,-x +4),∴PE =-18x 2+12x +4-(-x +4)=-18x 2+32x =-18(x -6)2+92, ∴当x =6时,PE 有最大值92, 此时PF 有最大值924, ∴当x =6时,-18x 2+12x +4=52, ∴当点P 到直线AD 的距离最大时,点P 的坐标为(6,52),最大距离为924; ②如解图②,连接AP ,过点P 作PE ⊥x 轴,交AD 于点E ,PF ⊥AD 于点F ,当点P 到AD 的距离为524时,PF =524, 则此时PE =2PF =52, 将PE =52代入PE =-18(x -6)2+92中, 解得x 1=10,x 2=2,∴此时点P 的坐标为(10,-72)或(2,92), 当点P 的坐标为(2,92)时,AP =22+(92-4)2=172, ∴sin ∠P AD =524172=53434; 当点P 的坐标为(10,-72)时, AP =102+(-72-4)2=252, ∴sin ∠P AD =PF AP =524252=210. 综上,sin ∠P AD 的值是53434或210.3、1. 解:(1)把点A 、B 、D 的坐标分别代入抛物线的解析式中得:⎩⎪⎨⎪⎧a +b +c =09a -3b +c =0c =3,解得⎩⎪⎨⎪⎧a =-1b =-2c =3,∴抛物线的解析式为y =-x 2-2x +3,∴抛物线的对称轴为直线x =-b 2a=-1, ∴点C 的坐标为(-1,4);(2)如解图①,过点C 作CE ∥AD 交抛物线于点E ,交y 轴于点T ,则△ADE 与△ACD 面积相等,直线AD 过点D ,设其解析式为y =mx +3,将点A 的坐标代入得:0=-3m +3,解得m =1,则直线AD 的解析式为y =x +3,∵CE ∥AD ,设直线CE 的解析式为y =x +n ,将点C 的坐标代入上式得:4=-1+n ,解得n =5,则直线CE 的解析式为y =x +5,则点T 的坐标为(0,5),联立⎩⎪⎨⎪⎧y =-x 2-2x +3y =x +5, 解得x =-1或x =-2(x =-1为点C 的横坐标),即点E 的坐标为(-2,3);在y 轴取一点H ′,使DT =DH ′=2,过点H ′作直线E ′E ″∥AD ,则△ADE ′和△ADE ″都与△ACD 面积相等,同理可得直线E ′E ″的解析式为y =x +1,联立⎩⎪⎨⎪⎧y =-x 2-2x +3y =x +1, 解得x =-3±172, ∴点E ″、E ′的坐标分别为(-3+172,-1+172)、(-3-172,-1-172), 综上,满足要求的点E 的坐标为(-2,3)或(-3+172,-1+172)或(-3-172,-1-172);第1题解图①(3)如解图②,设点P 的坐标为(m ,n ),则n =-m 2-2m +3,把点C 、D 的坐标代入一次函数的解析式y =kx +b 得:⎩⎪⎨⎪⎧4=-k +b b =3, 解得⎩⎪⎨⎪⎧k =-1b =3, 即直线CD 的解析式为y =-x +3,由(1)得,直线AD 的解析式为y =x +3,∴AD ⊥CD ,而直线PQ ⊥CD ,故直线PQ 的解析式中的k 值与直线AD 的解析式中的k 值相同, 同理可得直线PQ 的解析式为y =x +(n -m ),联立⎩⎪⎨⎪⎧y =-x +3y =x +(n -m ), 解得x =3+m -n 2,即点Q 的坐标为(3+m -n 2,3-m +n 2), 则PQ 2=(m -3+m -n 2)2+(n -3-m +n 2)2=(m +n -3)22=12(m +1)2·m 2, 同理可得:PC 2=(m +1)2[1+(m +1)2],AH =2,CH =4,则AC =25,当△ACH ∽△CPQ 时,PC PQ =AC CH =52, 即4PC 2=5PQ 2,整理得3m 2+16m +16=0,解得m =-4或m =-43, ∴点P 的坐标为(-4,-5)或(-43,359); 当△ACH ∽△PCQ 时,同理可得,点P 的坐标为(-23,359)或(2,-5), 综上所述,点P 的坐标为(-4,-5)或(-43,359)或(-23,359)或(2,-5).第1题解图②。
专题六二次函数压轴题类型一二次函数与图形变换如图①,已知直线l:y=-x+2与y轴交于点A,抛物线y=(x-1)2+m 也经过点A,其顶点为B,将该抛物线沿直线l平移,使顶点B落在直线l上的点D处,点D的横坐标为n(n>1).(1)求点B的坐标;(2)平移后的抛物线可以表示为__________________(用含n的式子表示);(3)若平移后的抛物线与原抛物线相交于点C,且点C的横坐标为a.①请写出a关于n的函数关系式;②如图②,连接AC、CD,若∠ACD=90°,求a的值.【分析】(1)点B是抛物线顶点,要求点B的坐标,只需求抛物线解析式即可,将点A代入即可得解;(2)确定平移后的抛物线解析式,可根据抛物线平移规律直接得解;(3)①由点C是两抛物线交点,可联立解方程来确定a与n的关系;②由∠ACD=90°,可过点C作y轴的垂线,构造三垂直模型利用相似来解.【自主解答】1.已知平面直角坐标系中两定点A (-1,0)、B (4,0),抛物线y =ax 2+bx -2(a ≠0)过点A ,B ,顶点为C ,点P (m ,n )(n <0)为抛物线上一点.(1)求抛物线的解析式和顶点C 的坐标;(2)当∠APB 为钝角时,求m 的取值范围;(3)若m >32,当∠APB 为直角时,将该抛物线向左或向右平移t (0<t <52)个单位长度,点C 、P 平移后对应的点分别记为C ′、P ′,是否存在t ,使得首尾依次连接A 、B 、P ′、C ′所构成的多边形的周长最短?若存在,求t 的值,并说明抛物线平移的方向;若不存在,请说明理由.2.(2019·陕西)在平面直角坐标系中,已知抛物线L :y =ax 2+(c -a )x +c 经过点A (-3,0)和点B (0,-6),L 关于原点O 对称的抛物线为L ′.(1)求抛物线L 的表达式;(2)点P 在抛物线L ′上,且位于第一象限,过点P 作PD ⊥y 轴,垂足为D ,若△POD 与△AOB 相似,求符合条件的点P 的坐标.3.已知二次函数y=ax2-2ax-2的图象(记为抛物线C1)的顶点为M,直线l:y =2x-a与x轴、y轴分别交于A,B.(1)对于抛物线C1,以下结论正确的是________.①对称轴是:直线x=1;②顶点坐标是(1,-a-2);③抛物线一定经过两个定点.(2)当a>0时,设△ABM的面积为S,求S与a的函数关系式.(3)将二次函数y=ax2-2ax-2的图象C1绕点P(t,-2)旋转180°得到二次函数的图象(记为抛物线C2),顶点为N.①当-2≤x≤1时,旋转前后的两个二次函数y的值都会随x的增大而减小,求t 的取值范围;②当a=1时,点Q是抛物线C1上的一点,点Q在抛物线C2上的对应点为Q′,试探究四边形QMQ′N能否为正方形?若能,求出t的值;若不能,请说明理由.类型二二次函数与几何图形综合如图,已知二次函数L 1:y=mx2+2mx-3m+1(m≥1)和二次函数L2:y=-m(x-3)2+4m-1(m≥1)图象的顶点分别为M,N,与x轴分别相交于A,B两点(点A在点B的左边)和C、D两点(点C在点D的左边).(1)函数y=mx2+2mx-3m+1(m≥1)的顶点坐标为________;当二次函数L1,L2的y值同时随x的增大而增大时,x的取值范围是________;(2)当AD=MN时,请直接写出四边形AMDN的形状;(3)抛物线L1,L2均会分别经过某些定点.①求所有定点的坐标;②若抛物线L1的位置固定不变,通过左右平移抛物线L2,使得这些定点组成的图形为菱形,则抛物线L2应平移的距离是多少?【分析】(1)将抛物线化为顶点式即可得到顶点坐标;由图象可得y随x的增大而增大的x的取值范围;(2)判断四边形AMDN的形状,可先证明四边形AMDN是平行四边形,再由AD =MN得到其为矩形;(3)①求抛物线经过的定点,可将抛物线化为关于m的代数式,令m的系数为0,代入求出对应的y值即可;②由所得图形为菱形,可先判定定点构成的图形是平行四边形,再根据菱形得到邻边相等,对角线互相垂直平分,从而利用勾股定理求解.【自主解答】1.(2019·海南)如图,已知抛物线y=ax2+bx+5经过A(-5,0),B(-4,-3)两点,与x轴的另一个交点为C,顶点为D,连接CD.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B,C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.2.(2019·辽阳)如图,在平面直角坐标系中,Rt△ABC的边BC在x轴上,∠ABC=90°,以A为顶点的抛物线y=-x2+bx+c经过点C(3,0),交y轴于点E(0,3),动点P在对称轴上.(1)求抛物线的解析式;(2)若点P从A点出发,沿A→B方向以1个单位/秒的速度匀速运动到点B停止,设运动时间为t秒,过点P作PD⊥AB交AC于点D,过点D平行于y轴的直线l交抛物线于点Q,连接AQ,CQ,当t为何值时,△ACQ的面积最大,最大值是多少?(3)若点M是平面内任意一点,在x轴上方是否存在点P,使得以点P,M,E,C为顶点的四边形是菱形?若存在,请直接写出符合条件的M点坐标;若不存在,请说明理由.第2题图备用图类型三二次函数与规律探索(2019·江西)特例感知(1)如图①,对于抛物线y 1=-x 2-x +1,y 2=-x 2-2x +1,y 3=-x 2-3x +1,下列结论正确的序号是________.①抛物线y 1,y 2,y 3都经过点C (0,1);②抛物线y 2,y 3的对称轴由抛物线y 1的对称轴依次向左平移12个单位得到;③抛物线y 1,y 2,y 3与直线y =1的交点中,相邻两点之间的距离相等. 形成概念(2)把满足y n =-x 2-nx +1(n 为正整数)的抛物线称为“系列平移抛物线”. 知识应用在(2)中,如图②.①“系列平移抛物线”的顶点依次为P 1,P 2,P 3,…,P n ,用含n 的代数式表示顶点P n 的坐标,并写出该顶点纵坐标y 与横坐标x 之间的关系式;②“系列平移抛物线”存在“系列整数点(横、纵坐标均为整数的点)”:C 1,C 2,C 3,…,C n ,其横坐标分别为-k -1,-k -2,-k -3,…,-k -n (k 为正整数),判断相邻两点之间的距离是否都相等,若相等,直接写出相邻两点之间的距离;若不相等,说明理由.(3)在②中,直线y =1分别交“系列平移抛物线”于点A 1,A 2,A 3,…,A n ,连接C n A n ,C n -1A n -1,判断C n A n ,C n -1A n -1是否平行?并说明理由.图① 图②【分析】 (1)逐一判断3个结论的正确性即可;(2)①由抛物线y n 即可表示P n ,消去参数即可得到顶点P n 的横、纵坐标之间的关系式;②分别求出C n ,C n -1的横、纵坐标,利用两点距离公式求线段C n C n -1的长;(3)要判断C n A n 与C n -1A n -1是否平行,只需判断直线C n A n 与直线C n -1A n -1的解析式中自变量的系数是否相同即可.【自主解答】1.已知抛物线y =-x 2+2x +3和抛物线y n =n 3x 2-2n 3x -n (n 为正整数). (1)抛物线y =-x 2+2x +3与x 轴的交点坐标为____________,顶点坐标为________.(2)当n =1时,请解答下列问题:①直接写出y n 与x 轴的交点坐标__________,顶点坐标________.请写出抛物线y ,y n 的一条相同的图象性质________________;②当直线y =12x +m 与y ,y n 相交共有4个交点时,求m 的取值范围;(3)若直线y =k (k <0)与抛物线y =-x 2+2x +3,抛物线y n =n 3x 2-2n 3x -n (n 为正整数)共有4个交点,从左至右依次标记为点A ,点B ,点C ,点D ,当AB =BC =CD 时,求k ,n 之间满足的关系式.2.已知抛物线y n =-(x -a n )2+b n (n 为正整数,且0<a 1<a 2<…<a n )与x 轴的交点为A (0,0)和A n (c n ,0),c n =c n -1+2,当n =1时,第1条抛物线y 1=-(x -a 1)2+b 1与x 轴的交点为A (0,0)和A 1(2,0),其他依此类推.(1)求a 1,b 1的值及抛物线y 2的解析式.(2)抛物线y3的顶点B3的坐标为(______,______);依此类推,第n条抛物线y n 的顶点B n的坐标为(______,________);所有抛物线的顶点坐标满足的函数关系式是____________.(3)探究下列结论:①是否存在抛物线y n,使得△AA n B n为等腰直角三角形?若存在,请求出抛物线的表达式;若不存在,请说明理由.②若直线x=m(m>0)与抛物线y n分别交于C1,C2,…,C n,则线段C1C2,C2C3,…,C n-1C n的长有何规律?请用含有m的代数式表示.3.如图,抛物线y1=-x2+c与x轴交于A,B两点,且AB=2.(1)求抛物线y1的函数解析式,并直接写出y1的顶点坐标.(2)将y1先向右平移1个单位,再向上平移1个单位,记为第一次操作,得到抛物线y2.按同样的操作方式,经过第二次操作,可得到抛物线y3,经过第三次操作,可得到抛物线y4,…,经过第(n-1)次操作可得到抛物线y n.