交流电机直接转矩控制基本原理和改进方案详解
- 格式:doc
- 大小:20.00 KB
- 文档页数:5
直接转矩控制原理直接转矩控制原理比较简单,就是根据计算得出的反馈值(转速、电流)(没有实际值,因为在电机内部安装传感器并不实用,一般反馈量都是计算出来的)与给定值相比较,根据偏差(两种:磁链和转矩)大小,选择合适的电压矢量(开关状态)。
电压矢量对定子磁链进行控制(幅值,相位),从而改变转矩。
传统直接转矩控制方法偏差分类:磁链:1,需要增大2,需要减小转矩:1,需要增大2,不变3,需要减小可见共有6中要求控制状态。
在4个控制电压矢量和2个零电压矢量中选择合适的,即为滞环比较器的输出。
仿真系统中这个功能由滞环比较单元与查表单元结合产生。
一、引言电动机调速是各行各业中电动机应用系统的必需环节。
直流电动机因其磁链与转矩电流各自独立,不存在耦合关系,能够获得很好的调速范围和调速精度,静、动态特性均比较好而获得广泛应用。
交流(异步)电动机结构简单却因其磁链与电流强耦合,而且是多变量非线性系统,调速难度大,长期以来在调速系统的应用受到限制。
直到近三十年来,一系列新型的传动调速技术的出现才开始了交流传动的新篇章。
1.交流传动的发展简述首先是变压变频调速系统(VVVF),后来出现了矢量控制(FOC)和直接转矩控制(DTC)调速系统。
由于VVVF系统只是维持电动机内的磁链恒定,并没有解决磁链和电流强耦合的问题,其调速范围窄,调速性能也不佳。
矢量控制是以转子磁场定向,采用矢量变换的方法,通过两次旋转坐标变换,实现异步电动机的转速和磁链控制的完全解耦。
但实际上由于转子磁链很难准确观测,系统特性受电机参数的影响较大,且计算也比较复杂。
1985年,德国的M.Depenbrock和日本的I.Takahashi先后提出直接转矩控制理论。
直接转矩控制在定子坐标系下,避开旋转坐标变换,直接控制转子磁链,采用转矩和磁链的bang-bang控制,不受转子参数随转速变化而变化的影响,简化了控制结构,动态响应快,对参数鲁棒性好,因而得到广泛的深入研究和应用。
电机控制方案1. 引言电机控制是现代工业中非常重要的一部分。
电机控制方案的设计需要考虑到系统的要求,包括精确性、效率、安全性等。
本文将介绍电机控制的基本原理、常用的电机控制方案以及它们的优缺点。
2. 电机控制基本原理电机控制的基本原理是通过改变电机的电流、电压或频率来改变电机的转速和转矩。
电机控制系统主要包括电源、驱动器、控制器和电机本身。
3. 常用的电机控制方案3.1 直流电机控制方案直流电机是最常用的一种电机类型,其控制方案相对简单。
常用的直流电机控制方案包括: - 手动控制:通过手动控制电压、电流大小来改变电机的转速。
- 脉宽调制(PWM)控制:利用PWM信号调整电机的平均电压,从而改变电机的转速和转矩。
- PID控制:通过测量电机的转速和转矩,利用PID控制算法调整电机的输入电压,使其达到期望的转速和转矩。
3.2 交流电机控制方案交流电机包括感应电机和永磁同步电机。
常用的交流电机控制方案包括: - 变频调速控制:通过改变供电交流电源的频率来调整电机的转速和转矩。
- 矢量控制:通过测量电机的转速和转矩,利用矢量控制算法调整电机的输入电压和频率,使其达到期望的转速和转矩。
- 直接转矩控制(DTC):通过测量电机的转速和转矩,利用DTC算法直接控制电机的转矩,从而实现高精度的控制。
3.3 步进电机控制方案步进电机是一种数字式电机,其控制方案相对简单。
常用的步进电机控制方案包括: - 全步进控制:通过改变步进电机的输入脉冲信号,控制电机的转动角度和速度。
- 半步进控制:在全步进的基础上,通过使电机的两相驱动信号交错,使电机的转动角度和速度更精细。
4. 电机控制方案的优缺点不同的电机控制方案具有各自的优缺点。
