九年级数学思维导图 二次函数的思维导图-二次函数章节知识结构图
- 格式:doc
- 大小:209.00 KB
- 文档页数:3
初中数学《二次函数》课程教学设计以及思维导图一、教学设计1. 教学目标- 理解二次函数的定义及性质;- 掌握二次函数的图像特征和基本变换;- 能够求解二次函数的零点和最值;- 运用二次函数解决实际问题。
2. 教学内容- 二次函数的定义及性质;- 二次函数的图像特征和基本变换;- 二次函数的零点和最值;- 二次函数在实际问题中的应用。
3. 教学方法- 组织讲解:通过讲解二次函数的定义和性质,介绍二次函数的图像特征和基本变换;- 案例分析:通过具体案例分析,引导学生探索二次函数的零点和最值的求解方法;- 实际应用:引导学生运用二次函数解决实际问题,提高他们的数学建模能力。
4. 教学步骤第一步:导入- 通过引入一个与学生生活相关的问题,激发学生对二次函数的兴趣和思考,如:小明从家里出发骑自行车去学校,他的行程可以用二次函数表示吗?第二步:讲解- 介绍二次函数的定义和性质,包括二次函数的标准形式、顶点形式和描点法;- 解释二次函数的图像特征,包括开口方向、顶点坐标和对称轴;- 讲解二次函数的基本变换,包括平移、伸缩和翻转。
第三步:案例分析- 通过具体案例分析,引导学生探索二次函数的零点和最值的求解方法,包括利用图像、代数方法和函数性质等;- 给学生一些练习题,让他们独立思考和解决问题。
第四步:实际应用- 引导学生运用二次函数解决一些实际问题,如:抛物线的应用、物体的抛射运动等;- 鼓励学生分组合作,进行数学建模和实际问题求解。
第五步:总结与拓展- 对本节课所学内容进行总结,强调关键概念和解题方法;- 提供一些拓展性问题,让学生进一步思考和探索。
5. 教学评价- 通过学生课堂表现、小组讨论、个人作业等方式进行评价;- 评估学生对二次函数定义及性质的理解程度;- 评估学生对二次函数图像特征和基本变换的掌握程度;- 评估学生对二次函数零点和最值求解方法的应用能力;- 评估学生在实际问题中运用二次函数解决问题的数学建模能力。
初中数学《二次函数》课程教学设计以及思维导图1. 教学目标1.1 知识与技能- 理解二次函数的定义及其一般形式;- 学会用顶点式、标准式表示二次函数;- 掌握二次函数的图像特征,如开口方向、对称轴等;- 能够运用二次函数解决实际问题。
1.2 过程与方法- 通过实例认识二次函数的图像特点;- 学会利用配方法、公式法求解二次方程;- 学会利用二次函数的性质解决实际问题;- 培养学生的逻辑思维能力和解决问题的能力。
1.3 情感态度与价值观- 培养学生对数学的兴趣和自信心;- 培养学生积极思考、合作探讨的学习态度;- 培养学生运用数学知识解决实际问题的能力。
2. 教学内容2.1 二次函数的定义与一般形式- 二次函数的定义:形如`y=ax^2+bx+c(a≠0, a, b, c为常数)`的函数称为二次函数;- 二次函数的一般形式:`y=a(x-h)^2+k`,其中`(h, k)`为顶点坐标。
2.2 二次函数的图像特征- 开口方向:当`a>0`时,开口向上;当`a<0`时,开口向下;- 对称轴:直线`x=h`;- 顶点:坐标为`(h, k)`;- 增减性:当`a>0`时,`x<h`时函数值递减,`x>h`时函数值递增;当`a<0`时,`x<h`时函数值递增,`x>h`时函数值递减。
2.3 二次函数的性质- 顶点式与标准式的转化;- 开口方向、对称轴、顶点坐标之间的关系;- 图像与x轴的交点:解方程`ax^2+bx+c=0`。
2.4 实际问题举例- 利用二次函数解决生活中的最优化问题;- 利用二次函数解决几何问题。
3. 教学过程3.1 导入- 通过实例引入二次函数的概念,引导学生思考二次函数的特点;- 引导学生利用二次函数的一般形式和顶点式进行函数表达。