①y1的顶点是否在y2上?请说明理由.②若抛物线y n恰好经过点B(不含y1),求抛物线y n的解析式.③定义:当抛物线与x轴有两个交点时,定义:以这两个交点及抛物线顶点构成的三角形叫做该抛物线的“轴截三角形”.如△ABC是抛物线y1的“轴截三角形”.记抛物线y1,y2,y3,…,y n的“轴截三角形”的面积分别为S1,S2,S3,…,S n.当S n=125时,求n的值.4.小贤与小杰在探究某类二次函数问题时,经历了如下过程:求解体验(1)已知抛物线y=-x2+bx-3经过点(-1,0),则b=________,顶点坐标为______,该抛物线关于点(0,1)成中心对称的抛物线表达式是___________.抽象感悟我们定义,对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=-x2-2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决(3)已知抛物线y=ax2+2ax-b(a≠0).①若抛物线y的衍生抛物线为y′=bx2-2bx+a2(b≠0),两抛物线有两个交点,且恰好是它们的顶点,求a,b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1,其顶点为A1;关于点(0,k +22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)(n为正整数)的衍生抛物线为y n,其顶点为A n;….求A n A n+1的长(用含n的式子表示).类型四二次函数与新定义如图,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与x轴平行,且与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B 两点之间的部分与线段AB围成的图形称为该抛物线对应的准碟形,线段AB称为碟宽,顶点M 称为碟顶,点M 到线段AB 的距离称为碟高.(1)抛物线y =12x 2对应的碟宽为________;抛物线y =4x 2对应的碟宽为________;抛物线y =ax 2(a >0)对应的碟宽为________;抛物线y =a (x -2)2+3(a >0)对应的碟宽为________;(2)抛物线y =ax 2-4ax -53(a >0)对应的碟宽为6,且在x 轴上,求a 的值;(3)将抛物线y =a n x 2+b n x +c n (a n >0)对应的准碟形记为F n (n =1,2,3…),定义F 1,F 2,…,F n 为相似准碟形,相应的碟宽之比即为相似比.若F n 与F n -1的相似比为12,且F n 的碟顶是F n -1的碟宽的中点,现将(2)中求得的抛物线记为y 1,其对应的准碟形记为F 1.①求抛物线y 2的表达式;②若F 1的碟高为h 1,F 2的碟高为h 2,…,F n 的碟高为h n ,则h n =________,F n 的碟宽右端点横坐标为________;F 1,F 2,…,F n 的碟宽右端点是否在一条直线上?若是,直接写出该直线的表达式;若不是,请说明理由.【分析】 (1)根据定义易算出抛物线y =12x 2,抛物线y =4x 2的碟宽,且都利用端点(第一象限)横、纵坐标相等求解.推广至含字母的抛物线y =ax 2(a >0)可类似求解.而抛物线y =a (x -2)2+3(a >0)为顶点式,可看成由抛物线y =ax 2平移得到,则发现碟宽只和a 有关.(2)由(1)的结论,根据碟宽与a 的关系求解.(3)①由y 1,易推y 2.②由相似的性质得到h n 与h n -1,h n -1与h n -2,…h 2与h 1之间的关系,从而得到h n 即可;由等腰直角三角形性质得到F n 的碟宽与h n 之间的关系,即可得到F n 的碟宽右端点横坐标,先证明F n ,F n -1,F n -2的碟宽右端点在一条直线上,从而作出判断,再确定F 1,F 2的碟宽右端点所在直线即可求解.【自主解答】1.如图①,若抛物线L 1的顶点A 在抛物线L 2上,抛物线L 2的顶点B 在抛物线L 1上(点A 与点B 不重合),我们把这样的两条抛物线L 1、L 2称为“伴随抛物线”,可见一条抛物线的“伴随抛物线”可以有多条.(1)抛物线L1:y=-x2+4x-3与抛物线L2是“伴随抛物线”,且抛物线L2的顶点B的横坐标为4,求抛物线L2的表达式;(2)若抛物线y=a1(x-m)2+n的任意一条“伴随抛物线”的表达式为y=a2(x-h)2+k,请写出a1与a2的关系式,并说明理由;(3)在图②中,已知抛物线L1:y=mx2-2mx-3m(m>0)与y轴相交于点C,它的一条“伴随抛物线”为L2,抛物线L2与y轴相交于点D,若CD=4m,求抛物线L2的对称轴.2.(2019·南昌二模)我们规定,以二次函数y=ax2+bx+c的二次项系数a的2倍为一次项系数,一次项系数b为常数项构造的一次函数y=2ax+b叫做二次函数y=ax2+bx+c的“子函数”,反过来,二次函数y=ax2+bx+c叫做一次函数y =2ax+b的“母函数”.(1)若一次函数y=2x-4是二次函数y=ax2+bx+c的“子函数”,且二次函数经过点(3,0),求此二次函数的解析式及顶点坐标;(2)若“子函数”y=x-6的“母函数”的最小值为1,求“母函数”的函数表达式;(3)已知二次函数y=-x2-4x+8的“子函数”图象直线l与x轴、y轴交于C、D 两点,点P在直线l上方的抛物线上,求△PCD的面积的最大值.3.(2019·南昌5月模拟)已知:抛物线C1:y=-(x+m)2+m2(m>0),抛物线C2:y=(x-n)2+n2(n>0),称抛物线C1,C2互为派对抛物线,例如抛物线C1:y=-(x+1)2+1与抛物线C2:y=(x-2)2+2是派对抛物线,已知派对抛物线C1,C2的顶点分别为A,B,抛物线C1的对称轴交抛物线C2于C,抛物线C2的对称轴交抛物线C 1与D .(1)已知抛物线:①y =-x 2-2x ,②y =(x -3)2+3,③y =(x -2)2+2,④y =x 2-x +12,则抛物线①②③④中互为派对抛物线的是________ (请在横线上填写抛物线的数字序号);(2)如图①,当m =1,n =2时,证明AC =BD ;(3)如图②,连接AB ,CD 交于点F ,延长BA 交x 轴的负半轴于点E ,记BD 交x 轴于G ,CD 交x 轴于点H ,∠BEO =∠BDC .①求证:四边形ACBD 是菱形;②若已知抛物线C 2:y =(x -2)2+4,请求出m 的值.图① 图②参考答案【例1】 解:(1)当x =0时,y =-x +2=2,∴A (0,2),把A (0,2)代入y =(x -1)2+m ,得1+m =2,∴m =1.∴B (1,1).(2)y =(x -n )2+2-n .(3)①∵点C 是两条抛物线的交点,∴点C 的纵坐标可以表示为(a -1)2+1或(a -n )2+2-n ,∴(a -1)2+1=(a -n )2+2-n ,即a 2-2a +1+1=a 2-2an +n 2+2-n , 2an -2a =n 2-n ,∵n >1,∴a =n 2-n 2n -2=n 2. ②如解图,过点C 作y 轴的垂线,垂足为E ,过点D 作DF ⊥CE 于点F .例1题解图∵∠ACD =90°,∴∠ACE =∠CDF .又∵∠AEC =∠DFC ,∴△ACE ∽△CDF ,∴AE EC =CF FD .又∵C (a ,a 2-2a +2),D (2a ,2-2a ),∴AE =a 2-2a ,DF =a 2,CE =CF =a ,∴a 2-2a a =a a 2,∴a 2-2a =1, 解得a =±2+1,∵n >1,∴a =n 2>12,∴a =2+1.跟踪训练1.解: (1)∵抛物线y =ax 2+bx -2(a ≠0)过点A ,B ,∴⎩⎪⎨⎪⎧a -b -2=0,16a +4b -2=0,解得⎩⎪⎨⎪⎧a =12,b =-32, ∴抛物线的解析式为y =12x 2-32x -2.∵y =12x 2-32x -2=12(x -32)2-258, ∴C (32,-258).(2)如解图①,以AB 为直径作⊙M ,则抛物线在圆内的部分,能使∠APB 为钝角,第1题解图①易得M (32,0),⊙M 的半径为52.设P ′是抛物线与y 轴的交点,∴OP ′=2,∵MP ′=OP′2+OM 2=52. ∵P 关于抛物线对称轴的对称点为点(3,-2),∴当-1<m <0或3<m <4时,∠APB 为钝角.(3)存在.抛物线向左或向右平移,∵AB 、P ′C ′是定值,∴要使首尾依次连接A 、B 、P ′、C ′所构成的多边形的周长第1题解图②最短,只要AC ′+BP ′最小.第一种情况:抛物线向右平移,AC ′+BP ′>AC +BP .第二种情况:向左平移,如解图②所示,由(2)可知P (3,-2), 又∵C (32,-258),∴C ′(32-t ,-258),P ′(3-t ,-2),将BP ′平移至AP ″,∵AB =5,∴P ″(-2-t ,-2),要使AC ′+BP ′最短,只要AC ′+AP ″最短即可,∵点C ′关于x 轴的对称点C ″的坐标为(32-t ,258),设直线P ″C ″的解析式为y =kx +b ,则⎩⎨⎧-2=(-2-t )k +b ,258=(32-t )k +b ,解得⎩⎪⎨⎪⎧k =4128,b =4128t +1314,∴直线P ″C ″的解析式为y =4128x +4128t +1314,当P ″、A 、C ″在同一条直线上时,周长最小,∴-4128+4128t +1314=0,∴t =1541. 故将抛物线向左平移1541个单位长度时,首尾依次连接A 、B 、P ′、C ′所构成的多边形的周长最短.2.解:(1)将点A (-3,0),B (0,-6)代入L 得⎩⎪⎨⎪⎧a (-3)2+(c -a )·(-3)+c =0,c =-6,解得⎩⎪⎨⎪⎧a =-1,c =-6,∴抛物线L 的表达式为y =-x 2-5x -6.(2)由题意,得∠PDO =90°,∠AOB =90°,由对称性可得L ′的表达式为y =x 2-5x +6.设点P 的坐标为(m ,m 2-5m +6),当△DPO ∽△OAB 时,DP DO =OA OB ,即m 2-5m +6=2m ,解得m 1=1,m 2=6,此时点P 的坐标为(1,2)或(6,12);当△DPO ∽△OBA 时,DP DO =OB OA ,即2m 2-10m +12=m ,解得m 3=4,m 4=32,此时点P 的坐标为(4,2)或(32,34).第2题解图3.解:(1)①②③(2)由抛物线的顶点公式求得:顶点M (1,-a -2).如解图①,当x =1时,y =2·1-a =2-a ,求得D (1,2-a );当y =0时,0=2x -a ,x =a 2,求得A (a 2,0),∴DM =2-a -(-a -2)= 4,∴S =S △BMD -S △AMD =12DM (OC -AC )=12DM ·AO =12·4·a 2=a .即S =a (a >0).(3)①当-2≤x ≤1时,C 1的y 的值会随x 的增大而减小,而C 1的对称轴为x =1, -2≤x ≤1在对称轴的左侧,C 1开口向上,∴a >0;同时C 2的开口向下,而当-2≤x ≤1时,y 的值会随x 的增大而减小,∴-2≤x ≤1要在C 2的对称轴右侧,令C 2的对称轴为x =m ,则m ≤2,而x =1和x =m 关于P (t ,-2)对称,∴P 到这两条对称轴的距离相等,∴1-t =t -m ,m =2t -1,∴2t -1≤-2,即t ≤-12.②当a =1时,M (1,-3),作PE ⊥CM 于E ,将Rt △PME 绕P 旋转90°,得到Rt △PQF ,则△MPQ 为等腰直角三角形,∵N ,Q ′分别是点M ,Q 的中心对称点,∴四边形MQNQ ′为正方形.第一种情况,当t ≤1时,求得PE =PF =1-t ,ME =QF =1,CE =2,∴Q (t +1,-t -1).把Q (t +1,-t -1)代入y =x 2-2x -2,得-t -1=(t +1)2-2(t +1)-2, t 2+t -2=0,解得:t 1=1,t 2=-2;第二种情况,当t >1时,求得PF =PE =t -1,ME =QF =1,CE =2, ∴Q (t -1,t -3),把Q (t -1,t -3)代入y =x 2-2x -2,得t -3=(t -1)2-2(t -1)-2,t 2-5t +4=0,解得t1=1 (舍去),t2=4综上t=-2或1或4.图①图②图③【例2】解:(1)(-1,-4m+1),-1<x<3(2)四边形AMDN是矩形.(3)①y=mx2+2mx-3m+1=m(x+3)(x-1)+1,∴当x=-3或1时,y=1,∴L1经过定点(-3,1)和(1,1).y=-m(x-3)2+4m-1=-m(x-5)(x-1)-1,∴当x=5或1时,y=-1,∴L2经过定点(5,-1)和(1,-1).②L1经过定点(-3,1)和(1,1),L2经过定点(5,-1)和(1,-1),设E(-3,1),F(1,1),G(5,-1),H(1,-1),则组成的四边形EFGH是平行四边形.如解图,另设平移距离为x,根据平移后的图形是菱形,由勾股定理得42=22+(4-x)2,解得x=4±23,故抛物线L2应平移的距离是4+23或4-2 3.