直流电机控制方案简单、可靠,但转速范围相对较窄;交流电机控制方案可以实现较精确的转速和转矩控制,但控制系统复杂;步进电机控制方案应用广泛,但转速较低。
5. 结论本文介绍了电机控制的基本原理,以及常用的直流电机、交流电机和步进电机的控制方案和其优缺点。
直接转矩控制的原理嘿,朋友们!今天咱来唠唠直接转矩控制的原理。
你说这直接转矩控制啊,就好像是一位特别有个性的司机在开车。
他呀,不怎么在意那些复杂的路线规划啥的,就凭着自己的感觉和判断,直接去控制车子的速度和方向。
想象一下,电机就好比是那辆车,而直接转矩控制就是这位司机。
它不去管那些中间的弯弯绕绕,而是直接盯着电机的转矩,说:“嘿,转矩你得这么变!”然后就快速地做出反应,让电机按照它想要的方式运行。
它可不像有些方法那样,犹犹豫豫,思前想后。
它就是这么干脆利落,说干就干!比如说,它觉得转矩小了,立马就加大力度;觉得转矩大了,就赶紧调整。
就好像你开车的时候,觉得速度慢了就猛踩油门,速度快了就踩刹车一样。
这直接转矩控制啊,还有个厉害的地方,就是它反应特别快。
就跟武林高手似的,敌人一招过来,瞬间就能回击。
电机运行中出现啥变化,它能第一时间察觉到,然后迅速采取行动。
而且啊,它适应性还特别强。
不管是在平坦的大道上,还是在崎岖的小路上,它都能把车开得稳稳当当。
无论是啥样的工作环境,它都能很好地发挥作用,让电机乖乖听话。
你说这直接转矩控制是不是很神奇?它就这么直截了当地去控制,没有那么多啰嗦的步骤和计算,却能把电机管理得服服帖帖。
这可真是个了不起的技术啊!咱再想想,要是没有这直接转矩控制,那电机运行起来得多费劲啊!可能就像没头苍蝇一样,不知道该往哪儿走,转矩也不知道该怎么变。
但有了它,一切都变得井井有条,电机能高效地工作,为我们的生活带来便利。
所以啊,直接转矩控制可真是电机控制领域的一把好手,是让电机乖乖听话的妙招!咱可得好好感谢那些发明和研究它的人,让我们能享受到这么厉害的技术带来的好处呀!。
直接转矩控制(DTC)技术概述作者:同济大学电气工程系袁登科陶生桂王志鹏刘洪1 引言交流电机传动系统中的直接转矩控制技术是基于定子两相静止参考坐标系,一方面维持转矩在给定值附近,另一方面维持定子磁链沿着给定轨迹(预先设定的轨迹,如六边形或圆形等)运动,对交流电机的电磁转矩与定子磁链直接进行闭环控制。
最早提出的经典控制结构是采用bang-bang控制器对定子磁链与电磁转矩实施砰砰控制,分别将它们的脉动限制在预先设定的范围内。
bang-bang调节器是进行比较与量化的环节,当实际值超过调节范围的上、下限时,它就产生动作,输出的数字控制量就会发生变化。
然后由该控制量直接决定出电压型逆变器输出的电压空间向量。
这种经典的直接转矩控制技术具有:(1) 非常简单的控制结构;(2) 非常快速的动态性能;(3) 无需专门的pwm技术;(4) 把交流电机与逆变器结合在一起, 对电机的控制最为直接,且能最大限度发挥逆变器的能力;(5) 前面叙述的实际被控量必须发生脉动才能产生合适的数字控制量,所以它不可避免地存在着一种与其特有的pwm技术密切相关的定子磁链与电磁转矩的脉动。
2 传统的直接转矩控制(dtc)方案直接转矩控制技术于上世纪80年代中期提出, 当时的控制系统有两种典型的控制结构:德国学者的直接转矩自控制方案与日本学者的直接转矩与磁链控制方案。
两者都属于直接转矩控制的范围,但仍有着较大的不同。
下面对各种方案进行介绍与分析。
2.1 德国depenbrock教授的直接自控制(dsc)方案[1]直接自控制方案是针对大功率交流传动系统电压型逆变器驱动感应电机提出来的控制方案。
由于当时采用大功率gto半导体开关器件,考虑到器件本身的开通、关断比较慢,还有开关损耗和散热等实际问题,gto器件的开关频率不能太高。
当时的开关频率要小于1khz,通常只有500~600hz。
而即便到现在,大功率交流传动应用场合中开关频率也只能有几khz。
