正方形的性质及判定提高练习
- 格式:doc
- 大小:1.08 MB
- 文档页数:8
专题5.3 正方形的性质与判定【十大题型】【浙教版】【题型1 正方形的性质(求角的度数)】 (1)【题型2 正方形的性质(求线段的长度)】 (3)【题型3 正方形的性质(求面积、周长)】 (4)【题型4 正方形的性质(探究数量关系)】 (6)【题型5 判定正方形成立的条件】 (10)【题型6 正方形判定的证明】 (12)【题型7 正方形的判定与性质综合】 (16)【题型8 探究正方形中的最值问题】 (19)【题型9 正方形在坐标系中的运用】 (20)【题型10 正方形中的多结论问题】 (23)【题型1 正方形的性质(求角的度数)】【例1】(2022春•建阳区期中)如图,在正方形ABCD中有一个点E,使三角形BCE是正三角形,求:(1)∠BAE的大小(2)∠AED的大小.【变式1-1】如图,已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN上方作正方形AEFG.(1)连接GD,求证:△ADG≌△ABE;(2)连接FC,观察并猜测∠FCN的度数,并说明理由.【变式1-2】(2022•武威模拟)如图,在正方形ABCD中,点E是对角线AC上的一点,点F在BC的延长线上,且BE=EF,EF交CD于点G.(1)求证:DE=EF;(2)求∠DEF的度数.【变式1-3】(2022春•新市区校级期末)如图,在给定的正方形ABCD中,点E从点B出发,沿边BC方向向终点C运动,DF⊥AE交AB于点F,以FD,FE为邻边构造平行四边形DFEP,连接CP,则∠DFE+∠EPC的度数的变化情况是()A.一直减小B.一直减小后增大C.一直不变D.先增大后减小【题型2 正方形的性质(求线段的长度)】【例2】(2022春•牡丹江期末)如图,正方形ABCD的边长为10,点E,F在正方形内部,AE=CF=8,BE=DF=6,则线段EF的长为()A.2√2B.4C.4−√2D.4+√2【变式2-1】(2022春•巴南区期末)如图,四边形ABCD是边长为4的正方形,点E在边CD上,且DE =1,作EF∥BC分别交AC、AB于点G、F,P、H分别是AG,BE的中点,则PH的长是()A.2B.2.5C.3D.4【变式2-2】(2022•越秀区一模)将正方形ABCD与正方形BEFG按如图方式放置,点F、B、C在同一直线上,已知BG=√2,BC=3,连接DF,M是DF的中点,连接AM,则AM的长是()A.√102B.√3C.√132D.32【变式2-3】(2022春•吴中区校级期末)如图,在正方形ABCD中,AB=4√5.E、F分别为边AB、BC的中点,连接AF、DE,点N、M分别为AF、DE的中点,连接MN,则MN的长度为.【题型3 正方形的性质(求面积、周长)】【例3】(2022春•鄞州区期末)有两个正方形A,B.现将B放在A的内部得图甲,将A,B构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,若三个正方形A和两个正方形B得图丙,则阴影部分的面积为()A.28B.29C.30D.31【变式3-1】(2022春•工业园区校级期中)如图,四边形ABCD为正方形,O为AC、BD的交点,△DCE 为Rt△,∠CED=90°,OE=2√2,若CE•DE=3,则正方形ABCD的面积为()A.5B.6C.8D.10【变式3-2】(2022•台州)如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为.【变式3-3】(2022•江北区一模)如图,以Rt△ABC的各边为边分别向外作正方形,∠BAC=90°,连结DG,点H为DG的中点,连结HB,HN,若要求出△HBN的面积,只需知道()A.△ABC的面积B.正方形ADEB的面积C.正方形ACFG的面积D.正方形BNMC的面积【题型4 正方形的性质(探究数量关系)】【例4】(2022秋•中原区校级月考)如图,线段AB=4,射线BG⊥AB,P为射线BG上一点,以AP为边作正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使∠EAP=∠BAP,直线CE 与线段AB相交于点F(点F与点A、B不重合).(1)求证:△AEP≌△CEP;(2)判断CF与AB的位置关系,并说明理由;(3)请直接写出△AEF的周长.【变式4-1】(2022春•雁塔区校级期末)在正方形ABCD中,∠MAN=45°,该角可以绕点A转动,∠MAN的两边分别交射线CB,DC于点M,N.(1)当点M,N分别在正方形的边CB和DC上时(如图1),线段BM,DN,MN之间有怎样的数量关系?你的猜想是:,并加以证明.(2)当点M,N分别在正方形的边CB和DC的延长线上时(如图2),线段BM,DN,MN之间的数量关系会发生变化吗?证明你的结论.【变式4-2】(2022春•莆田期末)如图,已知正方形ABCD中,E为CB延长线上一点,且BE=AB,M、N分别为AE、BC的中点,连DE交AB于O,MN交,ED于H点.(1)求证:AO=BO;(2)求证:∠HEB=∠HNB;(3)过A作AP⊥ED于P点,连BP,则PE−PA的值.PB【变式4-3】(2022春•鼓楼区校级期中)如图,正方形ABCD的对角线相交于点O.点E是线段DO上一点,连接CE.点F是∠OCE的平分线上一点,且BF⊥CF与CO相交于点G.点H是线段CE上一点,且CO=CH.(1)若OF=5,求FH的长;(2)求证:BF=OH+CF.【题型5 判定正方形成立的条件】【例5】(2022春•海淀区校级期中)已知四边形ABCD为凸四边形,点M、N、P、Q分别为AB、BC、CD、DA上的点(不与端点重合),下列说法正确的是(填序号).①对于任意凸四边形ABCD,一定存在无数个四边形MNPQ是平行四边形;②如果四边形ABCD为任意平行四边形,那么一定存在无数个四边形MNPQ是矩形;③如果四边形ABCD为任意矩形,那么一定存在一个四边形为正方形;④如果四边形ABCD为任意菱形,那么一定存在一个四边形为正方形.【变式5-1】(2022春•岳麓区校级月考)如图,E、F、G、H分别是AB、BC、CD、DA的中点.要使四边形EFGH是正方形,BD、AC应满足的条件是.