例2题解图跟踪训练1.解:(1)将点A ,B 坐标代入抛物线表达式得⎩⎪⎨⎪⎧25a -25b +5=0,16a -4b +5=-3,解得⎩⎪⎨⎪⎧a =1,b =6, ∴抛物线的表达式为y =x 2+6x +5.(2)①令y =x 2+6x +5=0,得x 1=-1,x 2=-5,∴点C 的坐标为(-1,0). 由点B (-4,-3)得直线BC 的函数解析式为y =x +1,如解图①,过点P 作PG ∥y 轴交BC 于G ,第1题解图①设点P 的坐标为(t ,t 2+6t +5),则点G (t ,t +1),∴PG =(t +1)-(t 2+6t +5)=-t 2-5t -4,∴S △PBC =12PG ·|x C -x B |=32(-t 2-5t -4)=-32(t +52)2+278.∵-32<0,∴当t =-52时,△PBC 的面积最大,最大值为278.第1题解图②②设BP 交CD 于点H .当点P 在直线BC 下方时,∵∠PBC =∠BCD ,∴点H 在BC 的垂直平分线上,易得线段BC 的中点坐标为(-52,-32),过该点与直线BC 垂直的直线设为y =-x +m ,则-32=52+m ,解得m =-4,∴直线BC 的垂直平分线的函数解析式为y =-x -4.可得直线CD 的函数表达式为y =2x +2,联立得⎩⎪⎨⎪⎧y =-x -4,y =2x +2,解得⎩⎪⎨⎪⎧x =-2,y =-2,∴点H 的坐标为(-2,-2), 直线BH 的函数解析式为y =12x -1.联立得⎩⎨⎧y =x 2+6x +5,y =12x -1,解得⎩⎪⎨⎪⎧x =-32,y =-74,或⎩⎪⎨⎪⎧x =-4y =-3(舍去), ∴点P 的坐标为(-32,-74).当点P 在直线BC 上方时,∵∠PBC =∠BCD ,∴BP ∥CD ,∴直线BP 的表达式为y =2x +5,联立得⎩⎪⎨⎪⎧y =x 2+6x +5,y =2x +5,解得⎩⎪⎨⎪⎧x =-4,y =-3(舍去)或⎩⎪⎨⎪⎧x =0,y =5,∴点P 的坐标为(0,5).综上,所有点P 的坐标为(-32,-74),(0,5)2.解:(1)将C (3,0),E (0,3)代入y =-x 2+bx +c 得⎩⎪⎨⎪⎧-32+3b +c =0,c =3,解得⎩⎪⎨⎪⎧b =2,c =3,∴抛物线的解析式是y =-x 2+2x +3.(2)∵y =-x 2+2x +3=-(x -1)2+4,∴A (1,4).设直线AC 的解析式为y =mx +n ,将A ,C 代入得⎩⎪⎨⎪⎧m +n =4,3m +n =0,解得⎩⎪⎨⎪⎧m =-2,n =6,∴直线AC 的解析式为y =-2x +6.设P (1,4-t ),∵PD ⊥AB ,∴y D =4-t ,∴4-t =-2x +6,解得x =1+t2,∴点D 的坐标为(1+t2,4-t ).∵l ∥y 轴,∴x Q =1+t2,∴y Q =-(1+t2-1)2+4=4-14t 2,∴S △ACQ =S △ADQ +S △CDQ=12DQ ·BC=12(4-14t 2-4+t )×2=-14(t -2)2+1,∴当t =2时,S △ACQ 最大,最大值为1.(3)存在,综合条件的M 点坐标为(2,2),(-2,3+14),(4,17).【解法提示】设点P (1,t )(t >0),∵以P ,M ,E ,C 为顶点的四边形是菱形, ∴①当CE 为对角线时,PC =PE ,且PM 与CE 互相垂直平分,∴(1-0)2+(t -3)2=(3-1)2+t 2,解得t =1,即点P 的坐标为(1,1), 由菱形中心对称性质可知,点M 的坐标为(2,2);②CP =CE =32,即(3-1)2+t 2=32,解得t =14(负的已舍去), 即点P 的坐标为(1,14),此时点M 的坐标为(-2,3+14);③EP =CE =32,即(1-0)2+(t -3)2=32,解得t =3+17(负值已舍去),∴此时点P 的坐标为(1,3+17),则点M 的坐标为(4,17).【例3】 解:(1)当x =0时,y 1=y 2=y 3=1,∴①正确;y 1,y 2,y 3的对称轴分别是直线x 1=-12,x 2=-1,x 3=-32,∴②正确;y 1,y 2,y 3与直线y =1的交点(除点C 外)的横坐标分别为-1,-2,-3,∴距离为1,都相等,∴③正确.故答案为①②③.(2)①y n =-x 2-nx +1=-(x +n 2)2+n 2+44,∴顶点P n (-n 2,n 2+44).令顶点P n 的横坐标为x =-n 2,纵坐标y =n 2+44,∴y =n 2+44=(-n 2)2+1=x 2+1,即顶点P n 的纵坐标y 与横坐标x 满足关系式y =x 2+1. ②令C n (x n ,y n ),C n -1(x n -1,y n -1),x n -1=-k -(n -1)=-k -n +1,y n -1=-x n -12-(n -1)x n -1+1,x n =-k -n ,y n =-x n 2-nx n +1, ∵x n -1-x n =1,y n -1-y n =-x n -12-(n -1)x n -1+1+x n 2+nx n -1=(x n -x n -1)(x n +x n -1)+n (x n -x n -1)+x n -1=-(-k -n +1-k -n +n )-k -n +1=2k +n -1-k -n +1=k .∴C n -1C n =(x n -1-x n )2+(y n -1-y n )2=1+k 2. ∵C n -1C n =1+k 2与n 无关, ∴相邻两点之间的距离为定值,定值为1+k 2.(3)令y n =1得-x 2-nx +1=1,解得x 1=0,x 2=-n , ∴A n (-n ,1),由②知C n (x n ,-x n 2-nx n +1),设直线A n C n :y =k n x +b n ,则k n =1-(-x n 2-nx n +1)-n -x n =x n (x n +n )-n -(-k -n )=(-k -n )(-k -n +n )-n +k +n =k +n ,同理A n -1(-n +1,1),C n -1(x n -1,-x n -12-(n -1)x n -1+1), 设直线A n -1C n -1:y =k n -1x +b n -1,则k n -1=k +n -1,∴k n -1≠k n ,∴直线C n A n 与直线C n -1A n -1不平行.跟踪训练1.解:(1)(-1,0),(3,0);(1,4)(2)①(-1,0),(3,0);(1,-4n 3);对称轴为直线x =1[或与x 轴交点为(-1,0),(3,0)]②当直线y =12x +m 与y 相交只有1个交点时,由⎩⎨⎧y =12x +m ,y =-x 2+2x +3,整理得x 2-32x +m -3=0, ∴b 2-4ax =(32)2-4(m -3)=0,解得m =5716.当直线y =12x +m 与y n 相交只有1个交点时,由⎩⎪⎨⎪⎧y =12x +m ,y =13x 2-23x -1,整理得2x 2-7x -(6+6m )=0, ∴b 2-4ax =72-4×2×(-6-6m )=0,解得m =-9748,把点(-1,0)代入y =12x +m 得m =12,把(3,0)代入y =12x +m 得m =-32,如解图①,∴m 的取值范围是-9748<m <5716,且m ≠-32,m ≠12.(3)如解图②,由⎩⎪⎨⎪⎧y =k ,y =-x 2+2x +3得x 2-2x +k -3=0, ∴AD 2=(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=16-4k ,由⎩⎨⎧y =k ,y =n 3x 2-2n 3x -n得nx 2-2nx -(3n +3k )=0, ∴BC 2=(x 3-x 4)2=(x 3+x 4)2-4x 3x 4=16+12k n , ∵AB =BC =CD ,∴AD 2=9BC 2,∴16-4k =9(16+12k n ), ∴32n +27k +nk =0.图① 图② 2.解: (1)当n =1时,第1条抛物线y 1=-(x -a 1)2+b 1与x 轴的交点为A (0,0),A 1(2,0),∴y 1=-x (x -2)=-(x -1)2+1,则a 1=1,b 1=1. 由c n =c n -1+2可知,c 2=c 1+2=2+2=4, ∴抛物线y 2与x 轴的交点为A (0,0),A 2(4,0), ∴y 2=-x (x -4)=-x 2+4x .(2)3,9,n ,n 2,y =x 2;(3)①存在,由(1)(2)得A n (2n ,0),B n (n ,n 2). 当△AA n B n 为等腰直角三角形时,n 2=n ,解得n 1=1,n 2=0(舍去).∴存在抛物线y n ,使得△AA n B n 为等腰直角三角形,此时抛物线为y 1=-(x -1)2+1.②∵y n =-x (x -2n )=-x 2+2nx ,当x =m (m >0)时,C n (m ,-m 2+2mn ),C n -1(m ,-m 2+2mn -2m ), ∴C n C n -1=-m 2+2mn -(-m 2+2mn -2m )=2m .∴C 1C 2=C 2C 3=…=C n -1C n =2m .3.解: (1)∵AB =2,抛物线y 1=-x 2+c 的对称轴为直线x =0, ∴点A ,B 的坐标分别为(-1,0),(1,0),将点A (-1,0)代入得c =1,则抛物线y 1的解析式为y 1=-x 2+1,顶点坐标为(0,1).(2)①由平移性质得,抛物线y 2的顶点坐标为(1,2),则抛物线y 2的函数解析式为y 2=-(x -1)2+2,当x =0时,y 2=1,则y 1的顶点(0,1)在抛物线y 2上.②由题意,得抛物线y 3=-(x -2)2+3,y 4=-(x -3)2+4,y n =-(x -n +1)2+n ,将点B (1,0)代入y n ,得-(1-n +1)2+n =0,解得n =4或n =1(舍去).∴抛物线y n 的解析式为y 4=-(x -3)2+4.③令y n =-(x -n +1)2+n =0,解得x 1=n -1-n ,x 2=n -1+n ,则S n =12[(n -1+n)-(n -1-n)]·n =n·n =125,∵53=125,∴n =5,即n =25.4.解:(1)-4;(-2,1);y =(x -2)2+1(2)y =-x 2-2x +5即y =-(x +1)2+6,∴顶点为(-1,6).∵点(-1,6)关于点(0,m )的对称点为(1,2m -6),∴衍生抛物线为y =(x -1)2+2m -6,则-(x +1)2+6=(x -1)2+2m -6,化简得x 2=-m +5,∵两抛物线有交点,∴-m +5≥0,∴m ≤5.(3)①y =ax 2+2ax -b =a (x +1)2-a -b ,顶点为(-1,-a -b ).y ′=bx 2-2bx +a 2=b (x -1)2-b +a 2,顶点为(1,-b +a 2).∵两抛物线交点恰好是顶点,∴⎩⎪⎨⎪⎧-b +a 2=a·(1+1)2-a -b ,-a -b =b·(-1-1)2-b +a 2,解得⎩⎪⎨⎪⎧a =0,b =0(舍去)或⎩⎪⎨⎪⎧a =3,b =-3,∴顶点分别为(-1,0)和(1,12).∵(-1,0),(1,12)关于衍生中心对称,∴衍生中心为它们的中点,∵-1+12=0,0+122=6,∴衍生中心为(0,6).②由①可知衍生中心为抛物线y =a (x +1)2-a -b 的顶点与A 1,A 2,A 3,…,A 4的中点,∴A n (1,2k +2n 2+a +b ),A n +1(1,2k +2(n +1)2+a +b ),∴A n A n +1=2k +2(n +1)2+a +b -(2k +2n 2+a +b )=4n +2.【例4】 解:(1)4;12;2a ;2a .例4题解图①【解法提示】 ∵a >0,∴y =ax 2的图象大致如解图①,其顶点为原点O ,记AB 为其碟宽,AB 与y 轴的交点为C ,连接OA ,OB .∵△OAB 为等腰直角三角形,AB ∥x 轴, ∴OC ⊥AB , ∴∠AOC =∠BOC =12∠AOB =12×90°=45°,∴△ACO 与△BCO 亦为等腰直角三角形,∴AC =OC =BC ,∴x A =-y A ,x B =y B ,代入y =ax 2,∴A (-1a ,1a ),B (1a ,1a ),C (0,1a ),∴AB =2a ,OC =1a ,即抛物线y =ax 2对应的碟宽为2a .①抛物线y =12x 2对应的a =12,得碟宽2a 为4;②抛物线y =4x 2对应的a =4,得碟宽2a 为12;③抛物线y =ax 2(a >0)对应的碟宽为2a ; ④抛物线y =a (x -2)2+3(a >0)可看成抛物线y =ax 2向右平移2个单位长度,再向上平移3个单位长度后得到的,∵平移不改变形状、大小、开口方向,∴抛物线y =a (x -2)2+3(a >0)的准碟形与抛物线y =ax 2的准碟形全等. ∵抛物线y =ax 2(a >0)对应的碟宽为2a ,∴抛物线y =a (x -2)2+3(a >0)对应的碟宽为2a .(2)∵y =ax 2-4ax -53=a (x -2)2-(4a +53),∴同(1),其碟宽为2a .∵抛物线y =ax 2-4ax -53的碟宽为6,∴2a =6,解得a =13.(3)①∵F 1的碟宽∶F 2的碟宽=2∶1,∴2a 1=4a 2.