对称四极电阻率测深
- 格式:ppt
- 大小:726.00 KB
- 文档页数:5
第35卷第1期2021年2月资源环境与工程Resources Environment&EngineeringVol.35,No.1Feb.,2021电阻率测深法在黄河滩区划分淡咸水分界面中的应用效果陈治国侯西伟2,孟庆旺1(1.山东省物化探勘查院,山东济南250013; 2.济南富蕴地理信息工程有限公司,山东济南250014)摘要:矿化度是评价地下水水质的一个重要指标,结合实例较为系统地介绍应用视电阻率测深法划分地下水矿化度的依据及方法,验证结果表明效果良好。
通过对无棣、埕口、沾化、郭局子等地区开展对称四极电阻率测深工作,基本查明指定范围內500m深度以浅,地下微咸水与半咸水在平面上的分界线,对原水文图划定的边界进行验证和修正。
勘查区內大部分测线是根据水文地质图布设的,共布置6条测线、288个点,控制剖面长度88km,点距为200〜400m,AB/2最大1000m,整个工作达到预期目的,取得较好的水文地质效果,该研究对沿黄河盐碱化地区将黄河滩区地下淡水作为饮用水提供了借鉴。
关键词:对称四极电阻率测深法;矿化度;微咸水;半咸水中图分类号:P631.3+22;P641.72文献标识码:A文章编号:1671-1211(2021)01-0106-07 DOI:10.16536/ki.issn.1671-1211.2021.01.022在广泛的咸、淡水共存区,利用视电阻率测深法确定地下淡、咸水分布界面是地下水资源勘查工作的一项重要内容。
对称四极电阻率测深法是物探找水的常见工作方法,其工作原理简单、可行性强,其采集参数P s值是评价地下水矿化度有效的地球物理参数[1]。
本文以黄河滩区500m深度以浅地下水为研究对象,区分地下微咸水(矿化度<2g/L)与半咸水(矿化度<3g/L)在平面上的分界线,通过对视电阻率值的对比分析,确定调查区域内矿化度<3g/L的边界,并对其西部<2g/L 的边界进行修正,达到了预期目的,取得了较好的水文地质效果[1-5]。
电阻率测深在寻找地下水的应用摘要:近几年,国家对山区用水和生态农业大力发展水利,为配合地下水的开发利用,内蒙古第二地质矿产勘查开发有限责任公司在内蒙古清水河县单台子镇做了大量的水文物探工作,提出找水前景地段。
根据地面工作的成果确定最佳孔位,圈定了富水区,经钻探施工验证,均取得了比较好的效果。
总结找水经验,关键字:仪器参数、岩石特征、确定含水层、成井水位一、工作方法及地球物理特征1、工作方法及装置工作任务布置主要以剖面为主。
采用对称四极装置,在不同的工区依据地质、水文地质条件和所需勘探的深度而定。
本次工作选用的测量仪器为重庆奔腾技术研究所研制的WDJD-4多功能数字直流激电仪,供电电源为干电池(直流电源),供电,测量电导线采用橡胶绝缘军用电话线,供电电极采用铁杆电极,测量电极采用不极化电极。
根据供电AB的大小来选择合适的供电电压。
观测参数为视电阻率(ρs),在电测深曲线的拐点加密供电电极距,使曲线完整、清楚,准确的反应出目的层。
2、物理特征工作区地层区划属华北地层区,山西分区,清水河—偏关小区。
区内地层沉积特征与华北地层大致相同,寒武系,奥陶系地层层序较全。
工作区地表出露及钻孔揭露地层由老至新主要有:古生界的寒武系、奥陶系、石炭系,新生界的新近系、第四系,此次物探工作的电性参数主要参考收集的清水河窑沟地区的物性资料,同时结合此次在清水河单台子地区的井旁测深的相关电性资料,最后得出工作区主要地层(岩性)的电性参数统计表(见表1)。
表1 电性参数统计表由上表可知,第四系黄土电阻率相对较低,与泥岩、砂岩、灰岩等有明显的电性差异。
灰岩破碎含水电性与完整灰岩有明显的电性差异。
因此利用视电阻率测深法来探测地层岩性、含水层的空间分布范围具备了良好的地球物理前提。
二、应用效果1、工作计划及分析在地面踏勘工作的基础上,根据工作区地层分布范围和埋深,与勘探深度相适应,布置了水文地质物探剖面。
采用视电阻率垂向测深方法进行,物探剖面线的布设一般垂直构造线布置。
Copyright ©新人lee对称四极测深法水槽模拟实验报告一、实验目的与要求(1)复习和巩固对称四极测深法探测的原理。
(2)学会电阻率法常用仪器的操作方法。
(3)学会对称四极测深法的工作布置及观测方法,并能够分析对称四极测深法在倾斜铜板上视电阻率和视频散率异常特征。
二、实验内容本次实验主要实践对称四极测深法。
在水槽中用对称四极测深装置在倾斜铜板上进行测深法探测,观测并分析视电阻率和视频散率异常。
三、实验模型、仪器设备及参数设置实验模型:用水槽中的水模拟围岩介质,铜板模拟局部异常体(铜板:长30cm ,宽17.5cm )。
铜板顶部埋深约6.5cm ,底部埋深约15cm ,铜板下倾方向为AB 方向,电极入水深度约5cm 。
