1(第二章机器人运动学)
- 格式:ppt
- 大小:2.10 MB
- 文档页数:71
机器人运动学(培训教材)(总49页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第2章机器人位置运动学引言本章将研究机器人正逆运动学。
当已知所有的关节变量时,可用正运动学来确定机器人末端手的位姿。
如果要使机器人末端手放在特定的点上并且具有特定的姿态,可用逆运动学来计算出每一关节变量的值。
首先利用矩阵建立物体、位置、姿态以及运动的表示方法,然后研究直角坐标型、圆柱坐标型以及球坐标型等不同构型机器人的正逆运动学,最后利用Denavit-Hartenberg(D-H)表示法来推导机器人所有可能构型的正逆运动学方程。
实际上,机器手型的机器人没有末端执行器,多数情况下,机器人上附有一个抓持器。
根据实际应用,用户可为机器人附加不同的末端执行器。
显然,末端执行器的大小和长度决定了机器人的末端位置,即如果末端执行器的长短不同,那么机器人的末端位置也不同。
在这一章中,假设机器人的末端是一个平板面,如有必要可在其上附加末端执行器,以后便称该平板面为机器人的“手”或“端面”。
如有必要,还可以将末端执行器的长度加到机器人的末端来确定末端执行器的位姿。
机器人机构机器手型的机器人具有多个自由度(DOF),并有三维开环链式机构。
在具有单自由度的系统中,当变量设定为特定值时,机器人机构就完全确定了,所有其他变量也就随之而定。
如图所示的四杆机构,当曲柄转角设定为120°时,则连杆与摇杆的角度也就确定了。
然而在一个多自由度机构中,必须独立设定所有的输入变量才能知道其余的参数。
机器人就是这样的多自由度机构,必须知道每一关节变量才能知道机器人的手处在什么位置。
图 具有单自由度闭环的四杆机构如果机器人要在空间运动,那么机器人就需要具有三维的结构。
虽然也可能有二维多自由度的机器人,但它们并不常见。
机器人是开环机构,它与闭环机构不同(例如四杆机构),即使设定所有的关节变量,也不能确保机器人的手准确地处于给定的位置。
机器人运动学随着科技的不断发展,机器人已经逐渐成为了人们生活中不可或缺的一部分。
机器人的出现不仅改变了人们生活的方方面面,还为工业、医疗等领域带来了巨大的变革。
作为机器人领域的核心技术之一,机器人运动学是机器人技术中的重要组成部分。
本文将从机器人运动学的基本概念、运动学分析、运动规划等方面进行详细的阐述。
一、机器人运动学的基本概念机器人运动学是研究机器人运动的学科,主要研究机器人的运动规律、运动学模型、运动学分析和运动规划等问题。
机器人运动学的基本概念包括机器人的自由度、坐标系、位姿等。
1. 机器人的自由度机器人的自由度是指机器人能够自由运动的方向和数量。
机器人的自由度通常是由机器人的关节数量决定的。
例如,一个具有6个关节的机器人,其自由度就是6。
机器人的自由度越大,机器人的运动能力就越强。
2. 坐标系坐标系是机器人运动学中的重要概念,用于描述机器人的位置和姿态。
机器人通常使用笛卡尔坐标系或者极坐标系来描述机器人的位置和姿态。
在机器人运动学中,通常使用基座坐标系和工具坐标系来描述机器人的运动。
3. 位姿位姿是机器人运动学中的另一个重要概念,用于描述机器人的位置和姿态。
位姿通常由位置和方向两个部分组成。
在机器人运动学中,通常使用欧拉角、四元数或旋转矩阵来描述机器人的位姿。
二、机器人运动学分析机器人运动学分析是指对机器人的运动进行分析和计算,以确定机器人的运动规律和运动学模型。
机器人运动学分析通常涉及到逆运动学、正运动学和雅可比矩阵等内容。
1. 逆运动学逆运动学是机器人运动学分析中的重要内容,用于确定机器人关节的运动规律。
逆运动学通常包括解析解法和数值解法两种方法。
解析解法是指通过数学公式来计算机器人关节的运动规律,数值解法是指通过计算机模拟来计算机器人关节的运动规律。
2. 正运动学正运动学是机器人运动学分析中的另一个重要内容,用于确定机器人末端执行器的位置和姿态。
正运动学通常包括前向运动学和反向运动学两种方法。
机器人的运动学和动力学模型机器人的运动学和动力学是研究机器人运动和力学性质的重要内容。
运动学是研究机器人姿态、位移和速度之间关系的学科,动力学则是研究机器人运动过程中力的产生和作用的学科。
机器人的运动学和动力学模型可以帮助我们理解机器人的运动方式和受力情况,进而指导机器人的控制算法设计和路径规划。
一、机器人运动学模型机器人运动学模型是描述机器人运动方式和位置关系的数学表达。
机器人的运动状态可以用关节角度或末端执行器的位姿来表示。
机器人的运动学模型分为正运动学和逆运动学两种。
1. 正运动学模型正运动学模型是通过机器人关节角度或末端执行器的位姿来确定机器人的位置。
对于串联机器人,可以使用连续旋转和平移变换矩阵来描述机械臂的位置关系。
对于并联机器人,由于存在并联关节,正运动学模型比较复杂,通常需要使用迭代方法求解。
正运动学模型的求解可以通过以下几个步骤:(1) 坐标系建立:确定机器人的基坐标系和各个关节的局部坐标系。
