氢谱解析(1)
- 格式:ppt
- 大小:2.28 MB
- 文档页数:69
谱图的解析NMRf法一般经历如下的步骤进行谱图的解析:★与IR法相同,首先尽可能了解清楚样品的一些自然情况,以便对样品有一些大概的认识;通过元素分析获得化合物的化学式,计算不饱和度Ω;★根据化学位移值确认可能的基团,一般先辨认孤立的,未偶合裂分的基团,即单峰,即不同基团的1H之间距离大于三个单键的基团及一些活泼氢基团,如甲基醞JrJJ 一二JO 耳甲基酮(一「一)、甲基叔胺(:L Jr)、甲基取代的苯等中的甲基质子及苯环上I的质子,活泼氢为一—H, 曲一,-SH等;然后再确认偶合的基团。
从有关图或表中的δ可以确认可能存在的基团,这时应注意考虑影响δ的各种因素如电负性原子或基团的诱导效应、共轭效应、磁的各向异性效应及形成氢键的影响等;★根据偶合裂分峰的重数、偶合常数,判断基团的连接关系。
先解析一级光谱,然后复杂光谱。
进行复杂光谱解析时,应先进行简化;★根据积分高度确定出各基团中质子数比,印证偶合裂分多重峰所判断的基团连接关系;★通过以上几个程序,一般可以初步推断出可能的一种或几种结构式。
然后,反过来,从可能的结构式按照一般规律预测可能产生的NMR谱,与实际谱图对照,看其是否符合,从而可以推断出某种最可能的结构式。
例某化合物的化学式为 '厂l,lR谱表明I l'l∙∙1有一很强的吸收峰,有三组峰,相对面积为2:1:3 ,若分别为2、1、3个■-,则总数为6,为 分子式12个―的一半,因此分子可能有对称性;IR 显示〜175OCm I 有一强峰,应有;--存在,且分子中有4个O,则可能有2个; 二处有一组三重峰,可能为—CH,且受裂分,而’: 处有一组四重峰,与’二:是典型的组分;而δ较大,可能为….…-一 的组分;” 「处有一单峰,相对面积为1,则是一个与碳基相连的孤立(不Q HIi r L -C-C-所以可能有的结合。
而此结合的 匚、O 的数目为分子式的一半,而C 原子数一半多半个原子。
核磁共振氢谱解析图谱的步骤核磁共振氢谱核磁共振技术发展较早,20世纪70年代以前,主要是核磁共振氢谱的研究和应用。
70年代以后,随着傅里叶变换波谱仪的诞生,13C—NMR的研究迅速开展。
由于1H—NMR的灵敏度高,而且积累的研究资料丰富,因此在结构解析方面1H—NMR的重要性仍强于13C—NMR。
解析图谱的步骤1.先观察图谱是否符合要求;①四甲基硅烷的信号是否正常;②杂音大不大;③基线是否平;④积分曲线中没有吸收信号的地方是否平整。
如果有问题,解析时要引起注意,最好重新测试图谱。
2.区分杂质峰、溶剂峰、旋转边峰(spinning side bands)、13C卫星峰(13C satellite peaks)(1)杂质峰:杂质含量相对样品比例很小,因此杂质峰的峰面积很小,且杂质峰与样品峰之间没有简单整数比的关系,容易区别。
(2)溶剂峰:氘代试剂不可能达到100%的同位素纯度(大部分试剂的氘代率为99-99.8%),因此谱图中往往呈现相应的溶剂峰,如CDCL3中的溶剂峰的δ值约为7.27 ppm处。
(3)旋转边峰:在测试样品时,样品管在1H-NMR仪中快速旋转,当仪器调节未达到良好工作状态时,会出现旋转边带,即以强谱线为中心,呈现出一对对称的弱峰,称为旋转边峰。