∵a 1=13,∴a 2=23.∵y 1=13(x -2)2-3的碟宽AB 在x 轴上(A 在B 左边),∴A (-1,0),B (5,0),∴F 2的碟顶坐标为(2,0),∴y 2=23(x -2)2.②∵F n 的准碟形为等腰直角三角形,∴F n 的碟宽为2h n .∵2h n ∶2h n -1=1∶2,∴h n =12h n -1=(12)2h n -2=(12)3h n -3=…=(12)n -1h 1.∵h 1=3,∴h n =32n -1. ∵h n ∥h n -1,且都过F n -1的碟宽中点,∴h 1,h 2,h 3,…,h n -1,h n 都在一条直线上,∵h 1在直线x =2上,∴h 1,h 2,h 3,…,h n -1,h n 都在直线x =2上,∴F n 的碟宽右端点横坐标为2+32n -1. F 1,F 2,…,F n 的碟宽右端点在一条直线上,直线为y =-x +5.【解法提示】 考虑F n -2,F n -1,F n 情形,如解图②,例4题解图②F n -2,F n -1,F n 的碟宽分别为AB ,DE ,GH ;C ,F ,I 分别为其碟宽的中点,都在直线x =2上,连接右端点,BE ,EH .∵AB ∥x 轴,DE ∥x 轴,GH ∥x 轴,∴AB ∥DE ∥GH ,∴GH 平行且等于FE ,DE 平行且等于CB ,∴四边形GFEH ,四边形DCBE 都为平行四边形,∴HE ∥GF ,EB ∥DC .∵∠GFI =12∠GFH =12∠DCE =∠DCF ,∴GF ∥DC ,∴HE ∥EB ,∵HE ,EB 都过E 点,∴HE ,EB 在一条直线上,∴F n -2,F n -1,F n 的碟宽的右端点在一条直线上,∴F 1,F 2,…,F n 的碟宽的右端点在一条直线上.∵F 1:y 1=13(x -2)2-3对应的准碟形右端点坐标为(5,0),F 2:y 2=23(x -2)2对应的准碟形右端点坐标为(2+32,32),∴可得过以上两点的直线为y =-x +5,∴F 1,F 2,…,F n 的碟宽的右端点在直线y =-x +5上.跟踪训练1.解: (1)由y =-x 2+4x -3可得A 的坐标为(2,1),将x =4代入y =-x 2+4x -3,得y =-3,∴B 的坐标为(4,-3),设抛物线L 2的解析式为y =a (x -4)2-3.将A (2,1)代入,得1=a (2-4)2-3,解得a =1,∴抛物线L 2的表达式为y =(x -4)2-3;(2)a 1=-a 2,理由如下:∵抛物线L 1的顶点A 在抛物线L 2上,抛物线L 2的顶点B 在抛物线L 1上,∴可列方程组⎩⎪⎨⎪⎧n =a 2(m -h )2+k k =a 1(h -m )2+n , 整理,得(a 1+a 2)(m -h )2=0,∵伴随抛物线的顶点不重合,∴m ≠h ,∴a 1=-a 2.(3)抛物线L 1:y =mx 2-2mx -3m 的顶点坐标为(1,-4m ),设抛物线L 2的顶点的横坐标为h ,则其纵坐标为mh 2-2mh -3m ,∴抛物线L 2的表达式为y =-m (x -h )2+mh 2-2mh -3m ,化简得,y =-mx 2+2mhx -2mh -3m ,所以点D 的坐标为(0,-2mh -3m ),又点C 的坐标为(0,-3m ),可得|(-2mh -3m )-(-3m )|=4m ,解得h =±2,∴抛物线L 2的对称轴为直线x =±2.2.解:(1)由题意得:a =1,b =-4,故抛物线的表达式为:y =x 2-4x +c ,将点(3,0)代入得:c =3,故抛物线的表达式为:y =x 2-4x +3=(x -2)2-1,故抛物线的顶点坐标为(2,-1);(2)设“子函数”y =x -6的“母函数”为:y =12x 2-6x +c ,则y =12(x 2-12x )+c =12(x -6)2-18+c ,故-18+c =1,解得c =19,故“母函数”的表达式为:y =12x 2-6x +19;第2题解图(3)设点P (m ,-m 2-4m +8),由题意,得直线l 的表达式为:y =-2x -4,故点C 、D 的坐标分别为(-2,0)、(0,-4),如解图,过点P 作PQ ∥y 轴交直线CD 于Q ,则Q (m ,-2m -4), ∴PQ =(-m 2-4m +8)-(-2m -4)=-m 2-2m +12,∴S △PCD =12·PQ |x D -x C |=12`(-m 2-2m +12)·2=-(m +1)2+13,∵点P 在CD 上方的抛物线上且-1<0,∴当m =-1时△PCD 的面积最大,最大值为13.3.(1)解:①y =-x 2-2x =-(x +1)2+12,②y =(x -3)2+3=(x -3)2+(3)2,③y=(x -2)2+(2)2,④y =x 2-x +12=(x -12)2+(12)2,所以①与③互为派对抛物线;①与④互为派对抛物线;故答案为①与③;①与④;(2)证明:当m =1,n =2时,抛物线C 1:y =-(x +1)2+1,抛物线C 2:y =(x -2)2+4,∴A(-1,1),B(2,4),∵AC∥BD∥y轴,∴点C的横坐标为-1,点D的横坐标为2,当x=-1时,y=(x-2)2+4=13,则C(-1,13);当x=2时,y=-(x+1)2+1=-8,则D(2,-8),∴AC=13-1=12,BD=4-(-8)=12,∴AC=BD;(3)①证明:抛物线C1:y=-(x+m)2+m2(m>0),则A(-m,m2);抛物线C2:y=(x-n)2+n2(n>0),则B(n,n2);当x=-m时,y=(-m-n)2+n2=m2+2mn+2n2,则C(-m,m2+2mn+2n2);当x=n时,y=-(n+m)2+m2=-2mn-n2,则D(n,-2mn-n2);∴AC=m2+2mn+2n2-m2=2mn+2n2,BD=n2-(-2mn-n2)=2mn+2n2,∴AC=BD,∴四边形ACBD为平行四边形.∵∠BEO=∠BDC,而∠EHF=∠DHG,∴∠EFH=∠DGH=90°,∴AB⊥CD,∴四边形ACBD是菱形;②∵抛物线C2:y=(x-2)2+4,则B(2,4),∴n=2,∴AC=BD=2mn+2n2=4m+8,而A(-m,m2),∴C(-m,m2+4m+8),∴BC2=(-m-2)2+(m2+4m+8-4)2=(m+2)2+(m+2)4.∵四边形ACBD是菱形,∴BC=BD,∴(m+2)2+(m+2)4=(4m+8)2,即(m+2)4=15(m+2)2,∵m>0,∴(m+2)2=15,∴m+2=15,∴m=15-2.。
题型六 二次函数与几何图形综合题类型一 二次函数与图形判定1.(2017·某某)在同一直角坐标系中,抛物线C 1:y =ax 2-2x -3与抛物线C 2:y =x 2+mx +n 关于y 轴对称,C 2与x 轴交于A 、B 两点,其中点A 在点B 的左侧.(1)求抛物线C 1,C 2的函数表达式; (2)求A 、B 两点的坐标;(3)在抛物线C 1上是否存在一点P ,在抛物线C 2上是否存在一点Q ,使得以AB 为边,且以A 、B 、P 、Q 四点为顶点的四边形是平行四边形?若存在,求出P 、Q 两点的坐标;若不存在,请说明理由.2.(2017·随州)在平面直角坐标系中,我们定义直线y =ax -a 为抛物线y =ax 2+bx +c(a 、b 、c 为常数,a ≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y 轴上的三角形为其“梦想三角形”.已知抛物线y =-233x 2-433x +23与其“梦想直线”交于A 、B 两点(点A 在点B 的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的解析式为__________,点A的坐标为__________,点B的坐标为__________;(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.(2017·某某模拟)已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;(3)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2,0).问:是否存在这样的直线l ,使得△ODF 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.4.(2016·某某)如图①,直线y =-43x +n 交x 轴于点A ,交y 轴于点C(0,4),抛物线y =23x 2+bx +c 经过点A ,交y 轴于点B(0,-2).点P 为抛物线上一个动点,过点P 作x轴的垂线PD ,过点B 作BD⊥PD 于点D ,连接PB ,设点P 的横坐标为m.(1)求抛物线的解析式;(2)当△BDP 为等腰直角三角形时,求线段PD 的长;(3)如图②,将△BDP 绕点B 逆时针旋转,得到△BD′P′,且旋转角∠PBP′=∠OAC,当点P 的对应点P′落在坐标轴上时,请直接写出点P 的坐标.类型二 二次函数与图形面积1.(2017·某某)如图,在平面直角坐标系中,直线y =12x +2与x 轴交于点A ,与y 轴交于点C ,抛物线y =-12x 2+bx +c 经过A 、C 两点,与x 轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D 为直线AC 上方抛物线上一动点;①连接BC 、CD ,设直线BD 交线段AC 于点E ,△CDE 的面积为S 1,△BCE 的面积为S 2,求S 1S 2的最大值; ②过点D 作DF⊥AC,垂足为点F ,连接CD ,是否存在点D ,使得△CDF 中的某个角恰好等于∠BAC 的2倍?若存在,求点D 的横坐标;若不存在,请说明理由.2.(2017·某某)如图甲,直线y=-x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所有符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).3.(2017·某某模拟)如图,抛物线y=ax2+bx-3与x轴交于点A(1,0)和点B,与y 轴交于点C,且其对称轴l为x=-1,点P是抛物线上B,C之间的一个动点(点P不与点B,C重合).(1)直接写出抛物线的解析式;(2)小唐探究点P的位置时发现:当动点N在对称轴l上时,存在PB⊥NB,且PB=NB的关系,请求出点P的坐标;(3)是否存在点P使得四边形PBAC的面积最大?若存在,请求出四边形PBAC面积的最大值;若不存在,请说明理由.4.(2017·某某模拟)如图①,已知抛物线y=ax2+bx-3的对称轴为x=1,与x轴分别交于A、B两点,与y轴交于点C,一次函数y=x+1经过A,且与y轴交于点D.(1)求该抛物线的解析式.(2)如图②,点P为抛物线B、C两点间部分上的任意一点(不含B,C两点),设点P的横坐标为t,设四边形DCPB的面积为S,求出S与t的函数关系式,并确定t为何值时,S取最大值?最大值是多少?(3)如图③,将△ODB沿直线y=x+1平移得到△O′D′B′,设O′B′与抛物线交于点E,连接ED′,若ED′恰好将△O′D′B′的面积分为1∶2两部分,请直接写出此时平移的距离.类型三二次函数与线段问题1.(2017·某某)如图,已知抛物线y=ax2-23ax-9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,1AM +1AN均为定值,并求出该定值.2.(2017·某某模拟)如图①,直线y =34x +m 与x 轴、y 轴分别交于点A 和点B(0,-1),抛物线y =12x 2+bx +c 经过点B ,点C 的横坐标为4.(1)请直接写出抛物线的解析式;(2)如图②,点D 在抛物线上,DE ∥y 轴交直线AB 于点E ,且四边形DFEG 为矩形,设点D 的横坐标为x(0<x <4),矩形DFEG 的周长为l ,求l 与x 的函数关系式以及l 的最大值;(3)将△AOB 绕平面内某点M 旋转90°或180°,得到△A 1O 1B 1,点A 、O 、B 的对应点分别是点A 1、O 1、B 1.若△A 1O 1B 1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A 1的横坐标.3.(2017·某某)已知点A(-1,1),B(4,6)在抛物线y=ax2+bx上.(1)求抛物线的解析式;(2)如图①,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,,连接FH、AE,求证:FH∥AE;(3)如图②,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒2个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.类型四二次函数与三角形相似1.(2016·某某)如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x-2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.2.(2017·某某模拟)如图,抛物线y=ax2+bx+1与直线y=-ax+c相交于坐标轴上点A(-3,0),C(0,1)两点.