(2) 运动方程描述:根据机器人的结构和连杆长度等参数,建立各个关节的运动方程。
(3) 正运动学求解:根据关节的角度输入,通过迭代计算,求解机器人的末端执行器的位姿。
正运动学模型的求解可以用于机器人路径规划和目标定位。
2. 逆运动学模型逆运动学模型是通过机器人末端执行器的位姿来确定机器人的关节角度。
逆运动学问题在机器人的路径规划和目标定位等任务中起着重要作用。
逆运动学求解的难点在于解的存在性和唯一性。
由于机器人的复杂结构,可能存在多个关节角度组合可以满足末端执行器的位姿要求。
解决逆运动学问题的方法有解析法和数值法两种。
解析法通常是通过代数或几何方法,直接求解关节角度,但是解析法只适用于简单的机器人结构和运动方式。
数值法是通过迭代计算的方式,根据当前位置不断改变关节角度,直到满足末端执行器的位姿要求。
数值法可以用于复杂的机器人结构和运动方式,但是求解时间较长。
二、机器人动力学模型机器人动力学模型是描述机器人运动时受到的力和力矩的模型。
机器人运动学知识要点梳理机器人运动学是研究机器人运动规律和姿态变化的学科。
它是机器人学的重要基础,掌握机器人运动学知识对于研究机器人的运动控制、路径规划等方面具有重要意义。
本文将梳理机器人运动学的要点,对其进行全面而简明的阐述。
一、机器人运动学概述机器人运动学是机器人学中的一个重要分支,主要研究机器人的运动规律和姿态变化。
它研究的对象是机器人的关节运动和末端执行器的运动,通过对机器人的结构和运动方式的分析,可以帮助我们了解机器人的运动特性,为机器人的运动控制与路径规划提供理论基础。
机器人运动学主要包括正运动学和逆运动学两个方面。
正运动学是指已知机器人关节角度,通过运动链的迭代求解,计算机器人末端执行器的位置和姿态。
逆运动学则是已知机器人末端执行器的位置和姿态,求解机器人关节角度。
二、机器人运动学基础知识1. 坐标系与位姿表示机器人运动学中经常使用的坐标系有世界坐标系(world coordinate system)、基坐标系(base coordinate system)和末端执行器坐标系(end-effector coordinate system)。
世界坐标系是一个固定的参考坐标系,基坐标系是机器人坐标系中的一个相对于世界坐标系的参考坐标系,而末端执行器坐标系则是机器人末端执行器的坐标系。
机器人在三维空间中的位姿表示可以使用欧拉角(Euler angle)或四元数(quaternion)等方式。
2. DH参数与齐次变换矩阵DH参数(Dennavit-Hartenberg parameters)是机器人运动学中常用的参数化方法,用于描述机器人关节之间的姿态和位移关系。
齐次变换矩阵(homogeneous transformation matrix)则是将机器人的坐标系从一个关节变换到下一个关节的变换矩阵。
3. 机器人正运动学机器人正运动学是已知机器人关节角度,求解机器人末端执行器位置和姿态的过程。
第二章机器人基础知识2.3工业机器人运动学(一)【内容提要】本课主要学习工业机器人技术的运动学基础知识,涉及机器人正逆运动学的概念、平面二连杆机器人的运动学、以及机器人一般运动学的数学基础(位姿描述、齐次变换及运算)。
知识要点:✓机器人正逆运动学概念✓平面二连杆机器人的正逆运动学✓机器人的位姿描述✓齐次变换及运算重点:✓掌握机器人正逆运动学概念✓掌握平面二连杆机器人的正逆运动学✓理解机器人的位姿描述和齐次变换✓掌握齐次变换及运算难点:✓机器人的位姿描述、齐次变换及运算关键字:✓机器人正逆运动学、平面二连杆机器人、位姿描述、齐次变换及运算【本课内容相关资料】2.3机器人运动学从机构学的角度看,机器人可以看成开式运动链结构,由一系列连杆通转动或移动关节串联而成。
机器人运动学研究的是机器人各关节运动的几何关系,具体而言是各连杆之间的位移关系、速度关系和加速度关系。
本节仅研究位移关系,重点是研究手部相对于机座的位姿与各连杆之间的相互关系。
“位姿”是“位置和姿态”的简称。
工业机器人手部相对于机座的位姿与工业机器人各连杆之间的相互关系直接相关。
为了便于数学上的分析,一般将连杆和关节按空间顺序进行编号。
同时,选定一个与机座固联的坐标系,称为固定坐标系,并为每一个连杆(包括手部)选定一个与之固联的坐标系,称为连杆坐标系。
一般把机座也视为一个连杆,即零号连杆。
这样,连杆之间的相互关系可以用连杆坐标系之间的相互关系来描述。
工业机器人手部相对机座的位姿就是固联在手部的坐标系相对固定坐标系的位姿。
这样,就可以将“手部相对于机座的位姿”这样一个物理问题转化为一个数学问题,即,得到了工业机器人的运动学数学模型,便于用计算机进行分析计算。
工业机器人运动学主要包括正向运动学和反向运动学两类问题。
正向运动学是在已知各个关节变量的前提下,解决如何建立工业机器人运动学方程,以及如何求解手部相对固定坐标系位姿的问题。
反向运动学则是在已知手部要到达目标位姿的前提下,解决如何求出关节变量的问题。