【变式5-2】(2022春•汉寿县期中)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F在AC 上,且OE=OF,连接DE并延长至点M,使DE=ME,连接MF,DF,BE.(1)当DF=MF时,证明:四边形EMBF是矩形;(2)当△DMF满足什么条件时,四边形EMBF是正方形?请说明理由.【变式5-3】(2022春•沛县期中)已知在△ABC中,D为边BC延长线上一点,点O是边AC上的一个动点,过O作直线MN∥BC,设MN与∠BCA的平分线相交于点E,与∠ACD的平分线相交于点F.(1)求证:OE=OF;(2)试确定点O在边AC上的位置,使四边形AECF是矩形,并加以证明.(3)在(2)的条件下,且△ABC满足条件时,矩形AECF是正方形?.【题型6 正方形判定的证明】【例6】(2022春•虹口区期末)如图,在四边形ABCD中,AB∥CD,AD=CD,E是对角线BD上的一点,且AE=CE.(1)求证:四边形ABCD是菱形;(2)如果AB=BE,且∠ABE=2∠DCE,求证:四边形ABCD是正方形.【变式6-1】(2022春•宜城市期末)如图,四边形ABCD是平行四边形,连接对角线AC,过点D作DE ∥AC与BC的延长线交于点E,连接AE交DC于F.(1)求证:BC=CE;(2)连接BF,若∠DAF=∠FBE,且AD=2CF,求证:四边形ABCD是正方形.【变式6-2】(2022秋•市南区期末)已知:在平行四边形ABCD中,分别延长BA,DC到点E,H,使得BE=2AB,DH=2CD.连接EH,分别交AD,BC于点F,G.(1)求证:AF=CG;(2)连接BD交EH于点O,若EH⊥BD,则当线段AB与线段AD满足什么数量关系时,四边形BEDH 是正方形?【变式6-3】(2022•上海)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.【题型7 正方形的判定与性质综合】【例7】(2022•威海)如图1,在正方形ABCD中,E,F,G,H分别为边AB,BC,CD,DA上的点,HA=EB=FC=GD,连接EG,FH,交点为O.(1)如图2,连接EF,FG,GH,HE,试判断四边形EFGH的形状,并证明你的结论;(2)将正方形ABCD沿线段EG,HF剪开,再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形ABCD的边长为3cm,HA=EB=FC=GD=1cm,则图3中阴影部分的面积为cm2.【变式7-1】(2022•萧山区模拟)如图,P为正方形ABCD内的一点,画▱P AHD,▱PBEA,▱PCFB,▱PDGC,请证明:以E,F,G,H为顶点的四边形是正方形.【变式7-2】(2022•萧山区模拟)已知:如图,边长为4的菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.(1)求证:四边形ABCD是正方形.(2)E是OB上一点,BE=1,且DH⊥CE,垂足为H,DH与OC相交于点F,求线段OF的长.【变式7-3】(2022春•潜山市期末)如图,已知四边形ABCD为正方形,AB=3√2,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.【题型8 探究正方形中的最值问题】【例8】(2022春•沙坪坝区校级月考)如图,在正方形ABCD中,M,N是边AB上的动点,且AM=BN,连接MD交对角线AC于点E,连接BE交CN于点F,若AB=3,则AF长度的最小值为.【变式8-1】(2022•泰山区一模)如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为2,则线段CF的最小值是()A.2B.1C.√5−1D.√5−2【变式8-2】(2022•青山区模拟)已知矩形ABCD,AB=2,AD=4AB=8,E为线段AD上一动点,以CE 为边向上构造正方形CEFG,连接BF,则BF的最小值是.【变式8-3】(2022•郧阳区模拟)如图,P A=2√2,PB=4√2,以AB为边作正方形ABCD,使得P、D两点落在直线AB的两侧,当∠APB变化时,则PD的最大值为.【题型9 正方形在坐标系中的运用】【例9】(2022春•市中区期末)在平面直角坐标系中,对于两个点P、Q和图形W,如果在图形W上存在点M、N(M、N可以重合)使得PM=QN,那么称点P与点Q是图形W的一对平衡点.已知正方形的边长为2,一边平行于x轴,对角线的交点为点O,点D的坐标为(2,0).若点E(x,2)与点D是正方形的一对平衡点,则x的取值范围为()A.﹣3≤x≤3B.﹣4≤x≤4C.﹣2≤x≤2D.﹣5≤x≤5【变式9-1】(2022秋•永新县期末)如图,在平面直角坐标系中,四边形ABCD的顶点坐标分别是A(﹣2,0)、B(0,﹣2)、C(2,0)、D(0,2),求证:四边形ABCD是正方形.【变式9-2】(2022春•顺城区期末)如图,在平面直角坐标系xOy中,直线OC:yOC=3x与直线AC:yAC=﹣x+8相交于点C(2,6).(1)点M从点O出发以每秒1个单位长度的速度沿x轴向右运动,点N从点A出发以每秒3个单位长度的速度沿x轴向左运动,两点同时出发.分别过点M,N作x轴的垂线,分别交直线OC,AC于点P,Q,请你在图1中画出图形,猜想四边形PMNQ的形状(点M,N重合时除外),并证明你的猜想;(2)在(1)的条件下,当点M运动秒时,四边形PMNQ是正方形(直接写出结论).【变式9-3】(2022•河南模拟)如图,正方形OABC 中,点A (4,0),点D 为AB 上一点,且BD =1,连接OD ,过点C 作CE ⊥OD 交OA 于点E ,过点D 作MN ∥CE ,交x 轴于点M ,交BC 于点N ,则点M 的坐标为( )A .(5,0)B .(6,0)C .(254,0)D .(274,0) 【题型10 正方形中的多结论问题】【例10】(2022春•慈溪市期末)如图,正方形ABCD 中,点P 为BD 延长线上任一点,连结P A ,过点P 作PE ⊥P A ,交BC 的延长线于点E ,过点E 作EF ⊥BP 于点F .下列结论:(1)P A =PE ; (2)BD =2PF ;(3)CE =√2PD ; (4)若BP =BE ,则PF =(√2+1)DF .