第三章 杆件的强度、刚度和稳定性计算
- 格式:ppt
- 大小:2.30 MB
- 文档页数:83
第三章 杆件受力变形及其应力分析§3-1 概 述一、构件正常工作的基本要求为了保证机器或工程结构的正常工作,构件必须具有足够的承受载荷的能力(简称承载能力)。
为此,构件必须满足下列基本要求。
1畅足够的强度例如,起重机的钢丝绳在起吊不超过额定重量时不应断裂;齿轮的轮齿正常工作时不应折断等。
可见,所谓足够的强度是指构件具有足够的抵抗破坏的能力。
它是构件首先应满足的要求。
图3-1 构件刚度不够产生的影响2畅足够的刚度在某些情况下,构件受载后虽未破裂,但由于变形过量,也会使机械不能正常工作。
图3-1所示的传动轴,由于变形过大,将使轴上齿轮啮合不良,轴颈和轴承产生局部磨损,从而引起振动和噪声,影响传动精度。
因此,所谓足够的刚度是指构件具有足够的抵抗弹性变形的能力。
应当指出,也有某些构件反而要求具有一定的弹性变形能力,如弹簧、仪表中的弹性元件等。
3畅足够的稳定性例如千斤顶中的螺杆等类似的细长直杆,工作时当压力较小时,螺杆保持直线的平衡形式;当压力增大到某一数值时,螺杆就会突然变弯。
这种突然改变原有平衡形式的现象称为失稳。
因此,所谓足够的稳定性是指构件具有足够的保持原有平衡形式的能力。
上述的基本要求均与构件的材料、结构、截面形状和尺寸等有关。
所以,设计时在保证构件正常工作的前提下,还应合理地选择构件的材料和热处理方法,并尽量减小构件的尺寸,以做到材尽其用,减轻重量和降低成本。
二、变形固体及其基本假设自然界中的一切物体在外力作用下或多或少地总要产生变形。
在本书第二章中,由于物体产生的变形对所研究的问题影响不大,所以在该章中把所有物体均视为刚体。
而在图3-1中,如果轴上任一横截面的形心,其径向位移只要达到0畅0005l (l 为轴的支承间的距离),尽管此时构件变形很小,但该轴已失去了正常工作的条件。
因为这一微小变形是影响构件能否正常工作的主要因素。
因此,在本章中所研究的一切物体都是变形固体。
在对构件进行强度、刚度和稳定性的计算时,为了便于分析和简化计算,常略去变形固体的·75·一些影响不大的次要性质。
杆件的强度计算公式 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT杆件的强度、刚度和稳定性计算1.构件的承载能力,指的是什么答:构件满足强度、刚度和稳定性要求的能力称为构件的承载能力。
(1)足够的强度。
即要求构件应具有足够的抵抗破坏的能力,在荷载作用下不致于发生破坏。
(2)足够的刚度。
即要求构件应具有足够的抵抗变形的能力,在荷载作用下不致于发生过大的变形而影响使用。
(3)足够的稳定性。
即要求构件应具有保持原有平衡状态的能力,在荷载作用下不致于突然丧失稳定。
2.什么是应力、正应力、切应力应力的单位如何表示答:内力在一点处的集度称为应力。
垂直于截面的应力分量称为正应力或法向应力,用σ表示;相切于截面的应力分量称切应力或切向应力,用τ表示。
应力的单位为Pa。
1Pa=1N/m2工程实际中应力数值较大,常用MPa或GPa作单位1MPa=106Pa1GPa=109Pa3.应力和内力的关系是什么答:内力在一点处的集度称为应力。
4.应变和变形有什么不同答:单位长度上的变形称为应变。
单位纵向长度上的变形称纵向线应变,简称线应变,以ε表示。
单位横向长度上的变形称横向线应变,以ε/表示横向应变。
5.什么是线应变什么是横向应变什么是泊松比答:(1)线应变单位长度上的变形称纵向线应变,简称线应变,以ε表示。
对于轴力为常量的等截面直杆,其纵向变形在杆内分布均匀,故线应变为l l∆=ε(4-2)拉伸时ε为正,压缩时ε为负。
线应变是无量纲(无单位)的量。