(1)直线的表达式为__________;抛物线的表达式为__________;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交直线AC于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)P为抛物线上一动点,且P在第四象限内,过点P作PN垂直x轴于点N,使得以P、A、N为顶点的三角形与△ACO相似,请直接写出点P的坐标.3.如图①,二次函数y =ax 2+bx +33经过A(3,0),G(-1,0)两点. (1)求这个二次函数的解析式;(2)若点M 是抛物线在第一象限图象上的一点,求△ABM 面积的最大值;(3)抛物线的对称轴交x 轴于点P ,过点E(0,233)作x 轴的平行线,交AB 于点F ,是否存在着点Q ,使得△FEQ∽△BEP?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.4.(2017·某某)抛物线y =ax 2+bx +3经过点A(1,0)和点B(5,0). (1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=错误!x+3相交于C、D两点,点P是抛物线上的动点且位于x 轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连接PC、PD,如图①,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连接PB,过点C作CQ⊥PM,垂足为点Q,如图②,是否存在点P,使得△Q与△PBM 相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.题型六第23题二次函数与几何图形综合题类型一二次函数与图形判定1.解:(1)∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=-3,∴C1的对称轴为x=1,∴C2的对称轴为x=-1,∴m=2,∴C1的函数表示式为y=x2-2x-3,C2的函数表达式为y=x2+2x-3;(2)在C2的函数表达式为y=x2+2x-3中,令y=0可得x2+2x-3=0,解得x=-3或x=1,∴A(-3,0),B(1,0);(3)存在.设P(a ,b),则Q(a +4,b)或(a -4,b), ①当Q(a +4,b)时,得:a 2-2a -3=(a +4)2+2(a +4)-3, 解得a =-2,∴b =a 2-2a -3=4+4-3=5, ∴P 1(-2,5),Q 1(2,5). ②当Q(a -4,b)时,得:a 2-2a -3=(a -4)2+2(a -4)-3, 解得a =2.∴b =4-4-3=-3, ∴P 2(2,-3),Q 2(-2,-3).综上所述,所求点的坐标为P 1(-2,5),Q 1(2,5); P 2(2,-3),Q 2(-2,-3). 2.解:(1)∵抛物线y =-233x 2-433x +23, ∴其梦想直线的解析式为y =-233x +233,联立梦想直线与抛物线解析式可得⎩⎪⎨⎪⎧y =-233x +233y =-233x 2-433x +23,解得⎩⎨⎧x =-2y =23或⎩⎪⎨⎪⎧x =1y =0,∴A(-2,23),B(1,0);(2)当点N 在y 轴上时,△AMN 为梦想三角形, 如解图①,过A 作AD ⊥y 轴于点D ,则AD =2,在y =-233x 2-433x +23中,令y =0可求得x =-3或x =1,∴C(-3,0),且A(-2,23), ∴AC =(-2+3)2+(23)2=13, 由翻折的性质可知AN =AC =13,在Rt △AND 中,由勾股定理可得DN =AN 2-AD 2=13-4=3, ∵OD =23,∴ON =23-3或ON =23+3,当ON =23+3时,则MN >OD >CM ,与MN =CM 矛盾,不合题意, ∴N 点坐标为(0,23-3);当M 点在y 轴上时,则M 与O 重合,过N 作NP ⊥x 轴于点P ,如解图②,在Rt △AMD 中,AD =2,OD =23,∴tan ∠DAM =MDAD =3,∴∠DAM =60°,∵AD ∥x 轴,∴∠AMC =∠DAM =60°, 又由折叠可知∠NMA =∠AMC =60°, ∴∠NMP =60°,且MN =CM =3, ∴MP =12MN =32,NP =32MN =332,∴此时N 点坐标为(32,332);综上可知N 点坐标为(0,23-3)或(32,332);(3)①当AC 为平行四边形的边时,如解图③,过F 作对称轴的垂线FH ,过A 作AK ⊥x 轴于点K ,则有AC ∥EF 且AC =EF ,∴∠ACK =∠EFH , 在△ACK 和△EFH 中,⎩⎪⎨⎪⎧∠ACK =∠EFH ∠AKC =∠EHF AC =EF,∴△ACK ≌△EFH(AAS ), ∴FH =CK =1,HE =AK =23,∵抛物线对称轴为x =-1,∴F 点的横坐标为0或-2,∵点F 在直线AB 上,∴当F 点横坐标为0时,则F(0,233),此时点E 在直线AB 下方,∴E 到x 轴的距离为EH -OF =23-233=433,即E 点纵坐标为-433,∴E(-1,-433); 当F 点的横坐标为-2时,则F 与A 重合,不合题意,舍去; ②当AC 为平行四边形的对角线时, ∵C(-3,0),且A(-2,23), ∴线段AC 的中点坐标为(-52,3),设E(-1,t),F(x ,y),则x -1=2×(-52),y +t =23,∴x =-4,y =23-t ,代入直线AB 解析式可得23-t =-233×(-4)+233,解得t =-433,∴E(-1,-433),F(-4,1033);综上可知存在满足条件的点F ,此时E(-1,-433)、F(0,233)或E(-1,-433)、F(-4,1033).3.解:(1)由题意,得⎩⎪⎨⎪⎧0=16a -8a +c 4=c ,解得⎩⎪⎨⎪⎧a =-12c =4, ∴所求抛物线的解析式为y =-12x 2+x +4;(2) 设点Q 的坐标为(m ,0),如解图①,过点E 作EG ⊥x 轴于点G. 由-12x 2+x +4=0,得x 1=-2,x 2=4,∴点B 的坐标为(-2,0),∴AB =6,BQ =m +2,∵QE ∥AC ,∴△BQE ∽△BAC ,∴EG CO =BQ BA ,即EG 4=m +26,∴EG =2m +43,∴S △CQE =S △CBQ -S △EBQ =12BQ·CO-12BQ·EG=12(m +2)(4-2m +43)=-13m 2+23m +83=-13(m-1)2+3,又∵-2≤m ≤4,∴当m =1时,S △CQE 有最大值3,此时Q(1,0);图①图②(3)存在.在△ODF 中. (ⅰ)若DO =DF ,∵A(4,0),D(2,0),∴AD =OD =DF =2, 又∵在Rt △AOC 中,OA =OC =4,∴∠OAC =45°, ∴∠DFA =∠OAC =45°,∴∠ADF =90°,此时,点F 的坐标为(2,2), 由-12x 2+x +4=2,得x 1=1+5,x 2=1-5,此时,点P 的坐标为P(1+5,2)或P(1-5,2); (ⅱ)若FO =FD ,如解图②,过点F 作FM ⊥x 轴于点M , 由等腰三角形的性质得:OM =MD =1,∴AM =3, ∴在等腰直角△AMF 中,MF =AM =3,∴F(1,3), 由-12x 2+x +4=3,得x 1=1+3,x 2=1-3,此时,点P 的坐标为:P(1+3,3)或P(1-3,3); (ⅲ)若OD =OF ,∵OA =OC =4,且∠AOC =90°,∴AC =42,∴点O 到AC 的距离为22,而OF =OD =2<22,与OF ≥22矛盾, ∴AC 上不存在点使得OF =OD =2,此时,不存在这样的直线l ,使得△ODF 是等腰三角形. 综上所述,存在这样的直线l ,使得△ODF 是等腰三角形.所求点P 的坐标为(1+5,2)或(1-5,2)或(1+3,3)或(1-3,3). 4.解:(1)∵点C(0,4)在直线y =-43x +n 上,∴n =4,∴y =-43x +4,令y =0,解得x =3,∴A(3,0),∵抛物线y =23x 2+bx +c 经过点A ,交y 轴于点B(0,-2),∴c =-2,6+3b -2=0,解得b =-43,∴抛物线的解析式为y =23x 2-43x -2;(2)∵点P 的横坐标为m ,且点P 在抛物线上, ∴P(m ,23m 2-43m -2),∵PD ⊥x 轴,BD ⊥PD ,∴点D 坐标为(m ,-2), ∴|BD|=|m|,|PD|=|23m 2-43m -2+2|,当△BDP 为等腰直角三角形时,PD =BD , ∴|m|=|23m 2-43m -2+2|=|23m 2-43m|.∴m 2=(23m 2-43m)2,解得:m 1=0(舍去),m 2=72,m 3=12,∴当△BDP 为等腰直角三角形时,线段PD 的长为72或12;(3)∵∠PBP′=∠OAC ,OA =3,OC =4,∴AC =5, ∴sin ∠PBP ′=45,cos ∠PBP ′=35,①当点P′落在x 轴上时,如解图①,过点D′作D′N⊥x 轴,垂足为N ,交BD 于点M ,∠DBD ′=∠ND′P′=∠PBP′,由旋转知,P ′D ′=PD =23m 2-43m ,在Rt △P ′D ′N 中,cos ∠ND ′P ′=ND′P′D′=cos ∠PBP ′=35,∴ND ′=35(23m 2-43m),在Rt △BD ′M 中,BD ′=-m ,sin ∠DBD ′=D′M BD′=sin ∠PBP ′=45,∴D ′M =-45m ,∴ND ′-MD′=2,∴35(23m 2-43m)-(-45m)=2, 解得m =5(舍去)或m =-5,如解图②, 同①的方法得,ND ′=35(23m 2-43m),MD ′=45m ,ND ′+MD′=2, ∴35(23m 2-43m)+45m =2, ∴m =5或m =-5(舍去),∴P(-5,45+43)或P(5,-45+43),②当点P′落在y 轴上时,如解图③,过点D′作D′M⊥x 轴,交BD 于M ,过点P′作P′N⊥y 轴,交MD′的延长线于点N , ∴∠DBD ′=∠ND′P′=∠PBP′,同①的方法得:P′N=45(23m 2-43m),BM =35m ,∵P ′N =BM ,∴45(23m 2-43m)=35m , 解得m =258或m =0(舍去),∴P(258,1132),∴P(-5,45+43)或P(5,-45+43)或P(258,1132).类型二 二次函数与图形面积1.解:(1)根据题意得A(-4,0),C(0,2), ∵抛物线y =-12x 2+bx +c 经过A 、C 两点,∴⎩⎪⎨⎪⎧0=-12×16-4b +c 2=c ,解得⎩⎪⎨⎪⎧b =-32c =2, ∴y =-12x 2-32x +2;(2)①令y =0,∴-12x 2-32x +2=0,解得x 1=-4,x 2=1,∴B(1,0),如解图①,过D 作DM ∥y 轴交AC 于M ,过B 作BN ⊥x 轴交AC 于N , ∴DM ∥BN ,∴△DME ∽△BNE ,∴S 1S 2=DE BE =DMBN ,设D(a ,-12a 2-32a +2),∴M(a ,12a +2),∵B(1,0),∴N(1,52),∴S 1S 2=DMBN =-12a 2-2a 52=-15(a +2)2+45; ∴当a =-2时,S 1S 2有最大值,最大值是45;②∵A(-4,0),B(1,0),C(0,2), ∴AC =25,BC =5,AB =5, ∵AC 2+BC 2=AB 2,∴△ABC 是以∠ACB 为直角的直角三角形,取AB 的中点P ,∴P(-32,0),∴PA =PC =PB =52,∴∠CPO =2∠BAC ,∴tan ∠CPO =tan (2∠BAC)=43,如解图②,过D 作x 轴的平行线交y 轴于R ,交AC 的延长线于G , 情况一:∠DCF =2∠BAC =∠DGC +∠CDG ,∴∠CDG =∠BAC , ∴tan ∠CDG =tan ∠BAC =12,即RC DR =12,令D(a ,-12a 2-32a +2),∴DR =-a ,RC =-12a 2-32a ,∴-12a 2-32a -a =12,解得a 1=0(舍去),a 2=-2, ∴x D =-2,情况二:∠FDC =2∠BAC , ∴tan ∠FDC =43,设FC =4k ,∴DF =3k ,DC =5k , ∵tan ∠DGC =3k FG =12,∴FG =6k ,∴CG =2k ,DG =35k ,∴RC =255k ,RG =455k , DR =35k -455k =1155k ,∴DR RC =1155k 255k =-a -12a 2-32a ,解得a 1=0(舍去),a 2=-2911, ∴点D 的横坐标为-2或-2911.2.