摘要:直接转矩控制系统简称DTC(Direct Torque Control)系统,是继矢量控制系统之后发展起来的另外一种高动态性能的交流电动机变压变频调速系统。
在它的转速环里面利用转矩反馈直接控制电机的电磁转矩,因此而得名为直接转矩控制。
在控制思想上与矢量控制不同的是直接转矩控制通过直接控制转矩和磁链来间接控制电流,不需要复杂的坐标变换,因此具有结构简单、转矩响应快以及对参数鲁棒性好等优点。
本文对直接转矩控制原理进行了简介,以及目前应用直接转矩控制的产品介绍。
关键词:直接转矩控制,异步电机目录1直接转矩控制的基本原理及特点与规律 (3)1.1直接转矩控制系统原理与特点 (3)1.2直接转矩系统的控制规律和反馈系统 (5)2 直接转矩控制的基本原理和仿真模型 (7)2.1直接转矩控制的基本原理 (7)2.2直接转矩控制的仿真模型总图 (8)3 三相异步电机的数学模型 (8)4 磁链信号和转矩信号产生 (10)4.1定子磁链的观测控制 (10)4.2 电磁转矩的有效控制 (12)总结 (13)参考文献 (14)1直接转矩控制的基本原理及特点与规律直接转矩控制系统简称DTC(Direct Torque Control)系统,是继矢量控制系统之后发展起来的另外一种高动态性能的交流电动机变压变频调速系统。
在它的转速环里面利用转矩反馈直接控制电机的电磁转矩,因此而得名为直接转矩控制。
1.1直接转矩控制系统原理与特点如图1-1为直接转矩控制的原理框图,和VC系统一样,它也是分别控制异步电动机的转速和磁链,转速调节器ASR的输出作为电磁转矩的给定信号*T,在*T后面设置转矩控制内环,它可以抑制磁链变化对于转矩的影响,从而使得转速和磁链系统实现解耦。
因此,从整体控制结构上来看,直接转矩控制(DTC)系统和矢量控制系统(VC)系统是一致的都获得了较高质量的动态性能以及静态性能。
图1-1直接转矩控制系统图的幅值从图中中可以看出,直接转矩控制系统,就是通过使定转子磁链s保持恒定,然后选择合理的零矢量的作用次序和作用时宽,以调节定子磁链矢量的运动速度,从而改变磁通角的大小,以实现对电机转矩的控制。
交流电机直接转矩控制基本原理和改进方案详解
1 前言
随着现代电力电子、微电子技术和控制理论的发展,交流调速性能日益完善,足以和直流调速媲美,广泛应用于工农业生产、交通、国防和日常生活。
高性能的交流调速系统中主要有矢量控制和直接转矩控制两种。
直接转矩控制是由德国的Depenbrock教授于1985年提出的。
近年来,结合智能控制理论与直接转矩控制理论,提出诸多基于模糊控制和人工工神经网络的直接转矩控制系统,进一步提高其控制性能。
目前它已成为各种交流调速方法中研究最多、应用前景最广的交流调速方法之一。
2 直接转矩控制基本原理
直接转矩控制原理是利用测得的电流和电压矢量辨识定子磁链和转矩,并与磁链和转矩给定值相比较,将其差值输入两个滞环比较器,然后根据滞环比较器的输出和磁链位置从开关表中选择合适的电压矢量,进而控制转矩。
其原理框图如图1所示。
交流电机的转矩表达式如下:
式中:δ为定、转子磁链夹角,np为极对数。
转子磁链和定子磁链之间存在一个滞后惯性环节,当定子磁链改变时,认为转子磁链不变。
因此,从式(1)知道,如果保持定子磁链的幅值恒定,通过选择电压矢量,使定子磁链走走停停,改变定子磁链的平均旋转速度,从而改变定、转子磁链夹角,就能够实现对转矩的控制。
从这里看,直接转矩控制的关键在于如何保持定子磁链恒定和改变磁链夹角。
直接转矩控制自提出以来,各国学者对其进行不断改进,完善性能。
这些方案虽然方法不同、原理各异,但都是期望选取适当电压矢量来保证磁链的圆形轨迹,从而减小脉动。
3 直接转矩控制改进方案
3.1 改进磁链辨识方法
直接测量定子磁链很麻烦而且成本很高,通常采用一些容易得到的变量(如U、I)来进行估。