n次方根的定义(精)
- 格式:doc
- 大小:307.00 KB
- 文档页数:4
一、n 次方根的定义 引例(1)(±2)2=4,则称±2为4的 ; (2)23=8,则称2为8的 ;(3)(±2)4=16,则称±2为16的 。
定义:一般地,如果x n =a (n>1,且n ∈N*),那么x 叫做a 的n 次方根。
记作,其中n 叫根指数,a 叫被开方数。
练习:(1)25的平方根等于_______________ (2)27的立方根等于_________________ (3)-32的五次方根等于_______________ (4)81的四次方根等于_______________ (5)a 6的三次方根等于_______________ (6)0的七次方根等于________________ 二、n 次方根的性质:1)当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数。
表示(2)当n 是偶数时,正数的n 次方根有两个,它们互为相反数.表示。
(3)负数没有偶次方根, 0的任何次方根都是0。
记作00=a探究:归纳: 1、当n 为奇数时, 2、当n 为偶数时,例1、求下列各式的值(式子中字母都大于零)练习1:练习2:(1)当6<a<7,则(2)=---22)7()6(aa =-++625625na x= 一定成立吗? a a nn =.na )0>±a a n(_____233=-)(______844=-)(_____)3()32=>-a a (=nn a a =nn a a{,0,≥<-=a a a a (2) (4))ab .>_____________________________==三、分数指数幂注意:(1)分数指数幂是根式的另一种表示; (2)根式与分式指数幂可以互化. 例如: 5102552510)(a a a a=== (a >0)4123443412)(a a a a === (a >0)规定:正分数指数幂的意义是 负分数指数幂的意义是如0的正分数指数幂为0,0的负分数指数幂无意义。
n次方根的概念和性质一、教学分析分数指数幂是必修一第二章第一节的内容,是研究基本初等函数之一的指数函数的基础。
分数指数幂不同于整数指数幂,要理解分数指数幂,首先要深入理解n次方根的概念和性质.根式的概念教学是一个难点,但它是后续学习所必需的。
教学中可考虑以具体的例子为载体,类比平方根、立方根的定义,给出n次方根的定义,可以在给出定义前,让学生类比平方根、立方根举些例子。
将平方根和立方根的性质推广到n次方根时,多给学生提供一些实例,经过比较让学生自己归纳出结论。
教学时,要让学生充分体会当n是偶数时,正数的n次方根有两个,这两个数互为相反数。
对于结论0的n次方根都是0,要启发学生用n次方根的定义去理解。
根式的概念源于方根的概念,根据n次方根的意义就能得到n次方根的性质1。
但性质2是不能由n次方根的意义直接得出的,因此,教学中可让学生从具体实例中自己探究归纳得出结论。
二、学情分析学生在义务阶段的学习中已经知道了平方根和立方根的概念,掌握了平方根和立方根的相关性质。
然而知识需在运用中得到巩固,学生较长时间不接触平方根和立方根的知识,所以在教学中以正方形的面积和正方体的体积为例,帮助学生回顾平方根和立方根的概念。
教学中要充分利用学生已有的知识,着眼于学生的最近发展区,为学生提供学生感兴趣的的内容,调动学生的积极性,发挥其潜能。
由此,学生将很容易类比平方根和立方根的知识,得出n次方根的概念及其表示方法。
然而,让学生直接抽象地得出n次方根的相关性质,难度很大,学生的抽象概论能力还需进一步培养,所以,教学中应用大量丰富的实例,让学生从实例中观察,归纳得出结论。
通过本节课的学习,不仅要求学生掌握n次方根的相关知识,同时要培让学生感受基本数学思想,数学方法。