其中正确的个数为( )A .1B .2C .3D .4【变式10-1】(2022春•渝中区校级期中)如图,正方形ABCD 的边长为a ,点E 在边AB 上运动(不与点A ,B 重合),∠DAM =45°,点F 在射线AM 上,且AF =√2BE ,CF 与AD 相交于点G .连接EC 、EF 、EG .下列结论:①∠ECF =45°;②△AEG 的周长为(1+√22)a ;③BE 2+DG 2=EG 2;④当G 是线段AD的中点时,BE =13a .正确的个数是( )A.1个B.2个C.3个D.4个【变式10-2】(2022秋•三水区月考)如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G,下列结论:①HF=2HG;②∠GDH=∠GHD;③图中有8个等腰三角形;④S△CDG=S△DHF.其中正确的结论个数是()A.1个B.2个C.3个D.4个【变式10-3】(2022春•玉林期末)如图,正方形ABCD中,点E在边CD上,过点A作AF⊥AE交CB的延长线于点F,连接EF,AG平分∠F AE,AG分别交BC、EF于点G、H,连接EG、DH.则下列结论中:①BF=DE;②∠EGC=2∠BAG;③AD+DE=√3DH;④DE+BG=EH;⑤若DE=CE,则CE:CG:EG=3:4:5,其中正确的结论有.。
1.3正方形的性质与判定1、四边形ABCD中,AC、BD相交于点O,能判别这个四边形是正方形的条件是()A. OA=OB=OC=OD,AC⊥BDB. AB∥CD,AC=BDC. AD∥BC,∠A=∠CD. OA=OC,OB=OD,AB=BC2、在正方形ABCD中,AB=12cm,对角线AC、BD相交于O,则△ABO的周长是()A. 12+122B. 12+62C. 12+2D. 24+623、如图,四边形ABCD是正方形,延长BC至点E,使CE=CA,连结AE交CD•于点F,•则∠AFC的度数是().(A)150°(B)125°(C)135°(D)112.5°4、已知正方形的面积为4,则正方形的边长为________,对角线长为________.5、如左下图,四边形ABCD是正方形,△CDE是等边三角形,则∠AED=______,∠AEB=______.6、如右上图,四边形ABCD是正方形,△CDE是等边三角形,求∠AEB的度数.7、已知:如左下图,在正方形ABCD中,AE⊥BF,垂足为P,AE与CD交于点E,•BF与AD交于点F,求证:AE=BF.8、如图,正方形ABCD,AB=a,M为AB的中点,ED=3AE,(1)求ME的长;(2)△EMC是直角三角形吗?为什么?9、如左下图,在正方形ABCD中,E、F、G、H分别在它的四条边上,且AE=BF=CG=DH.四边形EFGH是什么特殊的四边形,你是如何判断的?10、如右上图所示,E 是正方形ABCD 的对角线BD 上一点,EF ⊥BC ,EG ⊥CD ,垂足分别是F 、G .试说明AE =FG .11、以锐角△ABC 的边AC 、AB 为边向外作正方形ACDE 和正方形ABGF ,连结BE 、CF.(1)试探索BE 和CF 的关系?并说明理由。
(2)你能找到哪两个图形可以通过旋转而相互得到,并指出旋转中心和旋转角。
正方形性质及判定练习题正方形是一种特殊的四边形,具有一些独特的性质。
在本文档中,我们将介绍关于正方形的性质以及如何判定一个形状是否为正方形的练题。
1. 正方形的定义- 正方形是一个四边形,具有四条相等的边和四个相等的角。
- 每个角都是直角,即90度。
2. 正方形的性质- 边长:正方形的四条边长度相等。
- 角度:正方形的每个角都是直角,即90度。
- 对角线:正方形的对角线相等且垂直相交于中点。
3. 正方形的判定练题1. 练题1:给出一个形状的四条边长A、B、C、D,如何确定它是否为正方形?- 答案:如果A = B = C = D,并且角ABC和角BCD均为直角(90度),则该形状为正方形。
2. 练题2:给出一个形状的四个顶点坐标(Ax, Ay),(Bx, By),(Cx, Cy),(Dx, Dy),如何确定它是否为正方形?- 答案:计算四条边的长度AB、BC、CD、DA,并检查是否满足A = B = C = D的条件。
同时,计算角ABC、BCD、CDA、DAB是否均为90度。
3. 练题3:给出一个形状的四个顶点坐标(Ax, Ay),(Bx, By),(Cx, Cy),(Dx, Dy),如何确定它是否为正方形?如果无法使用角度判定,请给出其他方法。
- 答案:计算四条边的长度AB、BC、CD、DA,并检查是否满足A = B = C = D的条件。
同时,计算AB和CD的斜率,如果斜率为相反数且BC和DA的斜率为相反数,那么该形状为正方形。
通过掌握正方形的定义、性质以及判定练题,我们能够更好地理解和识别正方形。
练题的完成也有助于加深对正方形性质的掌握。
希望这份文档对您有所帮助!。
2021-2022学年北师大版九年级数学上册《1.3正方形的性质与判定》同步能力提升训练(附答案)1.如图,E为正方形ABCD的对角线上一点,四边形EFCG为矩形,若正方形ABCD的边长为4,则EG+GC的长为()A.4B.8C.16D.322.如图是一个正方形和直角三角形的组合图形,直角三角形的斜边和一条直角边的长分别为10cm,8cm,则该正方形的面积为()A.6cm2B.36cm2C.18cm2D.2cm23.正方形具有而菱形不一定具有的性质是()A.四边相等B.对角线相等C.对角线互相垂直D.对角线互相平分4.如图,正方形ABCD中,点E是对角线BD上的一点,且BE=AB,连接CE,AE,则∠DAE的度数为()A.22.5°B.25°C.30°D.32.5°5.如图,将平行四边形ABCD的∠ABC变成直角,则平行四边形ABCD变成()A.平行四边形B.矩形C.菱形D.正方形6.正方形、菱形、矩形、平行四边形共同具有的性质是()A.对角线相等B.对角线相互平分C.对角线相互垂直D.对角线相互垂直平分7.如图,在正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,连接AC,CF,那么AF的长是()A.B.2C.3D.28.下列说法错误的是()A.