(2)横向应变拉(压)杆产生纵向变形时,横向也产生变形。
设杆件变形前的横向尺寸为a ,变形后为a 1,则横向变形为横向应变ε/为 a a∆=/ε(4-3)杆件伸长时,横向减小,ε/为负值;杆件压缩时,横向增大,ε/为正值。
因此,拉(压)杆的线应变ε与横向应变ε/的符号总是相反的。
(3)横向变形系数或泊松比试验证明,当杆件应力不超过某一限度时,横向应变ε/与线应变ε的绝对值之比为一常数。
钢结构设计原理刘智敏第三章课后题答案第3章钢结构的连接12. 如图3-57所⽰的对接焊缝,钢材为Q235,焊条为E43型,采⽤焊条电弧焊,焊缝质量为三级,施焊时加引弧板和引出板。
已知,试求此连接能承受的最⼤荷载。
解:因有引弧板和引出板,故焊缝计算长度l w=500mm,则焊缝正应⼒应满⾜:其中,故有,故此连接能承受的最⼤荷载为。
13. 图3-58所⽰为⾓钢2∟140×10构件的节点⾓焊鏠连接,构件重⼼⾄⾓钢肢背距离,钢材为Q235BF,采⽤⼿⼯焊,焊条为E43型,,构件承受静⼒荷载产⽣的轴⼼拉⼒设计值为N=1100kN,若采⽤三⾯围焊,试设计此焊缝连接。
解:正⾯⾓焊缝且故可取,此时焊缝的计算长度正⾯焊缝的作⽤:则由平衡条件得:所以它们的焊缝长度为,取370mm,,取95mm。
17. 如图3-61所⽰的焊接⼯字形梁在腹板上设⼀道拼接的对接焊缝,拼接处作⽤有弯矩,剪⼒,钢材为Q235B钢,焊条⽤E43型,半⾃动焊,三级检验标准,试验算该焊缝的强度。
解:(1)确定焊缝计算截⾯的⼏何特征x轴惯性矩:中性轴以上截⾯静矩:单个翼缘截⾯静矩:(2)验算焊缝强度焊缝最⼤拉应⼒(翼缘腹板交接处):查表知,,所以焊缝强度不满⾜要求。
19. 按⾼强度螺栓摩擦型连接和承压型连接设计习题18中的钢板的拼接,采⽤8.8级M20(=21.5mm)的⾼强度螺栓,接触⾯采⽤喷吵处理。
(1)确定连接盖板的截⾯尺⼨。
(2)计算需要的螺栓数⽬并确定如何布置。
(3)验算被连接钢板的强度。
解:(1)摩擦型设计查表得每个8.8级的M20⾼强度螺栓的预拉⼒,对于Q235钢材接触⾯做喷砂处理时。
单个螺栓的承载⼒设计值:所需螺栓数:(2)承压型设计查表知,。
单个螺栓的承载⼒设计值:所需螺栓数:螺栓排列图如下所⽰验算被连接钢板的强度a.承压型设计查表可知,当满⾜要求。
b.摩擦型设计净截⾯强度验算:满⾜要求;⽑截⾯强度验算:满⾜要求。
20. 如图3-62所⽰的连接节点,斜杆承受轴⼼拉⼒设计值,端板与柱翼缘采⽤10个8.8级摩擦型⾼强度螺栓连接,抗滑移系数,求最⼩螺栓直径。
2020年硕士研究生招生专业考试大纲学院代码:021学院名称:建筑工程学院专业代码及专业名称:087100 管理科学与工程初试科目代码及名称:831材料力学考试大纲:一、考试目标及要求通过笔试,全面衡量和考核考生掌握杆件的强度、刚度和稳定性计算的基本理论的程度;着重观察其基本概念和分析方法熟练程度;也注意辨析其计算能力和掌握的实验分析能力的情况。
本大纲在专家相应考试命题和考生复习应考中提供一个关于内容、重点等等方面的参考。
二、考试形式与考卷结构考试形式:闭卷,笔试,卷面总分150分,考试时间180分钟三、考试范围第一章基本概念材料力学的任务,可变形固体的性质及其基本假设,杆件的几何特征,杆件变形的基本形式。
第二章轴向拉伸和压缩内力,截面法,轴力及轴力图,应力,拉(压)杆的变形,拉(压)杆的应变能,材料在拉伸和压缩时的力学性能,强度条件及安全因数、许用应力,应力集中的概念。
第三章扭转薄壁圆筒的扭转,传动轴的外力偶矩,扭矩及扭矩图,等直圆杆扭转时的应力及强度条件,等直圆杆扭转时的变形及刚度条件,等直圆杆扭转时的应变能。
第四章弯曲应力对称弯曲的概念,梁的剪力和弯矩、剪力图和弯矩图,平面刚架和曲杆的内力图,梁横截面上的正应力及正应力强度条件,梁横截面上的切应力及切应力强度条件,梁的合理设计。