解:(1)∵直线y =-x +3与x 轴、y 轴分别交于点B 、点C , ∴B(3,0),C(0,3),把B 、C 坐标代入抛物线解析式可得⎩⎪⎨⎪⎧9+3b +c =0c =3,解得⎩⎪⎨⎪⎧b =-4c =3,∴抛物线的解析式为y =x 2-4x +3; (2)∵y =x 2-4x +3=(x -2)2-1, ∴抛物线对称轴为x =2,P(2,-1), 设M(2,t),且C(0,3),∴MC =22+(t -3)2=t 2-6t +13,MP =|t +1|,PC =22+(-1-3)2=25, ∵△CPM 为等腰三角形,∴有MC =MP 、MC =PC 和MP =PC 三种情况,①当MC =MP 时,则有t 2-6t +13=|t +1|,解得t =32,此时M(2,32);②当MC =PC 时,则有t 2-6t +13=25,解得t =-1(与P 点重合,舍去)或t =7,此时M(2,7);③当MP =PC 时,则有|t +1|=25,解得t =-1+25或t =-1-25,此时M(2,-1+25)或(2,-1-25);综上可知存在满足条件的点M ,其坐标为(2,32)或(2,7)或(2,-1+25)或(2,-1-25);(3)如解图,在0<x <3对应的抛物线上任取一点E ,过E 作EF ⊥x 轴,交BC 于点F ,交x 轴于点D ,设E(x ,x 2-4x +3),则F(x ,-x +3), ∵0<x <3,∴EF =-x +3-(x 2-4x +3)=-x 2+3x ,∴S △CBE =S △EFC +S △EFB =12EF·OD+12EF·BD=12EF·OB=12×3(-x 2+3x)=-32(x -32)2+278,∴当x =32时,△CBE 的面积最大,此时E 点坐标为(32,-34),即当E 点坐标为(32,-34)时,△CBE 的面积最大.3.解:(1)∵A(1,0),对称轴l 为x =-1,∴B(-3,0),∴⎩⎪⎨⎪⎧a +b -3=09a -3b -3=0,解得⎩⎪⎨⎪⎧a =1b =2, ∴抛物线的解析式为y =x 2+2x -3; (2)如解图①,过点P 作PM ⊥x 轴于点M ,设抛物线对称轴l 交x 轴于点Q. ∵PB ⊥NB ,∴∠PBN =90°, ∴∠PBM +∠NBQ =90°.∵∠PMB =90°,∴∠PBM +∠BPM =90°, ∴∠BPM =∠NBQ.又∵∠BMP =∠BQN =90°,PB =NB ,∴△BPM ≌△NBQ ,∴PM =BQ.∵抛物线y =x 2+2x -3与x 轴交于点A(1,0)和点B ,且对称轴为x =-1, ∴点B 的坐标为(-3,0),点Q 的坐标为(-1,0), ∴BQ =2,∴PM =BQ =2.∵点P 是抛物线y =x 2+2x -3上B 、C 之间的一个动点, ∴结合图象可知点P 的纵坐标为-2,将y =-2代入y =x 2+2x -3,得-2=x 2+2x -3, 解得x 1=-1-2,x 2=-1+2(舍去), ∴此时点P 的坐标为(-1-2,-2); (3) 存在.如解图②,连接AC ,PC.可设点P 的坐标为(x ,y)(-3<x <0),则y =x 2+2x -3, ∵点A(1,0),∴OA =1.∵点C 是抛物线与y 轴的交点,∴令x =0,得y =-3,即点C(0,-3),∴OC =3. 由(2)可知S四边形PBAC=S △BPM +S四边形PMOC+S △AOC =12BM·PM+12(PM +OC)·OM+12OA·OC=12(x+3)(-y)+12(-y +3)(-x)+12×1×3=-32y -32x +32,将y =x 2+2x -3代入可得S 四边形PBAC =-32(x 2+2x -3)-32x +32=-32(x +32)2+758.∵-32<0,-3<x <0,∴当x =-32时,S 四边形PBAC 有最大值758,此时,y =x 2+2x -3=-154.∴当点P 的坐标为(-32,-154)时,四边形PBAC 的面积最大,最大值为758.4.解:(1)把y =0代入直线的解析式得x +1=0,解得x =-1,∴A(-1,0). ∵抛物线的对称轴为x =1,∴B 的坐标为(3,0). 将x =0代入抛物线的解析式得y =-3,∴C(0,-3).设抛物线的解析式为y =a(x +1)(x -3),将C(0,-3)代入得-3a =-3,解得a =1, ∴抛物线的解析式为y =(x +1)(x -3)=x 2-2x -3; (2)如解图①,连接OP.将x =0代入直线AD 的解析式得y =1,∴OD =1. 由题意可知P(t ,t 2-2t -3). ∵S 四边形DCPB =S △ODB +S △OBP +S △OCP ,∴S =12×3×1+12×3×(-t 2+2t +3)+12×3×t ,整理得S =-32t 2+92t +6,配方得:S =-32(t -32)2+758,∴当t =32时,S 取得最大值,最大值为758;(3)如解图②,设点D′的坐标为(a ,a +1),O ′(a ,a).当△D′O′E 的面积∶△D′EB′的面积=1∶2时,则O′E∶EB ′=1∶2. ∵O ′B ′=OB =3,∴O ′E =1, ∴E(a +1,a).将点E 的坐标代入抛物线的解析式得(a +1)2-2(a +1)-3=a ,整理得:a 2-a -4=0,解得a =1+172或a =1-172,∴O ′的坐标为(1+172,1+172)或(1-172,1-172),∴OO ′=2+342或OO′=34-22, ∴△DOB 平移的距离为2+342或34-22, 当△D′O′E 的面积∶△D ′EB ′的面积=2∶1时,则O′E∶EB ′=2∶1. ∵O ′B ′=OB =3,∴O ′E =2,∴E(a +2,a).将点E 的坐标代入抛物线的解析式得:(a +2)2-2(a +2)-3=a ,整理得:a 2+a -3=0,解得a =-1+132或a =-1-132.∴O ′的坐标为(-1+132,-1+132)或(-1-132,-1-132).∴OO′=-2+262或OO′=2+262.∴△DOB 平移的距离为-2+262或2+262.综上所述,当△D′O′B′沿DA 方向平移2+342或2+262单位长度,或沿AD 方向平移34-22或-2+262个单位长度时,ED ′恰好将△O′D′B′的面积分为1∶2两部分. 类型三 二次函数与线段问题1.(1)解:∵C(0,3),∴-9a =3,解得a =-13.令y =0,得ax 2-23ax -9a =0,∵a ≠0,∴x 2-23x -9=0,解得x =-3或x =3 3. ∴点A 的坐标为(-3,0),点B 的坐标为(33,0),∴抛物线的对称轴为x =3; (2)解:∵OA =3,OC =3, ∴tan ∠CAO =3,∴∠CAO =60°. ∵AE 为∠BAC 的平分线,∴∠DAO =30°, ∴DO =33AO =1,∴点D 的坐标为(0,1), 设点P 的坐标为(3,a).∴AD 2=4,AP 2=12+a 2,DP 2=3+(a -1)2. 当AD =PA 时,4=12+a 2,方程无解.当AD =DP 时,4=3+(a -1)2,解得a =0或a =2, ∴点P 的坐标为(3,0)或(3,2).当AP =DP 时,12+a 2=3+(a -1)2,解得a =-4. ∴点P 的坐标为(3,-4).综上所述,点P 的坐标为(3,0)或(3,-4)或(3,2);(3)证明:设直线AC 的解析式为y =mx +3,将点A 的坐标代入得-3m +3=0,解得m =3,∴直线AC 的解析式为y =3x +3. 设直线MN 的解析式为y =kx +1.把y =0代入y =kx +1,得kx +1=0,解得:x =-1k ,∴点N 的坐标为(-1k ,0),∴AN =-1k +3=3k -1k.将y =3x +3与y =kx +1联立,解得x =2k -3,∴点M 的横坐标为2k -3.如解图,过点M 作MG ⊥x 轴,垂足为G.则AG =2k -3+ 3.∵∠MAG =60°,∠AGM =90°, ∴AM =2AG =4k -3+23=23k -2k -3.∴1AM +1AN =k -323k -2+k 3k -1=k -323k -2+2k 23k -2=3k -323k -2=3(3k -1)2(3k -1)=32. 2.解:(1)∵直线l :y =34x +m 经过点B(0,-1),∴m =-1,∴直线l 的解析式为y =34x -1,∵直线l :y =34x -1经过点C ,且点C 的横坐标为4,∴y =34×4-1=2,∵抛物线y =12x 2+bx +c 经过点C(4,2)和点B(0,-1),∴⎩⎪⎨⎪⎧12×42+4b +c =2c =-1,解得⎩⎪⎨⎪⎧b =-54c =-1, ∴抛物线的解析式为y =12x 2-54x -1;(2)令y =0,则34x -1=0,解得x =43,∴点A 的坐标为(43,0),∴OA =43,在Rt △OAB 中,OB =1,∴AB =OA 2+OB 2=(43)2+12=53, ∵DE ∥y 轴,∴∠ABO =∠DEF ,在矩形DFEG 中,EF =DE·cos ∠DEF =DE·OB AB =35DE ,DF =DE·sin ∠DEF =DE·OA AB =45DE ,∴l =2(DF +EF)=2×(45+35)DE =145DE ,∵点D 的横坐标为t(0<t <4), ∴D(t ,12t 2-54t -1),E(t ,34t -1),∴DE =(34t -1)-(12t 2-54t -1)=-12t 2+2t ,∴l =145×(-12t 2+2t)=-75t 2+285t ,∵l =-75(t -2)2+285,且-75<0,∴当t =2时,l 有最大值285;(3)“落点”的个数有4个,如解图①,解图②,解图③,解图④所示.如解图③,设A 1的横坐标为m ,则O 1的横坐标为m +43,∴12m 2-54m -1=12(m +43)2-54(m +43)-1, 解得m =712,如解图④,设A 1的横坐标为m ,则B 1的横坐标为m +43,B 1的纵坐标比A 1的纵坐标大1,∴12m 2-54m -1+1=12(m +43)2-54(m +43)-1,解得m =43, ∴旋转180°时点A 1的横坐标为712或43.3.(1)解:将点A(-1,1),B(4,6)代入y =ax 2+bx 中, 得⎩⎪⎨⎪⎧a -b =116a +4b =6,解得⎩⎪⎨⎪⎧a =12b =-12, ∴抛物线的解析式为y =12x 2-12x ;(2)证明:设直线AF 的解析式为y =kx +m , 将点A(-1,1)代入y =kx +m 中,即-k +m =1, ∴k =m -1,∴直线AF 的解析式为y =(m -1)x +m. 联立直线AF 和抛物线解析式成方程组,⎩⎪⎨⎪⎧y =(m -1)x +m y =12x 2-12x ,解得⎩⎪⎨⎪⎧x 1=-1y 1=1,⎩⎪⎨⎪⎧x 2=2my 2=2m 2-m , ∴点G 的坐标为(2m ,2m 2-m). ∵GH ⊥x 轴,∴点H 的坐标为(2m ,0). ∵抛物线的解析式为y =12x 2-12x =12x(x -1),∴点E 的坐标为(1,0).设直线AE 的解析式为y =k 1x +b 1,将A(-1,1),E(1,0)代入y =k 1x +b 1中,得⎩⎪⎨⎪⎧-k 1+b 1=1k 1+b 1=0,解得⎩⎪⎨⎪⎧k 1=-12b 1=12,∴直线AE 的解析式为y =-12x +12.设直线FH 的解析式为y =k 2x +b 2,将F(0,m)、H(2m ,0)代入y =k 2x +b 2中,得⎩⎪⎨⎪⎧b 2=m 2mk 2+b 2=0,解得:⎩⎪⎨⎪⎧k 2=-12b 2=m, ∴直线FH 的解析式为y =-12x +m.∴FH ∥AE ;(3)解:设直线AB 的解析式为y =k 0x +b 0,将A(-1,1),B(4,6)代入y =k 0x +b 0中,⎩⎪⎨⎪⎧-k 0+b 0=14k 0+b 0=6,解得⎩⎪⎨⎪⎧k 0=1b 0=2, ∴直线AB 的解析式为y =x +2.当运动时间为t 秒时,点P 的坐标为(t -2,t),点Q 的坐标为(t ,0).当点M 在线段PQ 上时,过点P 作PP′⊥x 轴于点P′,过点M 作MM′⊥x 轴于点M′,则△PQP′∽△MQM′,如解图所示.∵QM =2PM , ∴QM′QP′=MM′PP′=23,∴QM ′=43,MM ′=23t ,∴点M 的坐标为(t -43,23t),又∵点M 在抛物线y =12x 2-12x 上,∴23t =12(t -43)2-12(t -43), 解得t =15±1136,当点M 在线段QP 的延长线上时, 同理可得出点M 的坐标为(t -4,2t), ∵点M 在抛物线y =12x 2-12x 上,∴2t =12×(t -4)2-12(t -4),解得t =13±892.综上所述:当运动时间为15-1136秒、15+1136秒、13-892秒或13+892秒时,QM =2PM.类型四 二次函数与三角形相似 1.