对角线垂直且互相平分的四边形是菱形B.对角线相等的平行四边形是矩形C.对角线相等且垂直的四边形是正方形D.一组对边平行且相等的四边形是平行四边形9.如图,正方形ABCD的面积是2,E,F,P分别是AB,BC,AC上的动点,PE PF的最小值为()A.3 B.2C.2 D.110.如图,正方形ABCD的边长为4,点E在CD的边上,且DE=1,△AFE与△ADE关于AE 所在的直线对称,将△ADE按顺时针方向绕点A旋转90°得到△ABG,连接FG,则线段FG 的长为()A.4 B.42C.5 D.611.如图,已知四边形ABCD是平行四边形,下列结论中正确的是()A.当AC=BD时,它是正方形B.当AC⊥BD时,它是矩形C.当∠ABC=90°时,它是菱形D.当AB=BC时,它是菱形12.下列条件中能判断一个四边形是正方形的是()A.对角线互相垂直且相等B.一组对边平行,另一组对边相等且有一个内角为90度C.对角线平分每一组对角D.四边相等且有一个角是直角13.如图,将正方形OACD放在平面直角坐标系中,O是坐标原点,点D的坐标为(3,4),则点A的坐标为.14.菱形ABCD中,AD=4,∠DAB=60°,E、F、G、H分别是AD、AB、BC、CD上的点,且DH=FB,DE=BG,当四边形EFGH为正方形时,DH=.15.如图,正方形ABCD的边长为12,对角线AC、BD相交于点O,E是AC上一点,连接BE并延长交正方形ABCD的边于点F,若OE=3,则CF=.16.如图,四边形OBCD是正方形,O,D两点的坐标分别是(0,0),(0,5),点C在第一象限,则点C的坐标是.17.如图,正方形ABCD中,点P在边AD上,PE⊥AC于点E,PF⊥BD于点F,AC=m,PE+PF=n,则m,n满足的数量关系是.18.已知:如图,在矩形ABCD中,E、F分别是边CD、AD上的点,AE⊥BF,且AE=BF.(1)求证:矩形ABCD是正方形;(2)联结BE、EF,当线段DF是线段AF与AD的比例中项时,求证:∠DEF=∠ABE.19.如图,四边形ABCD是正方形,对角线AC、BD相交于点F,∠E=90°,ED=EC.求证:四边形DFCE是正方形.20.如图,在正方形ABCD中,E、F、G、H分别是各边上的点,且AE=BF=CG=DH.求证:(1)△AHE≌△BEF;(2)四边形EFGH是正方形.21.如图,在四边形ABDE中,AD与BE相交于点O,OA=OB=OE=OD,AB=BD.(1)求证:四边形ABDE是正方形;(2)若∠ACB=90°,连接OC,OC=6,AC=5,求BC的长.22.如图,在Rt△ABC中,∠ACB=90°,CD平分∠ACB,过点D分别作DE⊥BC,DF ⊥AC,垂足分别为E,F.(1)证明:四边形DECF为正方形;(2)若AC=6cm,BC=8cm,求四边形DECF的面积.参考答案1.解:∵四边形ABCD是正方形,∴∠BDC=45°,∴EG=DG,∵四边形EFCG为矩形,∴EF=GC,∴EF+EG=GC+DG=DC=4,故选:A.2.解:如图所示:∵△ABE是直角三角形,AE=8cm,BE=10cm,∴AB=(cm),∵四边形ABCD是正方形,∴正方形ABCD的面积=AB2=36(cm2),故选:B.3.解:菱形和矩形的性质合在一起得到了正方形.正方形具有而菱形不具有的性质即为矩形的特性,由矩形对角线相等满足条件.故选:B.4.解:∵四边形ABCD为正方形,∴∠ABD=45°,∠BAD=90°,∵BE=AB,∴∠BAE=∠BEA=×(180°﹣45°)=67.5°,∴∠DAE=∠BAD﹣∠BAE=90°﹣67.5°=22.5°.故选:A.5.解:∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是正方形,故选:B.6.解:平行四边形的对角线互相平分,而对角线相等、对角线相互垂直、对角线相互垂直平分不一定成立.故平行四边形、矩形、菱形、正方形都具有的性质是:对角线互相平分.故选:B.7.解:∵四边形ABCD和四边形CEFG为正方形,BC=1,CE=3,∴AB=BC=1,CE=EF=3,∠B=∠E=90°,∴AC==,CF==,∵AC、CF分别是正方形ABCD和正方形CEFG的对角线,∴∠ACG=∠GCF=45°,∴∠ACF=90°,在Rt△ACF中,AF===2.故选:D.8.解:A.对角线垂直且互相平分的四边形是菱形,正确,不合题意;B.对角线相等的平行四边形是矩形,正确,不合题意;C.对角线相等且垂直的平行四边形是正方形,原说法错误,符合题意;D.一组对边平行且相等的四边形是平行四边形,正确,不合题意.故选:C.MN AD交AB于点M,交CD于点N,如图所示:9.解:过点P作//四边形ABCD为正方形,∴⊥,MN AB⊥时取等号),∴(当PE ABPM PE⊥时取等号),PN PF(当PF BC∴==++,MN AD PM PN PE PF正方形ABCD的面积是2,2∴AD∴+2B.PE PF10.解:如图,连接BE,∵△AFE与△ADE关于AE所在的直线对称,∴AF=AD,∠EAD=∠EAF,∵△ADE按顺时针方向绕点A旋转90°得到△ABG,∴AG=AE,∠GAB=∠EAD,∴∠GAB=∠EAF,∴∠GAB+∠BAF=∠EAF+∠BAF,∴∠GAF=∠EAB,∴△GAF≅△EAB(SAS),∴FG=EB,∵四边形ABCD是正方形,∴BC=CD=AB=4,∵DE=1,∴CE=3,∴在Rt△BCE中,22+,345∴FG=5故选C11.解:∵四边形ABCD是平行四边形,∴当AC=BD时,它是矩形,故选项A不符合题意;当AC⊥BD时,它是菱形,故选项B不符合题意;当∠ABC=90°时,它是矩形,故选项C不符合题意;当AB=BC时,它是菱形,故选项D符合题意;故选:D.12.解:对角线互相垂直、平分且相等的四边形是正方形,但是对角线互相垂直且相等的四边形不一定是正方形,如等腰梯形中的对角线就有可能垂直且相等,故选项A不符合题意;一组对边平行,另一组对边相等且有一个内角为90度的四边形不一定是正方形,如直角梯形,故选项B不符合题意;对角线平分每一组对角的四边形不一定是正方形,如菱形,故选项C不符合题意;四边相等且有一个角是直角的四边形是正方形,故选项D符合题意;故选:D.13.