第五章梁弯曲时的位移挠度及转角,梁的挠曲线近似微分方程及其积分,按叠加原理计算梁的挠度和转角,梁的刚度校核,提高梁的刚度的措施,梁内的弯曲应变能。
第六章简单的超静定问题超静定问题及其解法,拉压超静定问题,扭转超静定问题,简单超静定梁。
第七章应力状态和强度理论平面应力状态的应力分析,主应力,空间应力状态的概念,应力与应变间的关系,强度理论及其相当应力,各种强度理论的应用。
第八章组合变形及连接部分的计算两相互垂直平面内的弯曲,拉伸(压缩)与弯曲,扭转与弯曲,连接件的实用计算法,铆钉连接计算。
第九章压杆稳定压杆稳定性的概念,细长中心受压直杆临界力的欧拉公式,不同杆端约束下细长压杆临界力的欧拉公式及压杆的长度因数,欧拉公式的应用范围,临界应力总图,压杆的稳定计算,压杆的合理截面。
材料力学一、课程的性质与设置目的和要求材料力学是由基础理论课向设计课程过渡的技术基础课。
该课程对后续专业课及工程应用都有深远的影响。
通过对材料力学课程的学习,要求学生对杆件的强度、刚度和稳定性问题具有明确的基本概念、必要的基础理论知识、比较熟练的计算能力、一定的分析能力和实验能力。
二、课程内容与考核目标本课程主要讲述杆件的强度、刚度和稳定性理论及其应用,包括四种基本变形与组合变形的应力和变形,强度和刚度计算,能量方法与超静定问题,压杆稳定,动载荷与交变应力。
第一章拉伸与压缩1.学习目的与要求:本章介绍杆件在拉伸或压缩时的应力和变形计算。
通过学习,要求能熟练绘制杆件的轴力图;能熟练进行杆件强度计算和变形计算。
2.课程内容:轴向拉、压的概念;外力、内力、应力、应变、变形、位移等概念;拉(压)杆的内力、内力图;应力和强度计算、材料的拉、压力学性能、杆件的变形计算;简单的超静定问题。
3.考核知识点:轴力、轴力图;轴向拉压时截面上的应力;轴向拉压时的变形、虎克定律;材料的力学性能(低碳钢、铸铁的拉伸试验的应力应变图;低碳钢和铸铁的压缩试验及两类材料的比较);轴向拉压的强度条件及强度计算;4.考核要求:能熟练运用截面法计算杆件的轴力,正确绘制轴力图;掌握杆件拉、压时的强度计算;掌握杆件的变形计算;了解材料的基本力学性能以及试件拉、压破坏时的现象和原因;掌握求解简单超静定问题的方法。
第二章剪切1.学习目的与要求:本章介绍连接件的实用计算。
通过学习,要求会计算简单的连接件的强度问题。
2.课程内容:剪切构件的受力和变形特点,连接处可能的破坏形式,剪切和挤压的实用计算。
3.考核知识点:剪切和挤压的概念,剪切和挤压的应力计算。
4.考核要求:了解剪切和挤压的概念,会计算简单的连接件的强度问题。
第三章扭转1.学习目的与要求:本章介绍杆件扭转时的应力和变形,通过学习,要求能熟练绘制杆件的扭矩图;掌握应力和变形的计算公式,能熟练进行轴类零件的强度和刚度计算2.课程内容:纯剪切概念、剪切胡克定律、切应力互等定理;功率、转速与外力偶矩的关系;扭矩和扭矩图、应力和变形的计算、强度条件和刚度条件;弹簧的应力和变形计算;简单扭转超静定问题的计算;非圆截面杆扭转的应力和变形简介。
杆件的强度、刚度和稳定性计算1.构件的承载能力,指的是什么?答:构件满足强度、刚度和稳定性要求的能力称为构件的承载能力。
(1)足够的强度。
即要求构件应具有足够的抵抗破坏的能力,在荷载作用下不致于发生破坏。
??? (2)足够的刚度。
即要求构件应具有足够的抵抗变形的能力,在荷载作用下不致于发生过大的变形而影响使用。
??? (3)足够的稳定性。
即要求构件应具有保持原有平衡状态的能力,在荷载作用下不致于突然丧失稳定。
2.什么是应力、正应力、切应力?应力的单位如何表示?答:内力在一点处的集度称为应力。
垂直于截面的应力分量称为正应力或法向应力,用σ表示;相切于截面的应力分量称切应力或切向应力,用τ表示。