(1)解:∵顶点坐标为(1,1), ∴设抛物线解析式为y =a(x -1)2+1,又∵抛物线过原点,∴0=a(0-1)2+1,解得a =-1, ∴抛物线的解析式为y =-(x -1)2+1,即y =-x 2+2x ,联立抛物线和直线解析式可得⎩⎪⎨⎪⎧y =-x 2+2x y =x -2,解得⎩⎪⎨⎪⎧x =2y =0或⎩⎪⎨⎪⎧x =-1y =-3, ∴B(2,0),C(-1,-3);(2)证明:如解图,分别过A 、C 两点作x 轴的垂线,交x 轴于D 、E 两点, 则AD =OD =BD =1,BE =OB +OE =2+1=3,EC =3, ∴∠ABO =∠CBO =45°,即∠ABC =90°, ∴△ABC 是直角三角形;(3)解:假设存在满足条件的点N ,设N(x ,0),则M(x ,-x 2+2x), ∴ON =|x|,MN =|-x 2+2x|,由(2)在Rt △ABD 和Rt △CEB 中,可分别求得AB =2,BC =32, ∵MN ⊥x 轴于点N ∴∠MNO =∠ABC =90°,∴当△MNO 和△ABC 相似时有MN AB =ON BC 或MN BC =ONAB,①当MN AB =ON BC 时,则有|-x 2+2x|2=|x|32,即|x|×|-x +2|=13|x|,∵当x =0时M 、O 、N 不能构成三角形, ∴x ≠0,∴|-x +2|=13,即-x +2=±13,解得x =53或x =73,此时N 点坐标为(53,0)或(73,0),②当MN BC =ON AB 时,则有|-x 2+2x|32=|x|2,即|x|×|-x +2|=3|x|,∴|-x +2|=3,即-x +2=±3,解得x =5或x =-1, 此时N 点坐标为(-1,0)或(5,0),综上可知存在满足条件的N 点,其坐标为(53,0)或(73,0)或(-1,0)或(5,0).2.解:(1)把A 、C 两点坐标代入直线y =-ax +c 可得⎩⎪⎨⎪⎧3a +c =0c =1,解得⎩⎪⎨⎪⎧a =-13c =1, ∴直线的表达式为y =13x +1,把A 点坐标和a =-13代入抛物线解析式可得9×(-13)-3b +1=0,解得b =-23,∴抛物线的表达式为y =-13x 2-23x +1;(2)∵点D 为抛物线在第二象限部分上的一点,∴可设D(t ,-13t 2-23t +1),则F(t ,13t +1),∴DF =-13t 2-23t +1-(13t +1)=-13t 2-t =-13(t +32)2+34.∵-13<0,∴当t =-32时,DF 有最大值,最大值为34,此时D 点坐标为(-32,54);(3)设P(m ,-13m 2-23m +1),如解图,∵P 在第四象限,∴m >0,-13m 2-23m +1<0,∴AN =m +3,PN =13m 2+23m -1,∵∠AOC =∠ANP =90°,∴当以P 、A 、N 为顶点的三角形与△ACO 相似时有△AOC ∽△PNA 和△AOC ∽△ANP ,①当△AOC ∽△PNA 时,则有OC NA =AO PN ,即1m +3=313m 2+23m -1,解得m =-3或m =10,经检验当m =-3时,m +3=0(舍去), ∴m =10,此时P 点坐标为(10,-39);②当△AOC ∽△ANP 时,则有OC NP =AO AN ,即113m 2+23m -1=3m +3,解得m =2或m =-3,经检验当m =-3时,m +3=0(舍去), ∴m =2,此时P 点坐标为(2,-53);综上可知P 点坐标为(10,-39)或(2,-53).3.解:(1)将A 、G 点坐标代入函数解析式,得⎩⎨⎧9a +3b +33=0,a -b +33=0,解得⎩⎨⎧a =-3b =23,∴抛物线的解析式为y =-3x 2+23x +33; (2)如解图①,作ME ∥y 轴交AB 于E 点, 当x =0时,y =33,即B 点坐标为(0,33), 直线AB 的解析式为y =-3x +33,设M(n ,-3n 2+23n +33),E(n ,-3n +33), ME =-3n 2+23n +33-(-3n +33)=-3n 2+33n , S △ABM =12ME·AO=12(-3n 2+33n)×3=-332(n -32)2+2738,当n =32时,△ABM 面积的最大值是2738;(3)存在;理由如下:OE =233,AP =2,OP =1,BE =33-233=733,当y =233时,-3x +33=233,解得x =73,即EF =73,将△BEP 绕点E 顺时针方向旋转90°,得到△B′EC(如解图②), ∵OB ⊥EF ,∴点B′在直线EF 上,∵C 点横坐标绝对值等于EO 长度,C 点纵坐标绝对值等于EO -PO 长度, ∴C 点坐标为(-233,233-1),如解图,过F 作FQ ∥B′C,交EC 于点Q , 则△FEQ ∽△B′EC,由BE EF =B′E EF =CEEQ =3,可得Q 的坐标为(-23,-33);根据对称性可得,Q 关于直线EF 的对称点Q′(-23,533)也符合条件.4.解:(1)∵抛物线y =ax 2+bx +3经过点A(1,0)和点B(5,0), ∴⎩⎪⎨⎪⎧a +b +3=025a +5b +3=0,解得⎩⎪⎨⎪⎧a =35b =-185, ∴该抛物线对应的函数解析式为y =35x 2-185x +3;(2)①∵点P 是抛物线上的动点且位于x 轴下方,∴可设P(t ,35t 2-185t +3)(1<t <5),∵直线PM ∥y 轴,分别与x 轴和直线CD 交于点M 、N , ∴M(t ,0),N(t ,35t +3),∴PN =35t +3-(35t 2-185t +3)=-35(t -72)2+14720,联立直线CD 与抛物线解析式可得⎩⎪⎨⎪⎧y =35x +3y =35x 2-185x +3,解得⎩⎪⎨⎪⎧x =0y =3或⎩⎪⎨⎪⎧x =7y =365,∴C(0,3),D(7,365),分别过C 、D 作直线PN 的垂线,垂足分别为E 、F ,如解图①,则CE =t ,DF =7-t ,∴S △PCD =S △P +S △PDN =12PN·CE+12PN·DF=72PN =72[-35(t -72)2+14720]=-2110(t -72)2+102940, ∴当t =72时,△PCD 的面积最大,最大值为102940;②存在.∵∠CQN =∠PMB =90°, ∴当△Q 与△PBM 相似时,有NQ CQ =PM BM 或NQ CQ =BMPM两种情况, ∵CQ ⊥PN ,垂足为Q ,∴Q(t ,3),且C(0,3),N(t ,35t +3),∴CQ =t ,NQ =35t +3-3=35t ,∴NQ CQ =35,∵P(t ,35t 2-185t +3),M(t ,0),B(5,0),∴BM =5-t ,PM =0-(35t 2-185t +3)=-35t 2+185t -3,当NQ CQ =PM BM 时,则PM =35BM ,即-35t 2+185t -3=35(5-t),解得t =2或t =5(舍去),此时P(2,-95);当NQ CQ =BM PM 时,则BM =35PM ,即5-t =35(-35t 2+185t -3),解得t =349或t =5(舍去),此时P(349,-5527);综上可知存在满足条件的点P ,其坐标为(2,-95)或(349,-5527).。
专题复习(六) 几何综合题1.(2016·德州)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形.(1)如图1,四边形ABCD 中,点E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点.求证:中点四边形EFGH 是平行四边形;(2)如图2,点P 是四边形ABCD 内一点,且满足PA =PB ,PC =PD ,∠APB =∠CPD.点E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点.猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH 的形状.(不必证明)图1 图2解:(1)证明:连接BD.∵E 、H 分别是AB 、AD 的中点, ∴EH =12BD ,EH ∥BD.∵F 、G 分别是BC 、CD 的中点, ∴FG =12BD ,FG ∥BD.∴EH =FG ,EH ∥FG.∴中点四边形EFGH 是平行四边形. (2)中点四边形EFGH 是菱形. 证明:连接AC 、BD.∵∠APB =∠CPD,∴∠APB +∠AP D =∠CPD+∠APD,即∠BPD=∠APC. 又∵PA=PB ,PC =PD ,∴△APC ≌△BPD(SAS ).∴AC=BD.∵点E 、F 、G 分别为边AB 、BC 、CD 的中点, ∴EF =12AC ,FG =12BD.∴EF=FG.又∵四边形EFGH 是平行四边形,∴中点四边形EFGH 是菱形.图3(3)当∠APB=∠CPD=90°时,如图3,AC 与BD 交于点O ,BD 与EF ,AP 分别交于点M ,Q ,中点四边形EFGH 是正方形.理由如下:由(2)知:△APC≌△BPD,∴∠PAC =∠PBD. 又∵∠AQO=∠BQP,∴∠AOQ =∠APB =90°. 又∵EF∥AC,∴∠OMF =∠AOQ=90°. 又∵EH∥BD,∴∠HEF =∠OMF=90°. 又∵四边形EFGH 是菱形, ∴中点四边形EFGH 是正方形.2.(2016·菏泽)如图,△ACB 和△DCE 均为等腰三角形,点A ,D ,E 在同一直线上,连接BE. (1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°. ①求证:AD =BE ; ②求∠AEB 的度数;(2)如图2,若∠ACB=∠DCE=120°,CM 为△DCE 中DE 边上的高,BN 为△ABE 中AE 边上的高,试证明:AE =23CM +233BN.图1 图2解:(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED,∴AC =BC ,CD =CE. ∵∠CAB =∠CBA=∠CDE=∠CED, ∴∠ACB =∠DCE.∴∠ACD=∠BCE. ∴△ACD ≌△BCE(SAS ).∴AD=BE. ②由①得△ACD≌△BCE,∴∠ADC =∠BEC=180°-∠CDE=130°.∴∠AEB =∠BEC-∠CED=130°-50°=80°.(2)证明:在等腰△DCE 中,∵CD =CE ,∠DCE =120°,CM ⊥DE , ∴∠DCM =12∠DCE=60°,DM =EM.在Rt △CDM 中,DM =CM·tan ∠DCM =CM·tan 60°=3CM ,∴DE =23CM. 由(1),得∠ADC =∠BEC=150°,AD =BE , ∴∠AEB =∠BEC-∠CED=120°. ∴∠BEN =60°. 在Rt △BEN 中,BE =BN sin 60°=233BN.∴AD =BE =233BN.又∵AE=DE +AD ,∴AE =23CM +233BN.3.(2016·东营)如图1,△ABC 是等腰直角三角形,∠BAC =90°,AB =AC ,四边形ADEF 是正方形,点B 、C 分别在边AD 、AF 上,此时BD =CF ,BD ⊥CF 成立.(1)当△ABC 绕点A 逆时针旋转θ(0°<θ<90°)时,如图2,BD =CF 成立吗?若成立,请证明;若不成立,请说明理由.(2)当△ABC 绕点A 逆时针旋转45°时,如图3,延长DB 交CF 于点H ,交AF 于点N. ①求证:BD⊥CF;②当AB =2,AD =32时,求线段DH 的长.图1 图2 图3解:(1)BD =CF 成立.证明:∵AB=AC ,∠BAD =∠CAF=θ,AD =AF , ∴△ABD ≌△ACF(SAS ).∴BD =CF. (2)①证明:由(1)得,△ABD ≌△ACF , ∴∠HFN =∠ADN.又∵∠HNF=∠AND, ∴∠NHF =∠NAD=90°. ∴HD ⊥HF ,即BD⊥CF.②连接DF ,延长AB 交DF 于点M.在△MAD 中,∵∠MAD =∠MDA=45°, ∴∠BMD =90°.∵AD =32,四边形ADEF 是正方形, ∴MA =MD =322=3,FD =6.∴MB =3-2=1,DB =12+32=10. 在Rt △BMD 和Rt △FHD 中, ∵∠MDB =∠HDF, ∴△BMD ∽△FHD. ∴MD HD =BD FD ,即3HD =106.∴DH=9105.4.(2016·宁夏)在矩形ABCD 中,AB =3,AD =4,动点Q 从点A 出发,以每秒1个单位的速度,沿AB 向点B 移动;同时点P 从点B 出发,仍以每秒1个单位的速度,沿BC 向点C 移动,连接QP ,QD ,PD.若两个点同时运动的时间为x 秒(0<x≤3),解答下列问题:(1)设△QPD 的面积为S ,用含x 的函数关系式表示S ;当x 为何值时,S 有最大值?并求出最小值; (2)是否存在x 的值,使得QP⊥DP?试说明理由.解:(1)∵四边形ABCD 为矩形,∴BC =AD =4,CD =AB =3. 当运动x 秒时,则AQ =x ,BP =x ,∴BQ =AB -AQ =3-x ,CP =BC -BP =4-x. ∴S △ADQ =12AD ·AQ=12×4x=2x ,S △BPQ =12BQ·BP=12(3-x)x =32x -12x 2,S △PCD =12PC·CD=12·(4-x)×3=6-32x.又S 矩形ABCD =AB·BC=3×4=12,∴S =S 矩形ABCD -S △ADQ -S △BPQ -S △PCD =12-2x -(32x -12x 2)-(6-32x)=12x 2-2x +6=12(x -2)2+4,即S =12(x -2)2+4.∴S 为开口向上的二次函数,且对称轴为直线x =2.∴当0<x≤2时,S 随x 的增大而减小; 当2<x≤3时,S 随x 的增大而增大, 又当x =0时,S =6,当S =3时,S =92.但x 的范围内取不到x =0,∴S 不存在最大值. 当x =2时,S 有最小值,最小值为4.(2)存在,理由:由(1)可知BQ =3-x ,BP =x ,CP =4-x. 当QP⊥DP 时,则∠BPQ+∠DPC=∠DPC+∠PDC, ∴∠BPQ =∠PDC.