解:如图,过点A作AB⊥x轴于B,过点D作DE⊥x轴于E,∵四边形OACD是正方形,∴OA=OD,∠AOD=90°,∴∠DOE+∠AOB=90°,又∵∠OAB+∠AOB=90°,∴∠OAB=∠DOE,在△AOD和△OCE中,,∴△AOB≌△ODE(AAS),∴AB=OE,OB=DE,∵点D的坐标为(3,4),点C在第二象限,∴点C的坐标为(﹣4,3).故答案为:(﹣4,3).14.解:过点E作AB的垂线分别交AB于N、交CD延长线于M,∵四边形EFGH为正方形,∴EH=EF,∠HEF=90°,∴∠MEH+∠NEF=90°,∵∠NEF+∠EFN=90°,∴∠MEH=∠EFN,在△EMH与△FNE中,,∴△EMH≌△FNE(AAS),∴EM=NF,EN=MH,设MD=x,在菱形ABCD中,AD=4,∠DAB=60°,∴∠ADM=30°,∴MD=DE,∴DE=2x,EM==x,∴AE=4﹣2x,AN==2﹣x,∴EN==(2﹣x),∴NF=x,HM=(2﹣x),DH=MH﹣MD=2﹣x﹣x,∴AF=2﹣x+x,∵AB=CD,BF=DH,∴AF=CH=2﹣x+x,∵DH+CH=4,∴2﹣x+x+2﹣x﹣x=4,解得:x=﹣1,∴DH=2﹣2.故答案为:2﹣2.15.解:∵正方形ABCD的边长为12,∴AC=12,∴OA=OC=6,∵OE=3,∴E点是OA或OC的中点,如图1,当E点是OA的中点时,过点E作NE⊥AB交AB于N,∴AE=3,∴AN=NE=3,∵NE∥AF,∴AF=4,∴DF=8,∴CF=4;如图2,当E为CO的中点时,过点E作EM⊥BC交BC于M,则EC=3,∴EM=MC=3,∴BM=9,∵EM∥FC,∴FC=4;综上所述:FC的长为4或4.16.解:∵四边形OBCD是正方形,∴OB=BC=CD=OD,∠CDO=∠CBO=90°,∵O,D两点的坐标分别是(0,0),(0,5),∴OD=5,∴OB=BC=CD=5,∴C的坐标为(5,5).故答案为:(5,5).17.解:∵四边形ABCD是正方形,∴∠CAD=45°,AC⊥BD,AC=2OA,∵PE⊥AC,PF⊥BD,∴△APE是等腰直角三角形,四边形PEOF是矩形,∴PE=AE,PF=OE,∴OA=AE+OE=PE+PF,∵AC=m,PE+PF=n,AC=2OA,∴m=2n.故答案为:m=2n.18.证明:(1)∵四边形ABCD是矩形,∴∠BAD=∠ADE=90°,∴∠ABF+∠AFB=90°,∵AE⊥BF,∴∠DAE+∠AFB=90°,∴∠ABF=∠DAE,在△ABF和△DAE中,,∴△ABF≌△DAE(AAS),∴AB=AD,∴矩形ABCD是正方形;(2)由(1)可知,△ABF≌△DAE,∴AF=DE,∴DF=CE,∵∠FDE=∠BCE=90°,∴△FDE∽△BCE,∴∠DEF=∠CEB,∵AB∥CD,∴∠ABE=∠CEB,∴∠ABE=∠DEF.19.解:∵四边形ABCD是正方形,∴∠FDC=∠DCF=45°,∵∠E=90°,ED=EC,∴∠EDC=∠ECD=45°,∴∠FCE=∠FDE=∠E=90°,∴四边形DFCE是矩形,∵DE=CE,∴四边形DFCE是正方形.20.证明:(1)∵四边形ABCD为正方形,∴AB=BC=CD=DA,∠A=∠B=90°,又∵AE=BF=DH=CG,∴AH=BE=CF=DG,∴△AHE≌△BEF(SAS);(2)在正方形ABCD中,AB=BC=CD=AD,∵AE=BF=CG=DH,∴AH=DG=CF=BE,∵∠A=∠B=∠C=∠D=90°,∴△AEH≌△DHG≌△CGF≌△BFE(SAS),∴EF=EH=HG=GF,∠EHA=∠HGD,∴四边形EFGH是菱形,∵∠EHA=∠HGD,∠HGD+∠GHD=90°,∴∠EHA+∠GHD=90°,∴∠EHG=90°,∴四边形EFGH是正方形.21.解:(1)∵OA=OB=OE=OD,∴四边形ABCD是平行四边形,AD=BE,∴四边形ABDE是矩形,又∵AB=BD,∴四边形ABDE是正方形.(2)如图所示,过O作OF⊥BC,过A作AM⊥OF,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△BOF中,,∴△AOM≌△BOF(AAS),∴AM=OF,OM=FB,又∵∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形,∴AM=CF,AC=MF=5,∴OF=AM=CF,∴△OCF为等腰直角三角形,∵OC=6,根据勾股定理得:CF2+OF2=OC2,解得:CF=OF=6,∴FB=OM=OF﹣FM=6﹣5=1,∴BC=CF+BF=6+1=7.22.(1)证明:∵DE⊥BC,DF⊥AC,∠ACB=90°,∴∠DFC=∠FCE=∠DEC=90°,∴四边形DECF是矩形,∴DF∥EC,∴∠FDC=∠ECD,∵CD平分∠ACB,∴∠FCD=∠ECD,∴∠FDC=∠FCD,∴DF=CF,∴四边形DECF是正方形;(2)解:∵四边形DECF是正方形,∴DF=FC=CE=DE,设DF=FC=CE=DE=x,∵DF∥BC,∴x=,即DF=FC=CE=DE=,∴四边形DECF的面积是×=.。
初二正方形性质及判定练习题
形状与性质
正方形是一种特殊的四边形,具有以下性质:
1. 四条边相等:正方形的四条边的长度相等。
2. 四个角相等:正方形的四个角的大小都是90度。
3. 对角线相等:正方形的对角线长度相等。
4. 正方形是菱形:正方形的对角线相互垂直,且长度相等,因此也是菱形的一种特殊情况。
判定练题
以下是一些判定练题,帮助你巩固对正方形性质的理解:
1. 判断下列图形是否为正方形:
A. 
B. 
C. 
D. 
答案:A是正方形,B是正方形,C不是正方形,D不是正方形。
2. 若两个正方形的边长分别为4cm和6cm,哪个正方形的面积更大?
答案:边长为6cm的正方形面积更大,因为面积与边长的平方成正比。
3. 若一个正方形的对角线长度为10cm,求其边长。
答案:根据正方形的性质,对角线长度等于边长乘以√2,所以边长等于10cm除以√2,约为7.07cm。
4. 若一个四边形的边长均为5cm,四个角的大小均为90度,是否一定是正方形?
答案:不一定,虽然满足了长宽相等和角度为90度的条件,但没有保证对角线相等,因此不一定是正方形。
5. 若一个四边形的对角线相等,四个角的大小均为90度,是否一定是正方形?
