构件的强度与刚度讲解
- 格式:ppt
- 大小:1.51 MB
- 文档页数:7
结构失效的三种模式:强度、刚度、稳定。
强度因为直观,最好理解。
强度问题通常表现为构件受力拉断/压溃了,定量描述就是某点应力大于了材料强度。
强度:材料抵抗永久(塑性)变形或断裂的能力;1.刚度问题表现为构件受力后变形大,定量描述就是变形大于变形允许值。
刚度与强度不同,构件没坏,只是变形大,实质上体现的更多是功能性要求。
刚度:材料抵抗弹性变形的能力刚度要求:在载荷作用下,构件即使有足够的强度,但若变形过大,仍不能正常工作。
2.稳定性要求一些受压力作用的细长杆,如千斤顶的螺杆、内燃机的挺杆等,应始终维持原有的直线平衡形态,保证不被压弯。
稳定性要求就是指构件应有足够的保持原有平衡形态的能力。
失稳并不是翻倒而是不能恢复原有稳定形状从建筑规范的解释就是高宽比,即高度和建筑横向跨度的比例,比如说砖墙同样的高度和长度,砖墙越厚,底部面积越大越不容易倒。
稳定性:结构维持其原有平衡状态的能力。
刚度是与变形有关,这个变形过程是渐进。
而稳定性是在强度和刚度都满足的情况下依然可能发生的现象,其变形过程是跳跃的。
稳定性:工程中有些构件具有足够的强度、刚度,却不一定能安全可靠地工作。
当F小于某一临界值F cr,撤去轴向力后,杆的轴线将恢复其原来的直线平衡形态(图b),则称原来的平衡状态的是稳定平衡。
当F增大到一定的临界值F cr,,撤去轴向力后,杆的轴线将保持弯曲的平衡形态,而不再恢复其原来的直线平衡形态(图c),则称原来的平衡状态的是不稳定平衡。
稳定的平衡状态和不稳定状态之间的分界点称为临界点,临界点对应的载荷称为临界荷载。
用Fp cr表示。
压杆从直线平衡状态转变为其他形式平衡状态的过程称为称为丧失稳定,简称失稳,也称屈曲,屈曲失效具有突发性,在设计时需要认真考虑。
建筑⼒学常见问题解答4杆件的强度、刚度和稳定性计算建筑⼒学常见问题解答4 杆件的强度、刚度和稳定性计算1.构件的承载能⼒,指的是什么?答:构件满⾜强度、刚度和稳定性要求的能⼒称为构件的承载能⼒。
(1)⾜够的强度。
即要求构件应具有⾜够的抵抗破坏的能⼒,在荷载作⽤下不致于发⽣破坏。
(2)⾜够的刚度。
即要求构件应具有⾜够的抵抗变形的能⼒,在荷载作⽤下不致于发⽣过⼤的变形⽽影响使⽤。
(3)⾜够的稳定性。
即要求构件应具有保持原有平衡状态的能⼒,在荷载作⽤下不致于突然丧失稳定。
2.什么是应⼒、正应⼒、切应⼒?应⼒的单位如何表⽰?答:内⼒在⼀点处的集度称为应⼒。
垂直于截⾯的应⼒分量称为正应⼒或法向应⼒,⽤σ表⽰;相切于截⾯的应⼒分量称切应⼒或切向应⼒,⽤τ表⽰。
应⼒的单位为Pa。
1 Pa=1 N/m2⼯程实际中应⼒数值较⼤,常⽤MPa或GPa作单位1 MPa=106Pa1 GPa=109Pa3.应⼒和内⼒的关系是什么?答:内⼒在⼀点处的集度称为应⼒。
4.应变和变形有什么不同?答:单位长度上的变形称为应变。
单位纵向长度上的变形称纵向线应变,简称线应变,以ε表⽰。
单位横向长度上的变形称横向线应变,以ε/表⽰横向应变。
5.什么是线应变?什么是横向应变?什么是泊松⽐?答:(1)线应变单位长度上的变形称纵向线应变,简称线应变,以ε表⽰。
对于轴⼒为常量的等截⾯直杆,其纵向变形在杆内分布均匀,故线应变为l l?=ε(4-2)拉伸时ε为正,压缩时ε为负。
线应变是⽆量纲(⽆单位)的量。
(2)横向应变拉(压)杆产⽣纵向变形时,横向也产⽣变形。
设杆件变形前的横向尺⼨为a,变形后为a1,则横向变形为aaa-=1横向应变ε/为aa=/ε(4-3)杆件伸长时,横向减⼩,ε/为负值;杆件压缩时,横向增⼤,ε/为正值。
因此,拉(压)杆的线应变ε与横向应变ε/的符号总是相反的。
(3)横向变形系数或泊松⽐试验证明,当杆件应⼒不超过某⼀限度时,横向应变ε/与线应变ε的绝对值之⽐为⼀常数。
力学分析中的强度和刚度详细解释
很多人对力学中强度和刚度的概念总是混淆,今天就来谈一下自己的理解。
书中说为了保证机械系统或者整个结构的正常工作,其中每个零部件或者构件都必须能够正常的工作。
工程构件安全设计的任务就是保证构件具有足够的强度、刚度及稳定性。
稳定性很好理解,受力作用下保持或者恢复原来平衡形式的能力。
例如承压的细杆突然弯曲,薄壁构件承重发生褶皱或者建筑物的立柱失稳导致坍塌,很好理解。
今天主要来讲一下对于刚度和强度的理解。
一、强度
定义:构件或者零部件在外力作用下,抵御破坏(断裂)或者显著变形的能力。
比如说张三把ipad当成了体重秤,站上去,ipad屏幕裂了,这就是强度不够。
