第5章 WCDMA系统组网技术
- 格式:ppt
- 大小:1.95 MB
- 文档页数:31
第5章全局参数配置5.1 概述5.1.1 UMTS移动区域1. UMTS(Universal Mobile Telecommunication System,通用移动通信系统)区域概念(1) PLMN(Public Lands Mobile Network,公众陆地移动通信网)区PLMN是由行政部门或公认的私人运营商建立并操作的,为公众提供大陆移动无线通信服务为特定目的的网络。
PLMN用于区分一个国家不同的移动通信运营商,如中国大陆就由中国移动的PLMN和中国联通的PLMN构成。
不同运营商的PLMN采用不同的PLMN标识进行区分。
(2) 位置区、路由区●LA (Location Area,位置区)是CN中CS域的概念,是移动终端在不进行VLR更新的情况下可以自由移动的区域。
位置区用于CS服务,例如CN在LA范围内发起CS域寻呼,同时UE可能被分配CS业务相关临时标识CS _TMSI,该标识在LA内唯一。
●RA (Routing Area,路由区)是CN中PS域的概念,是移动终端在不进行SGSN更新的情况下可以自由移动的区域。
路由区用于PS业务。
例如,CN在RA范围内发起PS域寻呼,同时UE可能被分配PS业务相关临时标识PS_TMSI,该标识在RA内唯一。
LA和RA的共同点在于:一个RA或一个LA都由连接在同一个CN节点的多个RNC的小区组成,都只能由一个CN服务节点控制。
不同的是,控制RA的CN服务节点是SGSN,控制LA的CN服务节点是MSC/VLR。
从位置关系上看,RA是LA的子集。
换句话说,RA不能跨越LA。
(3) 服务区SA(Service Area,服务区)由同属于某一相同LA的一个或多个小区组成,用于向CN指示UE所处的位置。
小区可能属于一个或两个服务区,对于后者,一个SA属于广播域,另外一个属于CS和PS域。
(4) UTRAN (UMTS Terrestrial Radio Access Network ,UMTS 陆地无线接入网)内部区域UTRAN 内部区域包括URA (UTRAN Registration Area , UTRAN 位置登记区)区和小区。
WCDMA系统关键技术WCDMA(Wideband Code Division Multiple Access)广域码分多址技术,是第三代移动通信技术中最主流的通信技术之一,具有更高的传输速率和更强的抗干扰能力。
本文将重点介绍WCDMA系统的关键技术。
WCDMA系统架构WCDMA系统的架构主要包括UE(User Equipment,用户终端)、NodeB(基站节点B)、RNC(Radio Network Controller,无线网络控制器)和核心网等四个部分。
其中UE连接到NodeB上,而NodeB则连接到RNC上。
RNC是整个WCDMA系统的核心,负责所有NodeB的管理和调度。
扩频技术扩频技术是WCDMA系统最基础的技术之一,它的主要作用是将原始的信号扩展到更宽的带宽上进行传输,以提高传输速率和信号质量。
扩频技术又分为CDMA (Code Division Multiple Access,码分多址)和TD-CDMA(Time Division-Code Division Multiple Access,时分码分多址)两种。
CDMA技术是将每一个用户的数据流进行编码后,再与伪随机序列相乘后再发送,接收端通过相同的伪随机序列进行解码,获得原始的数据流。
而TD-CDMA技术则是将每个时隙划分为多个子帧,每个子帧再采用CDMA技术进行扩频传输。
信道编码在WCDMA系统中,为了提高信号的抗干扰能力,采用了很多信道编码技术。
其中最常用的就是卷积码和Turbo码。
卷积码是一种线性编码,通过简单的算法可以实现编码和解码,但是编码效率比较低。
而Turbo码则是一种迭代式编码技术,采用两个卷积码组成系统,可以在保证可靠性的前提下,提高编码效率。
信号调制在WCDMA系统中,采用了复杂的信号调制方案以提高信号的传输效率和质量。