答案:是的,根据这些条件可以确定该四边形是正方形,因为这些是正方形的定义性质。
以上是关于初二正方形性质及判定练习题的内容。
希望能够帮助你更好地理解和应用正方形的性质。
正方形的性质及判定知识归纳1. 正方形的定义: 有一组邻边相等, 并且有一个角是直角的平行四边形叫做正方形.2. 正方形的性质正方形是特殊的平行四边形、矩形、菱形. 它具有前三者的所有性质: ① 边的性质: 对边平行, 四条边都相等. ② 角的性质: 四个角都是直角.③ 对角线性质:两条对角线互相垂直平分且相等, 每条对角线平分一组对角. ④ 对称性:正方形是中心对称图形, 也是轴对称图形. 平行四边形、矩形、菱形和正方形的关系: (如图) 3. 正方形的判定判定①: 有一组邻边相等的矩形是正方形. 判定②:有一个角是直角的菱形是正方形. 4. 重点:知晓正方形的性质和正方形的判定方法。
难点: 正方形知识的灵活应用例题讲解一、正方形的性质例1: 如图, 已知正方形 的面积为 , 点 在 上, 点 在 的延长线上, 且, 则 的长为FE D CBA变式1: 如图, 在正方形 中, 为 边的中点, , 分别为 , 边上的点, 若 , ,, 则 的长为 .变式2: 将 个边长都为 的正方形按如图所示摆放, 点 分别是正方形的中心, 则 个正方形重叠形成的重叠部分的面积和为例2: 如图, 是正方形 对角线 上的一点, 求证: .EDCBA变式1: 如图, 为正方形 对角线上一点, 于 , 于 .求证: .F EPDCB A例3: 如图, 已知 是正方形 内的一点, 且 为等边三角形, 那么PDCBA变式1: 如图, 已知 、 分别是正方形 的边 、 上的点, 、 分别与对角线 相交于 、 , 若 ,则 .变式2: 如图, 四边形 为正方形, 以 为边向正方形外作正方形 , 与 相交于点 ,则FEDCBA例4: 如图, 正方形 的边 在正方形 的边 上, 连接 , 求证: .GC FEDBA变式1: 如图, 在正方形 中, 为 边上的一点, 为 延长线上的一点, , , 求的度数.BDCAEF变式2: 已知: 如图, 在正方形 中, 是 上一点, 延长 到 , 使 , 连接 并延长交 于 .(1)求证: ;(2)将 绕点顺时针旋转 得到 , 判断四边形 是什么特殊四边形?并说明理由.例5: 若正方形 的边长为 , 为 边上一点, , 为线段 上一点, 射线 交正方形的一边于点 , 且 , 则 的长为 .ABCDEF EG变式1: 如图1, 在正方形 中, 、 、 、 分别为边 、 、 、 上的点, , 连接 、 , 交点为 .⑴ 如图2, 连接 , 试判断四边形 的形状, 并证明你的结论;⑵ 将正方形 沿线段 、 剪开, 再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形 的边长为 , , 则图3中阴影部分的面积为_________ .图3图1图2H DGC FEBAOH GFEDC BA变式2: 如图, 正方形 对角线相交于点 , 点 、 分别是 、 上的点, , 求证: (1);(2) . BO D CAQP例6: 如图, 正方形 中, 是 边上两点, 且 于 , 求证:G FEC DBA变式1: 如图, 点 分别在正方形 的边 上, 已知 的周长等于正方形 周长的一半,求 的度数NMDCBA变式2: 如图, 设 正方形 的对角线 , 在 延长线上取一点 , 使 , 与交于 , 求证: 正方形的边长.HEGCDFBA例7: 把正方形 绕着点 , 按顺时针方向旋转得到正方形 , 边 与 交于点 (如图).试问线段 与线段 相等吗? 请先观察猜想, 然后再证明你的猜想.GCHF EDB A变式1: 如图所示, 在直角梯形 中, , , 是 的垂直平分线, 交 于点 , 以腰为边作正方形 , 作 于点 , 求证 .lPM FE DC BA二、正方形的判定例1: 四边形 的四个内角的平分线两两相交又形成一个四边形 , 求证: ⑴四边形EFGH 对角互补;⑵若四边形 为平行四边形, 则四边形 为矩形.⑶四边形 为长方形, 则四边形 为正方形.HEFG DCBA变式1: 如图, 已知平行四边形 中, 对角线 、 交于点 , 是 延长线上的点, 且 是等边三角形. ⑴ 求证: 四边形 是菱形;⑵ 若 , 求证:四边形 是正方形.OEDCBA变式2: 已知: 如图, 在 中, , , 垂足为点 , 是 外角 的平分线, , 垂足为点 .⑴ 求证: 四边形 为矩形;⑵ 当 满足什么条件时, 四边形 是一个正方形?并给出证明.M ENCDBA例2: 如图, 是边长为 的正方形, 是内接于 的正方形, , 若 则 =H GFEDCBA例3: 如图, 若在平行四边形 各边上向平行四边形的外侧作正方形, 求证: 以四个正方形中心为顶点组成一个正方形.PRQ S NMFEDCBA1. 附加题:如图, 在线段 上, 和 都是正方形, 面积分别为 和 , 则 的面积为GFEDCB A如图, 在正方形 中, 、 分别是 、 的中点, 求证: .MFEDCBA如图, 正方形 中, 是对角线 的交点, 过点 作 , 分别交 于 , 若 , 则 OFE DC BA如图所示, 是正方形, 为 上的一点, 四边形 恰好是一个菱形, 则 ______.ABCDEF。
正方形一、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质,即:①正方形的四个角都是直角,四条边都相等;②正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;(2)对角线与边的夹角为︒45;(3)正方形是中心对称和轴对称图形,对称中心在两条对角线交点上;对称轴有四条;(4)正方形内任意一点P 到四个顶点的长也满足下列关系: 2222PD PB PC PA +=+二、正方形的判定(1)有一组邻边相等并且有一个角是直角 的平行四边形是正方形。
(2)有一组邻边相等的矩形是正方形。
(3)有一个角是直角的菱形是正方形。
(4)对角线垂直且相等的平行四边形是正方形。
特殊四边的中点四边形:ABCDP等腰梯形的中点四边形是菱形直角梯形的中点四边形是平行四边形梯形的中点四边形是平行四边形平行四边形的中点四边形是平行四边形矩形的中点四边形是菱形菱形的中点四边形是矩形正方形的中点四边形是正方形归纳:特殊四边形的中点四边形:◆平行四边形的中点四边形是平行四边形◆矩形的中点四边形是菱形◆菱形的中点四边形是矩形◆正方形的中点四边形是正方形◆等腰梯形的中点四边形是菱形◆直角梯形的中点四边形是平行四边形◆梯形的中点四边形是平行四边形一般四边形的中点四边形:决定中点四边形EFGH的形状的主要因素是原四边形ABCD的对角线的长度和位置关系例题分析例1 下列叙述错误的是()A.既是矩形又是菱形的四边形是正方形B.有一组邻边相等的矩形是正方形C.有一个角是直角的菱形是正方形D.对角线相等且互相垂直的四边形是正方形例2 如图1-3-1,正方形ABCD 的面积为256,点E 在AD 上,点F 在AB 的延长线上,EC ⊥FC ,∆CEF 的面积是200,则BF 的长是 .