三、教学目标:(1)知识与技能:n次方根的概念,根式的性质(2)过程与方法:类比平方根和立方根,得出n次方根的概念;根据n次方根的概念,结合具体实例,总结n次方根性质;(3)情感态度价值观:类比思想,分类讨论思想;四、教学重难点重点:n次方根的概念和性质,难点:n次方根的性质五、教学过程1.触景生情问题1 据国务院发展研究中心2000年发表的《未来20年我国发展前景分析》判断,未来20年,我国GDP (国内生产总值)年平均增长率可望达到7.3%。
根号和开方公式
根号和开方的公式如下:
1.根号的定义:对于一个非负实数a,根号下a表示一个非负实数x,满足x的平方等于a。
即,根号下a = x,其中x ≥ 0,且x的平
方等于a,即x² = a。
2.开方的定义:如果一个正数a的n次方等于b,那么a就称为数
b的n次方根(简称根)。
而开n次方就是求b的n次方根,记作
“ **n√a** ”,即为求解方程xⁿ = a。
以下是一些关于根号和开方的拓展:
1.根号和开方都可以用于解决各种实际问题,如计算三角形的斜
边长度、计算圆的直径与面积等。
2.根号和开方也有很多应用,如在高等数学、物理学、工程学以
及计算机科学中都有广泛的应用,是数学实践中必不可少的重要工具。
3.在计算开方时,有些数可以直接求出,而对于一些数来说,需
要使用近似算法才能得到解,如牛顿迭代法、二分法等。
4.在实际应用中,由于计算机的存在,人们可以得到更高精度、更快速的计算结果,从而更好地满足实际应用的需求。
n次方根的概念
一、定义
n次方根是指一个数的n次方等于另一个数的运算,即被开方数的n次方根等于该数。
n次方根通常使用符号√(n)表示,其中n表示根数。
二、不同根数的概念
1. 平方根:根数为2,表示一个数的平方根。
2. 立方根:根数为3,表示一个数的立方根。
3. 四次方根:根数为4,表示一个数的四次方根。
4. 五次方根:根数为5,表示一个数的五次方根。
5. n次方根:根数为n,表示一个数的n次方根。
三、求n次方根的方法
求n次方根的一般方法有以下两种:
1. 迭代法:迭代法是一种基于数学公式和程序控制结构的求解方法。
它通过重复迭代的步骤,逐步逼近求解方程的根。
2. 牛顿-拉弗森方法:牛顿-拉弗森方法是一种数值计算方法,可以求函数的零点。
求n次方根时,可以将其转化为一个函数的零点问题,然后使用牛顿-拉弗森方法来求解。
四、n次方根的实际应用
n次方根在实际生活和工作中具有广泛的应用,如计算机科学中的编码系统、密码学、数字信号处理、图像处理等领域。
同时,n次方根也应用于物理学领域,如热力学、光学等,以及统计学和金融学等领域。
在日常生活中,n次方根也常常用于计算直线距离、概率计算等。
总之,n次方根是一种重要的数学概念,具有广泛的实际应用价值。
n次方根的概念和性质一、教学分析分数指数幂是必修一第二章第一节的内容,是研究基本初等函数之一的指数函数的基础。
分数指数幂不同于整数指数幂,要理解分数指数幂,首先要深入理解n次方根的概念和性质.根式的概念教学是一个难点,但它是后续学习所必需的。
教学中可考虑以具体的例子为载体,类比平方根、立方根的定义,给出n次方根的定义,可以在给出定义前,让学生类比平方根、立方根举些例子。
将平方根和立方根的性质推广到n次方根时,多给学生提供一些实例,经过比较让学生自己归纳出结论。
教学时,要让学生充分体会当n是偶数时,正数的n次方根有两个,这两个数互为相反数。
对于结论0的n次方根都是0,要启发学生用n次方根的定义去理解。
根式的概念源于方根的概念,根据n次方根的意义就能得到n次方根的性质1。
但性质2是不能由n次方根的意义直接得出的,因此,教学中可让学生从具体实例中自己探究归纳得出结论。
二、学情分析学生在义务阶段的学习中已经知道了平方根和立方根的概念,掌握了平方根和立方根的相关性质。
然而知识需在运用中得到巩固,学生较长时间不接触平方根和立方根的知识,所以在教学中以正方形的面积和正方体的体积为例,帮助学生回顾平方根和立方根的概念。
教学中要充分利用学生已有的知识,着眼于学生的最近发展区,为学生提供学生感兴趣的的内容,调动学生的积极性,发挥其潜能。
由此,学生将很容易类比平方根和立方根的知识,得出n次方根的概念及其表示方法。
然而,让学生直接抽象地得出n次方根的相关性质,难度很大,学生的抽象概论能力还需进一步培养,所以,教学中应用大量丰富的实例,让学生从实例中观察,归纳得出结论。