3.2 新课讲解- 讲解二次函数的图像特征,如开口方向、对称轴等;- 讲解二次函数的性质,如顶点式与标准式的转化等;- 结合实例讲解利用二次函数解决实际问题。
四、二次函数与的比较五、二次函数图象的画法六、二次函数的性质二次函数的结构特征(是常数,)的函数,,而可以为零.二次函数的定的二次式,的是常数,是二次项系数,是一次项系数,是二次函数基本形式:的性质的符号标轴时,随的增大而增大;随的增大而减小;时,有最小值.轴时,随的增大而减小;随的增大而增大;时,有最大值.2. 的性质的符号标轴时,随的增大而增大;随的增大而减小;时,有最小值.轴时,随的增大而减小;随的增大而增大;时,有最大值.3. 的性质的符号时,随的增大而增大;随的增大而减小;时,有最小值.时,随的增大而减小;随的增大而增大;时,有最大值.4.的性质的符号时,随的增大而增大;随的增大而减小;时,有最小值.时,随的增大而减小;随的增大而增大;时,有最大值.,确定其顶点坐标的形状“值正右移,负左移;值正上移,负沿轴平移个单位,变成(或)沿轴平移:向左(右)平移个单变成(或)四、二次函数与的比较从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中.五、二次函数图象的画法五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的六、二次函数的性质当时,抛物线开口向上,对称轴为,顶点坐标为当时,随的增大而减小;当时,随的增大而增大;当时,有最小值当时,抛物线开口向下,对称轴为,顶点坐标为.当时,随的增大而增大;当时,随的增大而减小;当时,有最大值一般式:(,,为常数,)顶点式:(,,为常数,)两根式:(,,是抛物线与轴两交点的横坐标)点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析中,时,抛物线开口向上,时,抛物线开口向下,在的前提下时,,即抛物线的对称轴在轴左侧时,,即抛物线的对称轴就是轴时,,即抛物线对称轴在轴的右侧在的前提下,结论刚好与上述相反,即时,,即抛物线的对称轴在轴右侧时,,即抛物线的对称轴就是轴时,,即抛物线对称轴在轴的左侧总结起来,在确定的前提下,决定了抛物线对称轴的位置.ab的符号的判定:对称轴在轴左边则,在轴的右侧则,概括的说就是当时,抛物线与当时,抛物线与当时,抛物线与轴的两个交点的横坐标,一般选用两根式关于轴对称后,得到的解析式是关于轴对称后,得到的解析式是关于轴对称后,得到的解析式是关于轴对称后,得到的解析式是关于原点对称后,得到的解析式是关于原点对称后,得到的解析式是关于顶点对称后,得到的解析式是关于顶点对称后,得到的解析式是关于点(m,n)系(二次函数与轴交点情况)一元二次方程是二次函数当函数值时的特殊图象与轴的交点个数时,图象与轴交于两点是一元二次方程的两根.这两点间的.时,图象与轴只有一个交点时,图象与轴没有交点时,图象落在轴的上方,无论为任何实数,都有时,图象落在轴的下方,无论为任何实数,都有抛物线的图象与轴一定相交,交点坐标为,⑴ 求二次函数的图象与轴的交点坐标,需转化为一元二次方程⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式⑶ 根据图象的位置判断二次函数中,,的符号,或由二次函数中,,的符号判断图象的位置,要数形结合⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与轴的一个交点坐标,可由对称性求出另一个交点坐标⑸ 与二次函数有关的还有二次三项式,二次三项式本身就是所含字母的二次函数;下面以时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系。