仪器设备:SQ-3B 双频道轻便型激电仪发送机/接收机,DCX-3电池箱,水槽及电极导线若干。
参数设置:选取三个测点,测点为MN 中点,分别在30cm 、50cm 和70cm 处,记为测点1、2、3,每一测点AB 和MN 电极距离如下:AB/2(cm)45691215203040MN/2(cm)1四、实验步骤1.进行实验仪器的检查,具体检查步骤分为自校和外校:(1)接收机自校(自校结果 -0.2<Fs<0.2,否则重新校正)(2)接收机外校(①接收机信号输入线接入接收机校验端;②发送机工作于校验状态,校验电流100mA ;③外校结果 -0.2<Fs<0.2;否则重新校验)2.根据所采用的工作方法布置各极距:将A 、B 、M 、N 电极放入水槽,并将其与接收机、发送机连接好,确保连接无误。
装置示意图见下图。
3.在仪器上进行装置选择和参数设置,选择中间梯度剖面装置并设置AB 、MN 及测点号,发送机发送电流,接收机接收数据,注意要将发送机调至工作状态,接收机进入测量;再依次对各个测点进行测量,并记录好实验数据,注意测点距离为2cm。
4.将观测结果绘制成视电阻率和视极化率测深图,对异常分布特征进行定性分析。
总648期第八期2018年8月河南科技Henan Science and Technology电阻率测深法在地下水探测中的应用林峻1陈伟波2(1.河南省水利勘测有限公司,河南郑州450003;2.郑州众永地质勘察工程有限公司,河南郑州450001)摘要:常规电阻率测深法是一种传统的寻找地下水源的物探方法。
通过在安徽省西南部一处水资源枯乏区,运用电阻率测深法对含水层埋深、厚度及其富水性等作出综合评价,确定裂隙破碎带位置是可行的。
关键词:电阻率测深;含水层分析;裂隙破碎带中图分类号:P641.7;P631.322文献标识码:A文章编号:1003-5168(2018)22-0085-03The Application of Resistivity Sounding Method In Groundwater DetectionLIN Jun 1CHEN WeiBo 2(1.Henan Water Conservancy Survey Co,Ltd.,Zhengzhou Henan 450003;2.Zhengzhou Zhongyong Geological SurveyEngineering Co,Ltd.,Zhengzhou Henan 450003)Abstract:Conventional resistivity sounding is a traditional geophysical prospecting method for underground water sources.The depth,thickness and water-rich of aquifer were comprehensively evaluated by resistivity sounding meth⁃od in a water shortage area in southwestern Anhui Province.It was feasible to determine the location of fractured zone.Keywords:resistivity sounding ;aquifer analysis ;fracture zone 电法勘探是根据地壳中各类岩石或矿体的电磁学性质(如导电性、导磁性、介电性)和电化学特性的差异,通过对人工或天然电场、电磁场或电化学场的空间分布规律和时间特性的观测和研究,寻找不同类型有用矿床和查明地质构造及解决地质问题的地球物理勘探方法。
期刊文章分类查询,尽在期刊图书馆张秉来(青海省电力设计院青海西宁810008)【摘要】本文简单介绍了对称四极电测深法的原理、装置及测量结果的解释方法,并结合工程实例介绍了对称四极电测深法在工程勘察中的应用效果,对类似地质条件的勘察工程具有一定的指导意义。
【关键词】视电阻率;电测深法;量板法;岩土工程勘察Application of resistivity sounding method in geotechnical engineering investigationZhang Bing-lai(Qinghai Electric Power Design InstituteXiningQinghai810008)【Abstract】In this paper,the basic principles of schlumberger array electrical sounding,its lay fundamental and the intricate methods are introduced.At the same time,on the basis of detailed analysis for a engineering instance ,the application of schlumberger array electrical sounding in engineering are alse introduced.