例 3 已知E 为边长是1的正方形ABCD 内一点,且AEB S ∆=0.1999,则CED S ∆= .例4 如图1-3-2,正方形ABCD 的边长AB=20,F 为AD 上的一点,连接CF ,作CE ⊥CF 交AB 的延长线于E ,作DG ⊥CF 交CF 于G ,若BE=15,则DG 的长为 .例5 如图1-3-3,正方形ABCD 中,E ,F 为BC ,CD 上的点,且∠EAF=45°,求证EF=BE+DF .1-3-11-3-21-3-3例6 如图1-3-4,正方形ABCD 的边长为4,E ,F 分别为AD ,BC 上的两个点,且BF=DE=1,从EF 的中点O 作EF 的垂直平分线,交CD 于G ,则OG = .例7 如图1-3-5,正方形ABCD 的边长为a ,E ,F ,G ,H 分别在正方形的四条边上,已知EF//GH ,EF=GH ,(1)若AE=AH=13a ,求四边形EFGH 的周长和面积;(2)求四边形EFGH 的周长的最小值.例8 如图1-3-6,已知E 是正方形ABCD 内一点,且∠ECD=∠EDC=15°,则AEB ∠= .90.DEC D DE A DE A AD AEB ∆︒''∆∆∠分析:利用旋转将以为中心顺时针旋转得到,再将以为轴对称即可得出度数1-3-41-3-61-3-51-3-81.在正方形ABCD 内有点P ,使∆PAB 、 ∆PBC 、∆PCD 、∆PDA 都是等腰三角形,那么具有这样性质的点是 个2.已知边长为4的正方形ABCD 中,F 是AD 的中点,E 点在AB 边上,且AE:EB=1:3,那么EFC S ∆= .3.一张边长为6的长方形纸片,按图1-3-7加以折叠,使得一角顶点落在对边上,则折痕长为 .4.若P 是边长为1的正方形ABCD 内一点,且0.31ABP S ∆=,则DCP S ∆= .5.边长为10的正方形,把边长增加同样的长度后,所得面积是625,则边长增加了 .6.如图1-3-8将正方形内接于等腰Rt ABC ∆,如果按照图甲的放法,可求得该正方形的面积是441,如果按照图乙的放法,那么只能放边长为 的正方形1-3-77.如图1-3-9,在面积为1的正方形ABCD 内取一点P ,使PBC ∆为等边三角形,求∆BPD 的面积.8.如图1-3-10,正方形OPQR 内接于∆ABC .已知∆AOR 、∆BOP 和∆CRQ 的面积分别是1、3和1.试求正方形OPQR 的面积.9.如图1-3-11,已知正方形AC 、BD 相交于点O ,BE 平分∠OBA ,CF ⊥BE 与F ,交OB 于G ,求证OE=OG.10.如图1-3-12,点P 在正方形ABCD 内,若PA:PB:PC=1:2:3,求∠APB 的度数.1-3-91-3-101-3-111-3-1211.如图1-3-13,过正方形ABCD 的顶点B 作直线l ,过,A C 作l 的垂线,垂足分别为,E F .若1AE =,3CF =,则AB 的长度为 .练习12(中,折叠与正方形的性质)如图1-3-14,在正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合。
正⽅形的性质与判定专题练习正⽅形专题训练(含答案)A.相等的⾓⼀定是对顶⾓.选择题(共11⼩题)1.如图,将正⽅形OABC放在平⾯直⾓坐标系中, B.四个⾓都相等的四边形⼀定是正⽅形C.平⾏四边形的对⾓线互相平分原点,A的坐标为(1,嶺),则点C的坐标为(D .矩形的对⾓线⼀定垂直5-2 .)如图,点3E在正⽅形/ ;⼫ABCD的对⾓O1⼥线AC上,且EC=2AE,直⾓三⾓形FEG的两直⾓边EF、EG分别交BC、DC于点M、N .若正⽅形ABCD 的边长为a,则重叠部分四边形EMCN的⾯积为(C.3 .如图,F是正⽅形ABCD的边CD上的⼀个动点,BF的垂直平分线交对⾓线AC于点E,连接BE,FE,则/ EBF的度数是()OB. 50A .45 °4.平⾏四边形、矩形、菱形、正⽅形都具有的是(A.对⾓线互相平分对⾓线互相垂直C.对⾓线相等5.正⽅形的⼀条对⾓线长为则这个正⽅形的⾯积是()A. 86.(2014?福州)如图,在正⽅形C .60 °D. 757. 顺次连接菱形各边的中点所形成的四边形是(等腰梯形B.矩形C.菱形D.正⽅形8. F列说法中,正确的是(9 .已知四边形ABCD是平⾏四边形,再从①AB=BC ,②/ ABC=90 ° ③AC=BD ,④AC丄BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正⽅形,现有下列四种选法,其中错误的是(A .选①②B .选②③10.如图,在正⽅形ABCD那么/ ANM等于(11.如图,菱形ABCD为边长的正⽅形ACEFB. 16C .选①③D .选②④中,CE=MN , / MCE=35 °中,C .55°/ B=60的⾯积为(C. 2060°,AB=5 ,则以AC25⼆.填空题(共5⼩题)12.如图,在正⽅形ABCD的外侧, 作等边三⾓形ADE ,对⾓线互相垂直且相等E13.如图,已知P是正⽅形ABCD对⾓线BD上⼀点,且BP=BC,贝U / ACP度数是度.14.如图,四边形ABCD为正⽅形,△ ADE为等边三⾓形.AC为正⽅形ABCD的对⾓线,则/ EAC=度.15.已知:如图,菱形ABCD 中,/ B=60 ° AB=4,则以AC为边长的正⽅形ACEF的周长为20.在平⾯内正⽅形ABCD与正⽅形CEFH如图放置,16?如图所⽰,正⽅形ABCD的周长为16cm,顺次连接正⽅形ABCD各边的中点,得到四边形EFGH,则四边形EFGH的周长等于cm,四边形EFGH的⾯积等于cm.£__⼝三.解答题(共6⼩题)17.如图,正⽅形ABCD 中, E、F分别为BC、CD上的点,且AE丄BF,垂⾜为点G.求证:AE=BF .18.如图,在正⽅形ABCD中,P是对⾓线AC上的⼀点, 连接BP、DP,延长BC⾄U E,使PB=PE .求证: 连DE,BH,两线交于M .求证:(1)BH=DE .(2) BH 丄DE .21.已知:如图,?ABCD中,0是CD的中点,连接AO并延长,交BC的延长线于点E . (1)求证:△ AOD ◎△ EOC ; (2)连接AC , DE,当/ B= / AEB= _ 。