其中主要采用的是QPSK(Quadrature Phase Shift Keying,四相移键控)和16QAM(16 Phase Quadrature Amplitude Modulation,16相移四元调制)两种方案。
WCDMA网络架构与设计1. 概述本文档旨在介绍WCDMA网络的基本架构和设计原则。
WCDMA是第三代移动通信技术之一,主要用于实现高速数据传输和广域覆盖。
通过了解WCDMA网络的架构和设计,可以更好地理解其工作原理和优势。
2. 系统架构WCDMA网络的系统架构主要包括以下几个关键部分:2.1 基站子系统(BSS)基站子系统负责实现与手机之间的无线通信。
它包括基站控制器(BSC)和基站收发器(BTS)两个主要部分。
BTS负责接收手机信号并进行解调和解码,而BSC则负责控制和调度无线资源。
2.2 网络控制子系统(NCS)网络控制子系统是WCDMA网络的核心部分,主要负责处理无线接入和核心网之间的相关协议和信令。
它包括无线电网络控制器(RNC),负责协调各个基站的运行,并与核心网进行通信。
2.3 核心网(CN)核心网是WCDMA网络的主干部分,负责处理数据传输和网络管理。
它包括移动交换中心(MSC),负责处理语音通信;数据服务节点(SGSN),负责处理数据通信;和网关GPRS服务节点(GGSN),负责处理与互联网的连接。
3. 设计原则在进行WCDMA网络的设计时,需要遵循以下几个原则:3.1 覆盖范围和容量根据实际需求,合理确定基站的布局和数量,以确保网络覆盖范围和容量的满足。
在城市区域,密集布置基站以提供更好的信号覆盖;而在农村和偏远地区,适当增加基站的传输能力以提供更大的覆盖范围。
3.2 无线资源管理合理配置无线资源,包括频率分配、功率控制和天线设置等,以确保良好的信号质量和无线资源利用率。
在高密度用户区域,需合理划分信道资源以避免干扰;而在低密度用户区域,可放宽信道资源的分配以提高带宽利用率。
3.3 信号传播优化通过对信号传播特性的研究和优化,改善无线信号的传输效果。
包括选择合适的无线频段、合理选择天线高度和方向、优化建筑物和地形对信号的影响等。
3.4 安全与稳定性确保网络的安全和稳定性,保护用户隐私和数据安全。
移动通信第五章组网技术在当今数字化的时代,移动通信已经成为我们生活中不可或缺的一部分。
从简单的语音通话到高清视频流,从即时消息传递到复杂的物联网应用,移动通信技术的不断发展为我们带来了前所未有的便利和可能性。
而在移动通信的背后,组网技术起着至关重要的作用。
它决定了信号的传输效率、覆盖范围、容量以及服务质量等关键因素。
接下来,让我们深入探讨移动通信第五章中的组网技术。
移动通信组网技术的核心目标是实现高效、可靠且广泛覆盖的通信网络。
为了达到这一目标,需要综合考虑多个方面的因素,包括频谱资源的利用、基站的布局、信号的传输和接收方式等。
频谱资源是移动通信的宝贵资产。
不同的频段具有不同的特性,例如低频段信号传播距离远,但带宽相对较窄;高频段带宽大,但传播距离有限且信号穿透能力较弱。
因此,合理的频谱分配和管理是组网技术中的重要环节。
在实际应用中,运营商需要根据不同地区的需求和业务特点,选择合适的频段来部署网络。
基站是移动通信网络的关键节点。
它们负责接收和发送信号,实现与移动终端的通信连接。
基站的布局直接影响着网络的覆盖范围和容量。
在城市地区,由于用户密度高,需要密集部署基站以提供足够的容量;而在农村或偏远地区,则可以采用较大的覆盖半径来降低建设成本。
此外,基站还分为宏基站、微基站、皮基站等不同类型,它们各自具有不同的特点和适用场景。
宏基站覆盖范围广,适用于大面积的区域;微基站和皮基站则可以补充宏基站的覆盖盲点,提高局部区域的信号质量和容量。
在信号传输方面,移动通信采用了多种技术手段。
其中,多址接入技术是实现多个用户同时通信的关键。
常见的多址接入技术包括时分多址(TDMA)、频分多址(FDMA)和码分多址(CDMA)等。
时分多址将时间分成不同的时隙,每个用户在指定的时隙内进行通信;频分多址则将频谱分成不同的频段,每个用户使用特定的频段进行通信;码分多址则通过为每个用户分配不同的码序列来区分用户。