(4)13C卫星峰:13C具有磁距,可以与1H偶合产生裂分,称之为13C卫星峰,但由13C的天然丰度只为1.1%,只有氢的强峰才能观察到,一般不会对氢的谱图造成干扰。
3.根据积分曲线,观察各信号的相对高度,计算样品化合物分子式中的氢原子数目。
可利用可靠的甲基信号或孤立的次甲基信号为标准计算各信号峰的质子数目。
4.先解析图中CH3O、CH3N、、CH3C=O、CH3C=C、CH3-C等孤立的甲基质子信号,然后再解析偶合的甲基质子信号。
5.解析羧基、醛基、分子内氢键等低磁场的质子信号。
6.解析芳香核上的质子信号。
7.比较滴加重水前后测定的图谱,观察有无信号峰消失的现象,了解分子结构中所连活泼氢官能团。
核磁共振氢谱解析步骤
核磁共振氢谱解析步骤如下:
1.观察图谱是否符合要求:如四甲基硅烷的信号是否正常、杂音大
不大、基线是否平、积分曲线中没有吸收信号的地方是否平整。
如果存在问题,需要重新测试图谱。
2.根据积分曲线,观察各信号的相对高度,计算样品化合物分子式
中的氢原子数目:可以利用可靠的甲基信号或孤立的次甲基信号为标准计算各信号峰的质子数目。
3.先解析图中CH3O、CH3N、、CH3C=O、CH3C=C、CH3-C等孤
立的甲基质子信号,然后再解析偶合的甲基质子信号。
4.解析羧基、醛基、分子内氢键等低磁场的质子信号。
5.解析芳香核上的质子信号。
氢谱解析知识点总结一、氢谱解析的原理氢谱解析是利用核磁共振(NMR)技术对物质中氢原子进行分析的一种方法。
其原理基于氢原子核在外加磁场下发生的磁共振现象,通过测量氢原子核的共振频率和强度,可以得到有关样品组成和结构的信息。
在氢谱解析中,采用的主要是质子核磁共振(1H-NMR)技术,即利用氢原子核的磁共振进行分析。
1.1 原子核的磁矩氢原子核由一个质子组成,其核自旋为1/2,因此具有磁矩。
在外加磁场下,氢原子核会产生磁偶极矩,这导致核在磁场中存在能级分裂现象,从而引起共振现象。
1.2 核磁共振现象当氢原子核处于外部磁场中时,其核磁矩会与外部磁场发生相互作用,导致核的能量发生分裂,分裂的能级差与外部磁场的强度成正比。
当外部磁场的强度等于核的共振频率时,会发生共振吸收,此时氢原子核会发生能级跃迁,产生共振信号。
通过测量共振频率,可以得到氢原子核的化学环境和结构信息。
1.3 化学位移在氢谱解析中,样品中的不同氢原子会由于其化学环境不同而呈现出不同的共振频率。
这是因为,氢原子的共振频率与其周围的化学环境有关,如化学键的种类和数目、邻近的官能团等。
这种现象称为化学位移,通过化学位移可以对不同氢原子进行识别和定量分析。
1.4 耦合效应在一些情况下,样品中的氢原子之间会发生相互耦合,使得它们的共振频率发生变化。
这种现象称为耦合效应,通过耦合效应可以得到关于氢原子之间的相互作用和化学键的信息,进一步帮助解析样品的结构和成分。
以上是氢谱解析的基本原理,了解这些知识点有助于加深对氢谱解析技术的理解,为后续的仪器分析和谱图解析打下基础。
二、氢谱解析的仪器分析氢谱解析的仪器主要是核磁共振谱仪,利用核磁共振谱仪可以对样品进行快速准确的分析。
核磁共振谱仪通常由磁体、射频系统、梯度磁场和检测器等部分组成,其工作原理是利用外部静态磁场和射频辐射来引起样品中核的共振现象。
2.1 磁体核磁共振谱仪中的磁体是用来产生外部静态磁场的装置,常见的磁体有永磁体和超导磁体。