通过本节课的学习,不仅要求学生掌握n次方根的相关知识,同时要培让学生感受基本数学思想,数学方法。
三、教学目标:(1)知识与技能:n次方根的概念,根式的性质(2)过程与方法:类比平方根和立方根,得出n次方根的概念;根据n次方根的概念,结合具体实例,总结n次方根性质;(3)情感态度价值观:类比思想,分类讨论思想;四、教学重难点重点:n次方根的概念和性质,难点:n次方根的性质五、教学过程1.触景生情问题1 据国务院发展研究中心2000年发表的《未来20年我国发展前景分析》判断,未来20年,我国GDP (国内生产总值)年平均增长率可望达到7.3%。
n次方根与分数指数幂数学分数指数 1.理解n次方根、根式的概念.2.能正确运用根式运算性质化简求值.3.会对分式和分数指数幂进行转化.4.掌握并运用有理数指数幂的运算性质.导语公元前五世纪,古希腊有一个数学学派名叫毕达哥拉斯学派,其学派中的一个成员希伯斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,2也不能用分数来表示,希伯斯的发现导致了数学史上第一个无理数的诞生.这就是本节课我们要学习的根式.一、n次方根问题1 如果x2=a,那么x叫做a的什么?这样的x有几个?x3=a呢?提示 如果x2=a,那么x叫做a的平方根,这样的x有两个;如果x3=a,那么x叫做a的立方根,这样的x有一个.问题2 类比平方根、立方根的概念,试着说说4次方根、5次方根、10次方根等,你认为n次方根应该是什么?提示 比如(±2)4=16,我们把±2叫做16的4次方根;(±3)4=81,我们把±3叫做81的4次方根;(-2)5=-32,我们把-2叫做-32的5次方根;(±2)10=1 024,我们把±2叫做1 024的10次方根等.类比上述过程,我们可以得到:如果2n=a,那么我们把2叫做a的n次方根.知识梳理1.n次方根的定义一般地,如果x n=a,那么x叫做a的n次方根,其中n>1,且n∈N*.2.n次方根的性质n为奇数n为偶数a∈R a>0a=0a<0x=n a x=±n a x=0不存在3.根式n a式子叫做根式,这里n叫做根指数,a叫做被开方数.4.根式的性质(1)负数没有偶次方根.n0(2)0的任何次方根都是0,记作=0.n a(3)()n=a(n∈N*,且n>1).n an(4)=|a|=Error!(n为大于1的偶数).注意点:n a n a n an(1)对于()n=a,若n为奇数,则a∈R;若n为偶数,则a≥0;(2)()n与意义不同,3(-3)34(-3)44-3n a n an比如=-3,=3,而()4没有意义,故()n≠;n a n an n a n an(3)当a≥0时,()n=;当a<0且n为奇数时,()n=;当a<0且n为偶数时,对n an于要注意运算次序.例1 (1)化简下列各式:5(-2)55-2①+()5;6(-2)662②+()6;4(x+2)4③.解 ①原式=(-2)+(-2)=-4.②原式=|-2|+2=2+2=4.③原式=|x+2|=Error!x2-2x+1x2+6x+9(2)已知-3<x<3,求-的值.(x-1)2(x+3)2解 原式=-=|x-1|-|x+3|,∵-3<x<3,∴当-3<x<1时,原式=-(x-1)-(x+3)=-2x-2;当1≤x<3时,原式=(x-1)-(x+3)=-4.∴原式=Error!延伸探究 在本例(2)中,若将“-3<x<3”变为“x≤-3”,则结果又是什么?(x-1)2(x+3)2解 原式=-=|x-1|-|x+3|.∵x≤-3,∴x-1<0,x+3≤0,∴原式=-(x-1)+(x+3)=4.n an n a反思感悟 正确区分与()nn an n an(1)中的a可以是全体实数,的值取决于n的奇偶性.n a n a(2)()n已暗含了有意义,根据n的奇偶性可知a的范围.跟踪训练1 化简下列各式:7(-2)7(1);(2)+;(π-4)23(π-4)3(3)(a ≤1);4(3a -3)4(4)+;3a 34(1-a )4解 (1)=-2.7(-2)7(2)+=|π-4|+π-4=4-π+π-4=0.