这些多址接入技术各有优缺点,在实际组网中通常会根据具体情况进行综合运用。
WCDMA通信技术详解WCDMA(Wideband Code Division Multiple Access)是一种无线通信技术,是目前世界上最主流的3G移动通信技术之一。
WCDMA技术主要是应用于通信业界中的移动通信以及宽带无线接入技术领域。
一、WCDMA技术原理WCDMA是一种以CDMA为基础的数字调制技术。
在WCDMA系统中,所有的信号都被转化成数字信号,而这些数字信号会以一个固定的频率被发送到接收端。
这就使得WCDMA技术可以利用CDMA技术实现多用户同时接入一个共享通道的通信方式。
WCDMA通信技术可以通过将用户数据信号通过扩频技术扩展到大带宽上,从而实现用更宽的频带来传输信息的目的。
同时,WCDMA还具有较高的误码率容忍度和高速移动性能,这使得其在实际应用中具有了广泛的用途。
二、WCDMA通信系统结构WCDMA系统结构主要由两个部分组成:基站和无线终端。
基站主要用于发送和接收信号,而无线终端则是用户使用的终端设备。
WCDMA系统采用了分布式结构,这意味着系统中有多个基站,同时每个基站中有多个单元。
WCDMA通信技术中最常用的基站是Node B,这种基站可以同时向多个用户发送和接收信号。
Node B会将信号传送到一个控制器中,控制器会进行一系列的处理,然后将信号传送到IMS核心网中。
三、WCDMA技术的优点1.语音通信特性:WCDMA在话音方面较好,其语音质量清晰度高、容错率大、传输通道抗干扰能力强。
2.高速数据传输特性:WCDMA带宽较宽,数据传输速度快,可同时进行音频传输、视频传输和数据传输。
3.网络管理特性:WCDMA网络建设成本很低,且系统架构具有可伸缩性,可以快速进行扩展。
同时WCDMA系统还可以支持分层网络管理,这使得网络运维更加高效。
4.移动性能特性:WCDMA系统具有高速移动性能,可支持用户在高速移动的过程中进行通信,同时在跨越不同网络时区时也能够实现快速的切换。
四、WCDMA技术的应用WCDMA通信技术的应用正日益广泛。
第5章 WCDMA 无线接口技术在WCDMA 系统中,移动用户终端UE 通过无线接口上的无线信道与系统固定网络相连,该无线接口称为Uu 接口,是WCDMA 系统中是最重要的接口之一。
无线接口技术是WCDMA 系统中的核心技术,各种3G 移动通信体制的核心技术与主要区别也主要存在于无线接口上。
通过对WCDMA 无线接口的学习,可以理解UE 终端与WCDMA 网络系统之间的工作原理与通信过程;学习这部分内容也是WCDMA 无线网络规划的前提。
5.1 WCDMA 无线接口概述5.1.1 无线接口的协议结构图5-1显示了UTRAN 无线接口与物理层有关的协议结构。
从协议结构上看,WCDMA 无线接口由层一、层二、层三组成,分别称作物理层(Physical Layer )、媒体接入控制层(Medium Access Control )、无线资源控制层(Radio Resource Control )。
从协议层次的角度看,WCDMA 无线接口上存在三种信道,物理信道、传输信道、逻辑信道。
传输信道 控制/测量 层 3逻辑信道层 2层 1 物理信道图5-1 无线接口的物理结构图中不同层/子层间的圆圈部分为业务接入点(SAPs)。
物理层提供了高层所需的数据传输业务。
对这些业务的存取是通过使用经由MAC 子层的传输信道来进行的。
物理层通过传输信道向MAC 层提供业务,而传输数据本身的属性决定了什么种类的传输信道和如何传输;MAC 层通过逻辑信道向RRC 层提供业务,而发送数据本身的属性决定了逻辑信道的种类。
在媒体接入控制(MAC)层中,逻辑信道被映射为传输信道。
MAC层负责根据逻辑信道的瞬间源速率为每个传输信道选择适当的传输格式(TF)。
传输格式的选择和每个连接的传输格式组合集(由接纳控制定义)紧密相关。
RRC层也通过业务接入点(SAP)向高层(非接入层)提供业务。
业务接入点在UE侧和UTRAN侧分别由高层协议和IU接口的RANAP协议使用。