? ??应力的单位为Pa 。
??? ?????????????????1 Pa =1 N /m 2工程实际中应力数值较大,常用MPa 或GPa 作单位??? ?????????????????1 MPa =106Pa??? ?????????????1 GPa =109Pa3.应力和内力的关系是什么?答:内力在一点处的集度称为应力。
4.应变和变形有什么不同?答:单位长度上的变形称为应变。
单位纵向长度上的变形称纵向线应变,简称线应变,以ε表示。
单位横向长度上的变形称横向线应变,以ε/表示横向应变。
5.什么是线应变?什么是横向应变?什么是泊松比?答:(1)线应变单位长度上的变形称纵向线应变,简称线应变,以ε表示。
对于轴力为常量的等截面直杆,其纵向变形在杆内分布均匀,故线应变为 ? ????????????????l l ∆=ε????????????????????????????????????????????????(4-2) 拉伸时ε为正,压缩时ε为负。
线应变是无量纲(无单位)的量。
(2)横向应变拉(压)杆产生纵向变形时,横向也产生变形。
设杆件变形前的横向尺寸为a ,变形后为a 1,则横向变形为横向应变ε/为 ??????????????????????????a a ∆=/ε?????????????????????????????????????(4-3) 杆件伸长时,横向减小,ε/为负值;杆件压缩时,横向增大,ε/为正值。
第三章杆件的基本变形这一章主要研究材料力学的有关内容,主要研究各种构件在外力作用下的内力和变形。
在保证满足强度、刚度和稳定性的前提下,为构件选用适宜的材料、确定合理的截面形状和尺寸,以达到即安全又经济的目的。
材料力学的研究对象主要是“杆件”,所谓杆件是指纵向(长度方向)尺寸远比横向(垂直于长度方向)尺寸大的多的构件,例如柱、梁和传动轴等。
杆有两个主要的几何因素,即横截面和轴线。
横截面指的是垂直于轴线方向的截面,后者即为所有横截面形心的连线。
杆件在外力作用下产生的变形,因外力作用的方式不同而有下列四种基本形式:(1)轴向拉压变形;(2)剪切变形;(3)扭转变形,(4)弯曲变形。
在工程实际中,有些构件的变形虽然复杂,但总可以看作是由以上几种基本变形组合而成,称为组合变形。
第一节拉伸和压缩在工程结构和机器中,有许多构件是轴向拉伸和压缩作用。
本节主要讨论轴向拉伸的压缩时杆的内力和变形,并对材料在受拉、压时的力学性能进行研究,从而得出轴向拉、压杆的强度计算方法。
一、内力与截面法1、内力的概念杆件在外力作用下产生变形,其内部的一部分对另一部分的作用称为内力。
显然,若外力消失,则内力也消失,外力增大,内力也增大。
但是对一定的材料来说,内力的增加只能在材料所特有的限度之内,超过这个限度,物体就会破坏。
所以,内力与强度是密切相关的。
设一直杆,两端受轴向拉力F作用。
为了求出此杆任一截面m-m上的内力,,我们可以假想用一个平面,沿截面m_m 将杆截断,把它分成Ⅰ、Ⅱ两部分,取Ⅰ段作为研究对象。
在Ⅰ段的截面m_m上到处都作用着内力,其合力为F N。
F N是Ⅱ段对Ⅰ段的作用力,并与外力F相平衡。
由于外力F的作用线沿杆件轴线,显然,截面m_m上的内力的合力也必然沿杆件轴线。
对Ⅰ段建立平衡方程:F N-F=0 得F N=F将受外力作用的杆件假想地切开用以显示内力,并以平衡条件来确定其合力的方法,称为截面法。
所以求杆件内力的方法—截面法可概述如下:截取代平二、拉伸与压缩的受力、变形特点构件一般都为直杆,因此在计算中都可以简化为图3-2所示的受力简图。
第二章杆件强度、刚度和稳定的基本概念1.我们在计算或者验算结构构件时,一定要从三个方面来计算或者验算,即杆件的强度、刚度和稳定性。