(π-4)23(π-4)3(3)∵a ≤1,∴=|3a -3|=3|a -1|=3-3a .4(3a -3)4(4)+=a +|1-a |=Error!3a 34(1-a )4二、分数指数幂问题3 那么被开方数的指数不能被根指数整除的根式,比如,,,,a >0,是3a 24a 23a 59a 3否也可以表示为分数指数幂的形式?如何表示?提示 =,==,=,==.3a 223a 4a 224a 12a 3a 553a 9a 339a 13a 知识梳理根式与分数指数幂的互化(1)规定正数的正分数指数幂的意义是:=(a >0,m ,n ∈N *,且n >1);m na nam (2)规定正数的负分数指数幂的意义是:=(a >0,m ,n ∈N *,且n >1);1m nm naa-=1nam (3)0的正分数指数幂等于0,0的负分数指数幂没有意义.注意点:(1)分数指数幂不可理解为个a 相乘,它是根式的一种写法;(2)正数的负分数m na mn 指数幂总表示正数,而不是负数.整数指数幂的运算性质,可以推广到有理数指数幂,即:①a r a s =a r +s (a >0,r ,s ∈Q );②(a r )s =a rs (a >0,r ,s ∈Q );③(ab )r =a r b r (a >0,b >0,r ∈Q ).拓展:①=a r -s (a >0,r ,s ∈Q ).②r =(a >0,r ,s ∈Q )aras (a b )arbr 注意点:(1)记忆口诀:乘相加,除相减,幂相乘;(2)不要自创公式,严格按照公式化简、运算.例2 (1)化简的结果是( )1312527-⎛⎫⎪⎝⎭A. B. C .3 D .53553(2)(a >0)的分数指数幂表示为( )3a ·a A . B . C . D .都不对12a 32a 34a (3)化简·(a >0)的结果是( )a 3a 2A. B. C. D.3a 6a 71a 6a 6a答案 (1)A (2)A (3)B解析 (1)原式==-1=.13353⎛⎫⨯- ⎪⎝⎭⎛⎫ ⎪⎝⎭(53)35(2)==.3123a ⨯12a (3)原式=·==.12a 23a 76a 6a 7反思感悟 根式与分数指数幂互化的规律(1)根指数分数指数的分母,被开方数(式)的指数分数指数的分子.(2)在具体计算时,通常会把根式转化成分数指数幂的形式,然后利用有理数指数幂的运算性质解题.跟踪训练2 (1)求值:=________.3-827(2)用分数指数幂表示a ·(a >0)=________.51a 3答案 (1)- (2)2325a 解析 (1)原式===-.13827⎛⎫- ⎪⎝⎭13323⨯⎛⎫- ⎪⎝⎭23(2)原式=a ·=.35a-25a 三、有理数指数幂的运算性质例3 =________.(式中的字母均是正数)121121332a b a b ---⎛⎫答案 1a解析 原式=21111323221566ab aba b⎛⎫⨯--⎪⎝⎭⋅⋅⋅⋅111155513223666615156666aba b aa ba b--+---⋅⋅===⋅⋅=a -1=.1a (2)计算:--(π-3)0+.25913827⎛⎫ ⎪⎝⎭1214-⎛⎫ ⎪⎝⎭解 原式=--1+2=2.5323反思感悟 关于指数式的化简、求值问题(1)无论是化简还是求值,一般的运算顺序是先乘方,再乘除,最后加减.(2)仔细观察式子的结构特征,确定运算层次,避免运用运算性质时出错.跟踪训练3 (1)-(-2)0-+-2;12124⎛⎫ ⎪⎝⎭23278-⎛⎫ ⎪⎝⎭(32)(2)(x ,y >0).1411333442236x x y x y ---⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭解 (1)原式=-1-+2=-1-+=.12232⎡⎤⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦23332-⎡⎤⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(23)32494912(2)原式=.