又∵∠B=∠C,∴△BPQ ∽△CDP. ∴BQ PC =BP CD ,即3-x 4-x =x 3,解得x =7+132(舍去)或x =7-132. ∴当x =7-132时,QP ⊥DP.5.(2016·泰安)(1)已知:△ABC 是等腰三角形,其底边是BC ,点D 在线段AB 上,E 是直线BC 上一点,且∠DEC =∠DCE,若∠A=60°(如图1),求证:EB =AD ;(2)若将(1)中的“点D 在线段AB 上”改为“点D 在线段AB 的延长线上”,其他条件不变(如图2),(1)的结论是否成立,并说明理由;(3)若将(1)中的“若∠A=60°”改为“∠A=90°”,其他条件不变,则EBAD 的值是多少?(直接写出结论,不要求写解答过程)图1 图2解:(1)证明:过D 点作BC 的平行线交AC 于点F. ∵△ABC 是等腰三角形,∠A =60°, ∴△ABC 是等边三角形.∴∠ABC=60°. ∵DF ∥BC ,∴∠ADF =∠ABC=60°. ∴△ADF 是等边三角形. ∴AD =DF ,∠AFD =60°.∴∠DFC =180°-60°=120°.∵∠DBE =180°-60°=120°,∴∠DFC =∠DBE. 又∵∠FDC=∠DCE,∠DCE =∠DEC, ∴∠FDC =∠DEC,ED =CD. ∴△DBE ≌△CFD(AAS ). ∴EB =DF.∴EB=AD.(2)EB =AD 成立.理由如下:过D 点作BC 的平行线交AC 的延长线于点F. 同(1)可证△ADF 是等边三角形, ∴AD =DF ,∠AFD =60°.∵∠DBE =∠ABC=60°,∴∠DBE =∠AFD. ∵∠FDC =∠D CE ,∠DCE =∠DEC, ∴∠FDC =∠DEC,ED =CD. ∴△DBE ≌△CFD(AAS ). ∴EB =DF.∴EB=AD. (3)EBAD= 2.理由如下: 如图3,过D 点作BC 的平行线交AC 于点G.图3∵△ABC 是等腰三角形,∠A =90°, ∴∠ABC =∠ACB=45°,∴∠DBE =180°-45°=135°. ∵DG ∥BC ,∴∠GDC =∠DCE,∠DGC =180°-45°=135°. ∴∠DBE =∠DGC. ∵∠DCE =∠DEC,∴ED =CD ,∠DEC =∠GDC.∴△DBE ≌△CGD(AAS ).∴BE=GD. ∵∠ADG =∠ABC=45°,∠A =90°, ∴△ADG 是等腰直角三角形. ∴DG =2AD.∴BE=2AD.∴EBAD = 2.6.(2016·烟台)【探究证明】(1)在矩形ABCD 中,EF ⊥GH ,EF 分别交AB ,CD 于点E ,F ,GH 分别交AD ,BC 于点G ,H.求证:EF GH =ADAB ;【结论应用】(2)如图2,在满足(1)的条件下,又AM⊥BN,点M ,N 分别在边BC ,CD 上.若EF GH =1115,则BNAM 的值为________;【联系拓展】(3)如图3,四边形ABCD 中,∠ABC =90°,AB =AD =10,BC =CD =5,AM ⊥DN ,点M ,N 分别在边BC ,AB 上,求DNAM 的值.图1 图2 图3解:(1)证明:过点A 作AP∥EF,交CD 于点P ,过点B 作BQ∥GH,交AD 于点Q. ∵四边形ABCD 是矩形,∴AB ∥DC ,AD ∥BC.∴四边形AEFP 、四边形BHGQ 都是平行四边形.∴AP=EF ,GH =BQ. 又∵GH⊥EF,∴AP ⊥BQ.∴∠QAP +∠AQB=90°.∵四边形ABCD 是矩形,∴∠DAB =∠D=90°. ∴∠DAP +∠DPA=90°.∴∠AQB =∠DPA. ∴△PDA ∽△QAB.∴AP BQ =AD AB .∴EF GH =ADAB .(2)∵EF⊥GH,AM ⊥BN ,∴由(1)中的结论可得EF GH =AD AB ,BN AM =ADAB ,∴BN AM =EF GH =1115.故答案为1115.(3)连接AC ,过点D 作AB 的平行线交BC 的延长线于点E ,作AF⊥AB 交直线DE 于点F. ∵∠BAF =∠B=∠E=90°, ∴四边形ABEF 是矩形.易证△ADC≌△ABC,∴∠ADC =∠ABC=90°. ∴∠FDA +∠EDC=90°.又∵∠EDC+∠ECD=90°,∴∠FDA =∠ECD. 又∵∠E=∠F, ∴△ADF ∽△DCE. ∴DE AF =DC AD =510=12. 设DE =x ,则AF =2x ,DF =10-x.在Rt △ADF 中,AF 2+DF 2=AD 2,即(2x)2+(10-x)2=100,解得x 1=4,x 2=0(舍去). ∴AF =2x =8.∴DN AM =AF AB =810=45.7.(2016·武汉)在△ABC 中,P 为边AB 上一点.(1)如图1,若∠ACP=∠B,求证:AC 2=AP·AB; (2)若M 为CP 的中点,AC =2.①如图2,若∠PBM=∠ACP,AB =3,求BP 的长;②如图3,若∠ABC=45°,∠A =∠BMP=60°,直接写出BP 的长.图1 图2 图3解:(1)证明:∵∠ACP=∠B,∠CAP =∠BAC, ∴△ACP ∽△ABC. ∴AC AB =AP AC,即AC 2=AP·AB. (2)①作CQ∥BM 交AB 的延长线于点Q ,则∠PBM=∠Q. ∵∠PBM =∠ACP,∴∠ACP =∠Q. 又∠PAC=∠CAQ,∴△APC ∽△ACQ. ∴AC AQ =AP AC,即AC 2=AP·AQ. 又∵M 为PC 的中点,BM ∥CQ ,∴设BP =x ,则BQ =x.∴AP=3-x ,AQ =3+x. ∴22=(3-x)(3+x),解得x 1=5,x 2=-5(不合题意,舍去). ∴BP = 5. ②BP =7-1.作CQ⊥AB 于点Q ,作CP 0=CP 交AB 于点P 0. ∵AC =2,∴AQ =1,CQ =BQ = 3.设AP 0=x ,则P 0Q =PQ =1-x ,BP =3-1+x , ∵∠BPM =∠CP 0A ,∠BMP =∠CAP 0, ∴△AP 0C ∽△MPB ,∴AP 0MP =P 0CBP.∴MP ·P 0C =12P 0C 2=(3)2+(1-x )22=AP 0·BP =x(3-1+x).解得x =7-3或x =-7-3(舍去).∴BP =3-1+7-3=7-1.8.(2016·岳阳)数学活动——旋转变换(1)如图1,在△ABC 中,∠ABC =130°,将△ABC 绕点C 逆时针旋转50°得到△A′B′C,连接B B′.求∠A′B′B 的大小; (2)如图2,在△ABC 中,∠ABC =150°,AB =3,BC =5,将△ABC 绕点C 逆时针旋转60°得到△A ′B ′C ,连接BB′.以A′为圆心,A ′B ′长为半径作圆.①猜想:直线BB′与⊙A′的位置关系,并证明你的结论; ②连接A′B,求线段A′B 的长度;(3)如图3,在△ABC 中,∠ABC =α(90°<α<180°),AB =m ,BC =n ,将△ABC 绕点C 逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B 和BB′.以A′为圆心,A ′B ′长为半径作圆.问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由.并求此条件下线段A′B 的长度.(结果用角α或角β的三角函数及字母m 、n 所组成的式子表示)图1 图2 图3解:(1)由旋转得:∠A′B′C=∠ABC=130°,CB =CB′,∠BCB ′=50°, ∴∠BB ′C =12(180°-∠BCB′)=65°.∴∠A ′B ′B =∠A′B′C-∠BB′C=130°-65°=65°. (2)①猜想:直线BB′与⊙A′相切.证明:由旋转得:∠A′B′C=∠ABC=150°,CB =CB′,∠BCB ′=60°, ∴∠BB ′C =12(180°-∠BCB′)=60°.∴∠A ′B ′B =∠A′B′C-∠BB′C=150°-60°=90°,即B′B⊥A′B′. 又A′B′为半径,∴直线BB′与⊙A′相切.②由旋转得:A′B′=AB =3,B ′C =BC =5,∠BCB ′=60°, ∴△BCB ′为等边三角形.∴BB′=BC =5.在Rt △A ′B ′B 中,A ′B =(A′B′)2+(BB′)2=32+52=34. (3)满足的条件:α+β=180°.理由:在△BB′C 中,∠BB ′C =180°-2β2=90°-β,∴∠A ′B ′B =α-∠BB′C=α-(90°-β)=α+β-90°.∵α+β=180°,∴∠A ′B ′B =α+β-90°=180°-90°=90°,即B′B⊥A′B′. ∴直线BB′与⊙A′相切. 过点C 作CD⊥BB′于点D. ∴∠B ′CD =12∠BCB′=β.在Rt △B ′CD 中,B ′D =B′C·s in β=BC·sin β=n sin β,∴BB ′=2B′D=2n sin β. 由α+β=180°得到△A′B′B 为直角三角形,∴A ′B =(A′B′)2+(BB′)2=m 2+(2n sin β)2=m 2+4n 2sin 2β.9.(2016·宜昌)在△ABC 中,AB =6,AC =8,BC =10.D 是△ABC 内部或BC 边上的一个动点(与B ,C 不重合).以D 为顶点作△DEF,使△DEF∽△ABC(相似比k>1),EF ∥BC. (1)求∠D 的度数;(2)若两三角形重叠部分的形状始终是四边形AGDH.①连接GH ,AD ,当GH⊥AD 时,请判断四边形AGDH 的形状,并证明;②当四边形AGDH 的面积最大时,过A 作AP⊥EF 于P ,且AP =AD ,求k 的值.解:(1)∵AB 2+AC 2=62+82=102=BC 2, ∴∠BAC =90°.又∵△DEF∽△ABC,∴∠D =∠BAC =90°. (2)①四边形AGDH 是正方形.证明:延长ED 、FD 分别交BC 于点M 、N. ∵△DEF ∽△ABC ,∴∠E =∠B. 又∵EF∥BC,∴∠E =∠EMC.∴∠B=∠EMC.∴ED∥BA. 同理FD∥AC.∴四边形AGDH 是平行四边形.又∵∠FDE=90°,∴四边形AGDH 是矩形. 又∵AD⊥GH,∴四边形AGDH 是正方形.②当D 点在△ABC 内部时,四边形AGDH 的面积不可能最大.其理由是:如图1,点D 在内部时,延长GD 到D′,过D′作MD′⊥AC 于点M ,则四边形GD′MA 的面积大于矩形AGDH 的面积,∴当点D 在△ABC 内部时,四边形AGDH 的面积不可能最大. 按上述理由,只有当D 点在BC 边上时,面积才有可能最大.图1 图2如图2,D 在BC 上时,易证明DG∥AC, ∴△GDB ∽△ACB. ∴BG BA =GD AC ,即BA -AG BA =AH AC . ∴6-AG 6=AH 8,即AH =8-43AG. ∴S 矩形AGDH =AG·AH=AG×(8-43AG)=-43AG 2+8AG =-43(AG -3)2+12.当AG =3时,S 矩形AGDH 最大,此时DG =AH =4.即当AG =3,AH =4,S 矩形AG DH 最大.在Rt △BGD 中,BD =BG 2+DG 2=5,则DC =BC -BD =5. 即D 为B C 上的中点时,S 矩形AGDH 最大. ∴在Rt △ABC 中,AD =BC2=5,∴PA =AD =5.延长PA 交BC 于点Q ,∵EF ∥BC ,QP ⊥EF , ∴QP ⊥BC.∴QP 是EF 、BC 之间的距离. ∴D 到EF 的距离为PQ 的长.在Rt △ABC 中,12AB·AC=12BC·AQ,∴AQ =4.8.又∵△DEF∽△ABC,∴k =PQ AQ =PA +AQ AQ =5+4.84.8=4924.10.(2016·河南)(1)发现如图1,点A 为线段BC 外一动点,且BC =a ,AB =b.填空:当点A 位于CB 延长线上时,线段AC 的长取得最大值,且最大值为a +b .(用含a ,b 的式子表示)图1(2)应用点A 为线段BC 外一动点,且BC =3,AB =1.如图2所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE.①请找出图中与BE 相等的线段,并说明理由; ②直接写出线段BE 长的最大值. (3)拓展如图3,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(5,0),点P 为线段AB 外一动点,且PA =2,PM =PB ,∠BPM =90°.请直接写出线段AM 长的最大值及此时点P 的坐标.图2 图3 备用图解:(2)①DC=BE.理由如下: ∵△ABD 和△ACE 为等边三角形,∴AD =AB ,AC =AE ,∠BAD =∠CA E =60°.∴∠BAD +∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB. ∴△CAD ≌△EAB.∴DC =BE. ②BE 长的最大值是4.(3)AM 的最大值为3+22,点P 的坐标为(2-2,2).提示:如图3,构造△BNP≌△MAP,则NB =AM ,易得△APN 是等腰直角三角形,AP =2,∴AN =2 2.由(1)知,当点N 在BA 的延长线上时,NB 有最大值(如备用图).∴AM=NB =AB +AN =3+2 2. 过点P 作PE⊥x 轴于点E ,PE =AE = 2. 又∵A(2,0),∴P(2-2,2).。