2.杆件强度的基本概念:结构杆件在规定的荷载作用下,保证不因材料强度发生破坏的要求,称为强度要求。
即必须保证杆件内的工作应力不超过杆件的许用应力,满足公式σ=N/A≤[σ]3. 刚度的基本概念:结构杆件在规定的荷载作用下,虽有足够的强度,但其变形不能过大,超过了允许的范围,也会影响正常的使用,限制过大变形的要求即为刚度要求。
即必须保证杆件的工作变形不超过许用变形,满足公式 f≤[f]。
梁的挠度变形主要由弯矩引起,叫弯曲变形,通常我们都是计算梁的最大挠度,简支梁在均布荷载作用下梁的最大挠度作用在梁中,且fmax=5ql4/384EI。
由上述公式可以看出,影响弯曲变形(位移)的因素为:(1)材料性能:与材料的弹性模量E成反比。
(2)构件的截面大小和形状:与截面惯性矩I成反比。
(3)构件的跨度:与构件的跨度L的2、3或4次方成正比,该因素影响最大。
4. 杆件稳定的基本概念:在工程结构中,有些受压杆件比较细长,受力达到一定的数值时,杆件突然发生弯曲以致引起整个结构的破坏,这种现象称为失稳,也称丧失稳定性。
因此受压杆件要有稳定的要求。
两端铰接的压杆,临界力的计算公式:临界力的大小与下列因素有关:1)压杆的材料:同样大的截面,钢柱的 Pij 比混凝土大,混凝土柱的Pij 比木柱大,因为钢的弹性模量比混凝土的弹性模量大,混凝土的弹性模量比木材大。
2)压杆的截面形状与大小:截面大而导致惯性矩I大的不易失稳。
3)压杆的长度l0越大,临界力越小,越容易失稳。
4)压杆的支撑情况:当柱的一端固定,一端自由时:l0=2l当柱的一端固定,一端铰接时:l0=0.7l当柱的两端铰接时: l0=l当柱的两端固定时: l0=0.5l。
土木工程力学目录前绪第一篇:静力学基础………………………………………………第一章:力与力系的基本概念……………………………第二章:土木工程结构计算简图和受力图………………第三章:平面体系的几何组成分析………………………第四章:平面力系的平衡条件……………………………. 第二篇:静定结构的内力分析…………………………………第三篇:杆件强度、刚度与稳定性的计算……………………第四篇:超静定结构的内力分析………………………………看后记得评分谢谢了(ˇˍˇ) ~前绪一、土木工程力学研究的对象:抽象来说,土木工程力学研究的对象为质点,刚体,质点系和变形固体。
具体来说,土木工程力学研究的对象为土木工程结构和构件。
1、当物体在力的作用下产生变形时,如果这种变形在所研究的问题中可以不考虑或暂时不考虑,则可以把它看做不发生变形的刚体。
2、当物体的变形在研究的问题中不能忽略时,就要将物体看做变形固体,简称变形体。
3、任何物体都可以看做是由若干质点组成的,这种质点的集合称为质点系。
4、土木工程结构是指建筑物能承受荷载,维持平衡,并起骨架作用的整体或部分,简称结构。
5、构件是指构成结构的零部件,亦称杆件。
二、土木工程力学研究的任务:土木工程力学是研究结构的受力分析,几何组成规律,又研究构件的强度,刚度和稳定性条件的一门基础课。
三、土木工程力学的基础研究方法:1、受力分析法:分析力与力的内在联系,画出受力图。
2、平衡条件和剖析法:1)、平衡条件是指物体处于平衡状态时,作用在物体上的力系所应满足的条件。
2)、由物体的剖析原理可知,如果一个物体或物系处于平衡状态,那么它所剖分成的任一部分皆处于平衡状态。
(任取一部分(简单的一部分)为研究对象,画出受力图,利用平衡条件算出未知力,这是求解未知量的一种普遍方法,叫做截面法。
)3、变形连续假设分析法:土木工程力学研究的对象都是假设为均匀连续,各向同性的变形固体4、力与变形的物理关系分析法:变形固体受力作用后要发生变形,根据小变形假设可以证明,力与变形成正比(即力与变形为线性关心)。