()()14113233442236xyxy -+++⨯-÷-=⎡⎤⎣⎦1.知识清单:(1)n 次方根的概念、表示及性质.(2)根式的概念及性质.(3)分数指数幂与根式的相互转化.(4)分数指数幂的运算性质.2.方法归纳:转化法.3.常见误区:(1)对于,当n 为偶数时,a ≥0.na(2)混淆()n 和.na nan1.()4运算的结果是( )42A .2 B .-2 C .±2 D .不确定答案 A 解析 ()4=2.422.若a <,则化简的结果是( )14(4a -1)2A .4a -1 B .1-4a C .- D .-4a -11-4a答案 B解析 ∵a <,14∴4a -1<0,∴=|4a -1|=-(4a -1)=1-4a .(4a -1)23.下列运算结果中,正确的是( )A .a 2·a 3=a 5 B .(-a 2)3=(-a 3)2C .(-1)0=1 D .(-a 2)3=a 6a 答案 A解析 A 项,a 2·a 3=a 2+3=a 5,故A 项正确;B 项,(-a 2)3=-a 6,(-a 3)2=a 6,故B 项错误;C 项,当a =1时无意义,故C 项错误;D 项,(-a 2)3=-a 6,故D 项错误.4.计算:0.25×-4-4÷20-=________.(-12)12116-⎛⎫⎪⎝⎭答案 -4解析 原式=×16-4÷1--114(14)=4-4-4=-4.课时对点练1.若a 是实数,则下列式子中可能没有意义的是( )A. B. C. D.4a 25a 5-a 4a答案 D解析 当a <0时,a 的偶次方根无意义.2.若+(a -4)0有意义,则a 的取值范围是( )a -2A .[2,+∞)B .[2,4)∪(4,+∞)C .(-∞,2)∪(2,+∞)D .(-∞,4)∪(4,+∞)答案 B解析 由题意可知Error!∴a ≥2且a ≠4.3.化简(其中a >0,b >0)的结果是( )3(8a -327b 3)4A. B .- C. D .-2a 3b 2a 3b 1681a 4b 4181a 4b 4答案 C解析 ==4=.3(8a -327b 3)44333323a b -3⎛⎫ ⎪⎝⎭(2a -13b)1681a 4b 44.下列等式一定成立的是( )A .=a B .=03132a a ⋅1122a a ⋅C .(a 3)2=a 9 D .113126a a a÷=答案 D解析 同底数幂相乘,指数相加,故A ,B 错误;因为(a m )n =a mn,3×2=6,故C 错误;同底数幂相除,指数相减,故D 正确.5.若a >0,将表示成分数指数幂,其结果是( )a 2a ·3a 2A . B . C . D .12a 56a 76a 32a 答案 C解析 由题意得==.a 2a ·3a 211223a--76a 6.(多选)下列根式与分数指数幂的互化正确的是( )A .-=x 12()x -B.=(y >0)6y 213yC .=(x >0)34x-4(1x )3D .=(x >0)3412x 答案 BCD解析 A 项错误,-=(x ≥0),而=(x ≤0);x 12x -12()x --x B 项正确,=(y >0);6y 213y C 项正确,=(x >0);33441xx -⎛⎫= ⎪⎝⎭4(1x )3D 项正确,(x >0).313124342x x ⨯⨯==7.当x <0时,x ++=________.4x 43x 3x 答案 1解析 原式=x +|x |+=x -x +1=1.xx 8.方程3x -1=的解是________.19答案 x =-1解析 3x -1==3-2⇒x -1=-2⇒x =-1.199.化简下列各式:(1)+;(5-3)2(5-2)2(2)+(x ≥1).(1-x )2(3-x )2解 (1)+=|-3|+|-2|=3-+-2=1.(5-3)2(5-2)25555(2)当1≤x <3时,+=|1-x |+|3-x |=x -1+3-x =2;(1-x )2(3-x )2当x ≥3时,+=|1-x |+|3-x |=x -1+x -3=2x -4.