正方形的性质及判定一、正方形的性质【例1】 ☆⑴已知正方形BDEF 的边长是正方形ABCD 的对角线,则:BDEF ABCD S S =正方形正方形⑵如图,已知正方形ABCD 的面积为256,点F 在CD 上,点E 在CB 的延长线上,且 20AE AF AF ⊥=,,则BE 的长为FE D CBA⑶如图,在正方形ABCD 中,E 为AB 边的中点,G ,F 分别为AD ,BC 边上的点,若1AG =,2BF =,90GEF ∠=︒,则GF 的长为 .【例2】 ☆将n 个边长都为1cm 的正方形按如图所示摆放,点12...n A A A ,,,分别是正方形的中心,则n 个正方形重叠形成的重叠部分的面积和为A 5A 4A 3A 2A 1【例3】 ☆如图,正方形ABCD 的边长为2cm ,以B 为圆心,BC 长为半径画弧交对角线BD 于点E ,连接CE ,P 是CE 上任意一点,PM BC ⊥于M ,PN BD ⊥于N ,则PM PN +的值为PNME DC BA【铺垫】如图,E 是正方形ABCD 对角线BD 上的一点,求证:AE CE =.EDCBA【例4】 如图,P 为正方形ABCD 对角线上一点,PE BC ⊥于E ,PF CD ⊥于F .求证:AP EF =.F EPDCB A【巩固】 如图所示,正方形ABCD 对角线AC 与BD 相交于O ,MN ∥AB ,且分别与AO BO 、交于M N 、.试探讨BM 与CN 之间的关系,写出你所得到的结论的证明过程.M N CDO B A【巩固】 ☆如图,已知P 是正方形ABCD 内的一点,且ABP ∆为等边三角形,那么DCP ∠=PDCBA【例5】 已知正方形ABCD ,在AD 、AC 上分别取E 、F 两点,使2ED AD FC AC =∶∶,求证:BEF ∆是等腰直角三角形.GEHDFCBA【例6】 如图,已知E 、F 分别是正方形ABCD 的边BC 、CD 上的点,AE 、AF 分别与对角线BD 相交于M 、N ,若50EAF ∠=︒,则CME CNF ∠+∠= .NMFEDCBA【例7】 ☆如图,四边形ABCD 为正方形,以AB 为边向正方形外作正方形ABE ,CE 与BD 相交于点F ,则AFD ∠=FEDCBA【例8】 如图,正方形ABCD 中,在AD 的延长线上取点E ,F ,使DE AD =,DF BD =.连结BF 分别交CD ,CE 于H ,G .求证:GHD ∆是等腰三角形.3142FE GHCDBA【例9】 如图所示,在正方形ABCD 中,AK 、AN 是A ∠内的两条射线,BK AK ⊥,BL AN ⊥,DM AK ⊥,DN AN ⊥,求证KL MN =,KL MN ⊥.K NMLDCB A【巩固】 如图,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,连接,BE DG ,求证:BE DG =.GC FEDBA【例10】 如图,在正方形ABCD 中,E 为CD 边上的一点,F 为BC 延长线上的一点,CE CF =,30FDC ∠=︒,求BEF ∠的度数.BDCAEF【巩固】 ☆已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE CG =,连接BG 并延长交DE 于F .(1)求证:BCG DCE ∆∆≌;(2)将DCE △绕点D 顺时针旋转90︒得到DAE '∆,判断四边形E BGD '是什么特殊四边形?并说明理由.【例11】 若正方形ABCD 的边长为4,E 为BC 边上一点,3BE =,M 为线段AE 上一点,射线BM 交正方形的一边于点F ,且BF AE =,则BM 的长为 .【例12】 ☆如图1,在正方形ABCD 中,E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 上的点,HA EB FC GD ===,连接EG 、FH ,交点为O . ⑴ 如图2,连接EF FG GH HE ,,,,试判断四边形EFGH 的形状,并证明你的结论;⑵ 将正方形ABCD 沿线段EG 、HF 剪开,再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形ABCD 的边长为3cm ,1cm HA EB FC GD ====,则图3中阴影部分的面积为_________2cm .图3图1图2H DGC FEBAOH GFEDC BA【巩固】 如图,正方形ABCD 对角线相交于点O ,点P 、Q 分别是BC 、CD 上的点,AQ DP ⊥,求证:(1)OP OQ =;(2)OP OQ ⊥.ABCDEF E 'GBO D CA QP【例13】 如图,正方形ABCD 中,E F ,是AB BC ,边上两点,且EF AE FC DG EF =+⊥,于G ,求证: DG DA =G FEC DBA【巩固】 如图,点M N ,分别在正方形ABCD 的边BC CD ,上,已知MCN ∆的周长等于正方形ABCD 周长的一半,求MAN ∠的度数NMDCBA【巩固】 如图,设EF ∥正方形ABCD 的对角线AC ,在DA 延长线上取一点G ,使AG AD =,EG 与DF交于H ,求证:AH =正方形的边长.HEGCDF B A【例14】 ☆把正方形ABCD 绕着点A ,按顺时针方向旋转得到正方形AEFG ,边FG 与BC 交于点H (如图).试问线段HG 与线段HB 相等吗?请先观察猜想,然后再证明你的猜想.GCHF EDB A【例15】 如图所示,在直角梯形ABCD 中,AD BC ∥,90ADC ∠=︒,l 是AD 的垂直平分线,交AD 于点M ,以腰AB 为边作正方形ABFE ,作EP l ⊥于点P ,求证22EP AD CD +=.lPM FE DC BA二、正方形的判定【例16】 四边形ABCD 的四个内角的平分线两两相交又形成一个四边形EFGH ,求证:⑴四边形EFGH 对角互补;⑵若四边形ABCD 为平行四边形,则四边形EFGH 为矩形. ⑶四边形ABCD 为长方形,则四边形EFGH 为正方形.HEFG DCBA【巩固】 如图,已知平行四边形ABCD 中,对角线AC 、BD 交于点O ,E 是BD 延长线上的点,且ACE∆是等边三角形.⑴ 求证:四边形ABCD 是菱形;⑵ 若2AED EAD ∠=∠,求证:四边形ABCD 是正方形.OEDCBA【巩固】 已知:如图,在ABC ∆中,AB AC =,AD BC ⊥,垂足为点D ,AN 是ABC ∆外角CAM ∠的平分线,CE AN ⊥,垂足为点E . ⑴ 求证:四边形ADCE 为矩形;⑵ 当ABC ∆满足什么条件时,四边形ADCE 是一个正方形?并给出证明.M ENCDBA【例17】 ☆如图,点M 是矩形ABCD 边AD 的中点,2AB AD =,点P 是BC 边上一动点,PE MC ⊥,PF BM ⊥,垂足分别为E 、F ,求点P 运动到什么位置时,四边形PEMF 为正方形.PMF EDCBA【例18】 ☆如图,ABCD 是边长为1的正方形,EFGH 是内接于ABCD 的正方形,AE a AF b ==,,若23EFGH S =,则b a -=H GFEDCBA【例19】 如图,A 在线段BG 上,ABCD 和DEFG 都是正方形,面积分别为27cm 和211cm ,则CDE∆ 的面积为GFEDCB A【巩固】 ☆如图,在正方形ABCD 中,点1P P ,为正方形内的两点,且11PB PD PB AB CBP PBP ==∠=∠,,,则1BPP ∠= P 1PDC BA1.如图,正方形ABCD 中,O 是对角线AC BD ,的交点,过点O 作OE OF ⊥,分别交AB CD ,于E F ,,若43AE CF ==,,则EF =课后练习OFE DCBA2.如图所示,ABCD 是正方形,E 为BF 上的一点,四边形AEFC 恰好是一个菱形,则EAB ∠=______. ABCDEF3.如果点E 、F 是正方形ABCD 的对角线BD 上两点,且BE DF =,你能判断四边形AECF 的形状吗?并阐明理由.E CDFBA4.如图,在正方形ABCD 中,E 、F 分别是AB 、BC 的中点,求证:AM AD =.MFEDCBA。