【Key words】Apparent resistivity;Electrical sounding;Template method;Geotechnical investigation1. 引言由于岩土的种类、成分、结构、湿度和温度等因素的不同,而具有不同的电性差异,电法勘探是利用这种电性差异来解决某些工程地质问题的物探方法,利用这种电性差异的电法勘探方法较多,根据其电场性质的不同可分为电阻率法、充电法、自然电场法和激发极化法,其中电阻率法中的对称四极电测深法通过实践检验,其准确性完全能满足一般工程的需要,这种测量方法所需仪表设备少,操作简单,用电阻率来判断地基土对钢结构的腐蚀性已列入现行国家标准《岩土工程勘察规范》,而且在电力工程中根据土壤电阻率值来进行有效的接地设计,故这种电法测试技术引用前景较广泛,成为工程中一种常用的测试技术。
二、测试方法
本次视电阻率测试以测试点位为中心采用对称四极法,测量极M 、N 等分供电极A 、B 的间距。
针对每一个测试深度H ,取供电极距AB =4H ,即供电极距为测试深度的4倍。
通过对称地变换供电极距AB 和测量极距MN ,测出前述各深度处土壤视电阻率值。
其计算公式如下:
I
V
k
s
∇=ρ
其中:V ∇为电压(mV ),I 为电流(mA ),k 为装置系数,AB k 3
2
π
=。
三、测试仪器
使用仪器为重庆地质仪器厂生产的DDC -8型电子自动补偿(电阻率)仪,36伏直流供电。
四、测试结果
本次视电阻率测试共进行了5个点位的测试,每个点位有5个测试深度。
测试时每个测试深度布设1条测线,总计25条测线。
测试结果见表1及图1。
四极对称电阻率测试方法示意图
图1 电阻率测试结果图。
对称四极电测深法在南通地区浅层咸淡水划分应用沈 辰,胡克荣(江苏省地质矿产局第六地质大队,江苏 连云港 222023)摘 要:南通市东临黄海,南濒长江,地下水丰富,但咸淡水层分布不均,埋深也各不相同。
用对称四极电测深法对南通沿海松散沉积层的浅层咸淡水的分布和埋深情况划分是有效的,对深层咸淡水的分布和埋深,由于受其上层较厚咸水层的屏敝作用,效果虽不佳,但有参考意义,研究结果为同类工程勘探具有一定的借鉴作用。
关键词:对称四极;电测深;浅层;咸淡水中图分类号:TM63 文献标识码:A 文章编号:1002-5065(2021)05-0145-2The application of symmetric quadrupole electrical sounding in that division of shallow salty andfresh wat in Nantong areaSHEN Chen, HU Ke-rong(The Sixth Geological Brigade of Jiangsu Bureau of Geology and Mineral Resources,Lianyungang 222023,China)Abstract: Nantong city faces Huang Hai in the east and Yangtze River in the south. The groundwater is rich, but the distribution of salty and light water layer is uneven, and the buried depth is different. The symmetrical quadrupole electric sounding method is effective for the distribution and buried depth of shallow brackish water in the loose sedimentary layer along the coast of Nantong. The results are of reference for similar engineering exploration.Keywords: Symmetric quadrupole; Electrical sounding; superficial layer; Salty fresh water南通地区水文地质地球物理勘探工作中地面电测深的主要目的是控制了解浅层(150m以浅)咸谈水的分布情况,工作方法以收集该地区已有电测深资料为主,补做一些空白区的野外工作,力求达到1/20万比例尺的控制测量要求。