(1-x )2(3-x )2所以原式=Error!10.(1)化简:(a >0,b >0);211511336622263a b a b a -⎛⎫⎛⎫⎛⎫-- ⎪⎪⎪⎝⎭⎝⎭⎝⎭(2)求值:0+2-2×-0.010.5.(235)12124-⎛⎫ ⎪⎝⎭解 (1)211511336622263a b a b a b -⎛⎫⎛⎫⎛⎫-- ⎪⎪⎪⎝⎭⎝⎭⎝⎭=2×(-6)×211115326236(3)ab+-+-.5336ab =(2)0+2-2×-0.010.5(235)12124-⎛⎫ ⎪⎝⎭=1+×141122419100⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭=1+×-1423110=1+-=.16110161511.若有意义,则x 的取值范围是( )()3412x --A .R B.∪(-∞,12)(12,+∞)C. D.(12,+∞)(-∞,12)答案 D 解析 将分数指数幂化为根式,可知需满足1-2x >0,解得x <.1212.已知m 10=2,则m 等于( )A. B .- C. D .±102102210102答案 D解析 ∵m 10=2,∴m 是2的10次方根.又∵10是偶数,∴2的10次方根有两个,且互为相反数.∴m =±.10213.化简·的结果为( )-a 3a A . B . C . D .25a -()56a --()56a -56a -答案 B解析 原式=.()()()115236a a a --⋅-=--14.如果45x =3,45y =5,那么2x +y =________.答案 1解析 由45x =3,得(45x )2=9.又45y =5,则452x ×45y =9×5=45=451,即452x +y =451,∴2x +y =1.15.化简:(+)2 021·(-)2 021=________.3232答案 1解析 原式=[(+)·(-)]2 021=12 021=1.323216.若a ,b ,c 为正实数,a x =b y =c z ,++=0,求abc .1x 1y 1z 解 设a x =b y =c z =k ,则k >0,a =,b =,c =,1xk 1yk 1zk 因此abc ==k 0=1.111111yx y zxzk k k k++=。
一、n 次方根的定义 引例
(1)(±2)2=4,则称±2为4的 ; (2)23=8,则称2为8的 ;
(3)(±2)4=16,则称±2为16的 。
定义:一般地,如果x n =a (n>1,且n ∈N*),那么x 叫做a 的n 次方根。
记作
,其中n 叫根指数,a 叫被开方数。
练习:
(1)25的平方根等于_______________ (2)27的立方根等于_________________ (3)-32的五次方根等于_______________ (4)81的四次方根等于_______________ (5)a 6的三次方根等于_______________ (6)0的七次方根等于________________ 二、n 次方根的性质:
1)当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数。
表示
(2)当n 是偶数时,正数的n 次方根有两个,它们互为相反数.表示。
(3)负数没有偶次方根, 0的任何次方根都是0。
记作00=a
探究:
归纳: 1、当n 为奇数时, 2、当n 为偶数时,
例1、求下列各式的值(式子中字母都大于零)
练习1:
练习2:
(1)当6<a<7,则
(2)
=
---22)7
()6(a
a =
-++625625n
a x= 一定成立吗? a a n
n =
.n
a )0>
±a a n
(_____23
3
=-)(______84
4
=-)(_____
)3()32=>-a a (=n
n a a =n
n a a
{0
,0
,≥<-=a a a a (2) (4))a b .>_____________________________
==
三、分数指数幂
注意:(1)分数指数幂是根式的另一种表示; (2)根式与分式指数幂可以互化. 例如: 5
102
5525
10
)(a a a a
=== (a >0)
4
123443412)(a a a a === (a >0)
规定:正分数指数幂的意义是 负分数指数幂的意义是
如
0的正分数指数幂为0,0的负分数指数幂无意义。
性质:(整数指数幂的运算性质对于有理指数幂也同样适用)
例1、求值
例2、用分数指数幂的形式表示下列各式(a>0)
s
r s
r
a
a a +=),,0(Q s r a ∈>rs s r a
a =)(),,0(Q s r a ∈>r r r a a a
b =)()
,0,0(Q r b a ∈>>定义: )
1 , , , 0 ( *
> ∈ > = n N n m a a a n m n
m
且 例2化简下列各式的值:
(1) (3) (4) (5)1,,0(>∈>=*n N n m a a a n m n m
且)1,,0(1
>∈>=*-n N n m a a a n m n m
且_____8116______41______100
_____84
332
13
2=⎪⎭
⎫
⎝⎛=⎪
⎭
⎫
⎝⎛=
=-
--4
101
648
27
()()
_______2_______
132
2
3
2
3==
⋅b
a a
b
b
a
a a
311a
8387-
⋅b a 3
4
3
43
4
51
5
15==-
例3、用分数指数幂的形式表示下列各式(其中a >0)
a a ∙3=2
13a a ∙=2
13+
a
=27a 322a a ∙=3
22a a ∙=3
83
22a a
=+
3
a a =2
13
1)(a a ∙=3
26
1216
12
1a a
a a ==∙+
例4、计算下列各式(式子中字母都是正数): (1)(22
13
2b a )(-63
12
1b a )÷(-36
56
1b a ) =[2×(-6)÷(-3)]6
531216
12132-+-+b
a
=4a
(2)(8
834
1
)-n m =(328
838
4
1)()--=n m n m 无理数指数幂
25中指数是无理数,近似值看表
一般地,无理数指数幂 ( m >0, m 是无理数)是一个确定的实数。
有理数指
数幂的运算性质同样适用于无理数指数幂。
课外练习:
1、已知
的值求x x x
a a 6
323
2,1a ---+-=+
2、计算下列各式
3、已知,求下列各式的值31
=+-x
x
(1)x
x 2
12
1-+ (2)
x
x 2
12
1-
-
a
m 2 1
2 1
2 1
2 1 2 1
2 1
2 1
2
1 )
1 ( b
a b
a b
a b a - + +
+ - )
( ) 2 )2 ( 2
2 2 2 - - - ÷ + - a a a a
46394
369)()(a a ⋅
4、化简 的结果是( )
5、2-(2k+1)-2-(2k-1)+2-2k 等于( )
A.2-2k
B. 2-(2k-1)
C. -2-(2k+1)
D.2
6、若 有意义,则x 的取值范围是
7、_______3210
10102
y
-3x x
===,则,若
y
8、计算下列各式:
(1)4
325)12525(÷- (2)
3
2
2a
a a ∙(a >0)
10、化简的结果是)1)(1)(1)(1)(1(22222
2
14
18
116
132
1
-
-
-
-
-
+++++
( )
A )
21(321
1
21--- B
)
21(321
1
--- C
2
1321
-
- D )1(2
11232
1
-
-
9、 , 下列各式总能成立的是( ) R
b a ∈ b a b a b a b a b a b a b a b a + = + - = - + = + - = - 10 10 4 4 4
4 2 2 8
8 2 2 6 6 6 ) ( D C ) (
B ) ( A 2
4816 D. C. B. .A a
a a a 2 1 )
1 | (| -
- x。