比如武汉每年的夏天看海时许多大树枝被风吹断,这也是强度不够。
第1页共6页。
强度(strength)和刚度(stiffness)是材料力学性质的重要指标,用于描述材料的物理特性和行为。
虽然这两个术语经常用于描述材料的性能,但它们代表的是不同的概念和性质。
下面是对强度和刚度的概念和区别的相关参考内容。
1.强度的概念:强度是材料抵抗外部力和应力的能力,可以理解为材料的“坚固程度”。
在物理学中,强度通常通过该材料能够承受的最大应力来衡量。
强度可以分为以下几种类型:•抗拉强度(tensile strength):材料在拉伸过程中能够承受的最大拉应力。
•抗压强度(compressive strength):材料在受压过程中能够承受的最大压应力。
•抗扭强度(torsional strength):材料在受扭矩过程中能够承受的最大剪应力。
•抗剪强度(shear strength):材料在受剪切过程中能够承受的最大剪应力。
强度的单位通常是帕斯卡(Pascal)或其扩展单位。
2.刚度的概念:刚度是材料抵抗变形的能力,可以理解为材料的“硬度”。
刚度衡量了材料负载下的变形程度。
刚度取决于材料的弹性模量,即材料在受力时变形程度和应力之间的关系。
刚度通常表示为应变与应力之间的比率,即刚度=应力/应变。
刚度越高,材料在给定应力下的变形量越小。
刚度通常用于描述材料对力的响应速度。
高刚度材料(硬材料)通常具有快速的力学响应和较小的变形,而低刚度材料(软材料)通常具有较慢的力学响应和较大的变形。
3.强度和刚度的区别:强度和刚度代表了材料不同的力学性质,可以从以下几个方面进行比较:•概念:强度是描述材料抵抗外部力和应力的能力,而刚度是描述材料抵抗变形的能力。
•单位:强度通常使用帕斯卡或其扩展单位进行表示,而刚度表示为应变与应力之间的比率。
•影响因素:强度取决于材料的组成、晶体结构、材料处理方式等,而刚度取决于材料的弹性模量。
•应用:强度通常用于材料设计和工程应用中,以确保材料可以承受预期的外部载荷。
刚度通常用于设计精度要求高的系统,例如精密仪器和机械装置。
弹性(杨氏)模量、剪切模量、体积模量、强度、刚度“模量”可以理解为是一种标准量或指标。
材料的“模量”一般前面要加说明语,如弹性模量、压缩模量、剪切模量、截面模量等。
这些都是与变形有关的一种指标,单位为Pa也就是帕斯卡。
但是通常在工程的使用中,因各材料杨氏模量的量值都十分的大,所以常以百万帕斯卡(MPa)或十亿帕斯卡(GPa)作为其单位。
1、杨氏模量(Young's Modulus) ——E:杨氏模量就是弹性模量,这是材料力学里的一个概念。
对于线弹性材料有公式σ(正应力)=E·ε(正应变)成立,式中σ为正应力,ε为正应变,E为弹性模量,是与材料有关的常数,与材料本身的性质有关。
杨(ThomasYoung1773~1829)在材料力学方面,研究了剪形变,认为剪应力是一种弹性形变。
1807年,提出弹性模量的定义,为此后人称弹性模量为杨氏模量。
钢的杨氏模量大约为2×1011N/m2,铜的是1.1×1011 N/m2。
2、弹性模量(Elastic Modulus)——E:弹性模量E是指材料在弹性变形范围内(即在比例极限内),作用于材料上的纵向应力与纵向应变的比例常数,也常指材料所受应力(如拉伸、压缩、弯曲、扭曲、剪切等)与材料产生的相应应变之比。
弹性模量E在比例极限内,应力与材料相应的应变之比。
对于有些材料在弹性范围内应力-应变曲线不符合直线关系的,则可根据需要可以取切线弹性模量、割线弹性模量等人为定义的办法来代替它的弹性模量值。
根据不同的受力情况,分别有相应的拉伸弹性模量modulus of elasticity for tension (杨氏模量)、剪切弹性模量shear modulus of elasticity (刚性模量)、体积弹性模量、压缩弹性模量等。
2.1、剪切模量G(Shear Modulus):剪切模量是指剪切应力与剪切应变之比。
剪切模数G=剪切弹性模量G=切变弹性模量G 。
结构构件的强度和刚度名词解释概述及解释说明1. 引言1.1 概述在结构工程领域中,强度和刚度是两个关键概念。
强度指材料或构件抵抗外力的能力,它衡量了材料或构件的承载能力以及其抵抗变形和破坏的能力。
而刚度则描述了材料或构件对外部加载产生的应变或位移响应的能力,也可以理解为材料或构件的刚性程度。
1.2 文章结构本文将对结构构件的强度与刚度进行详细阐述,并探讨它们之间的关系。
同时,我们还将介绍测试这些属性的方法以及在结构设计过程中考虑强度和刚度要求时需要注意的事项。
最后,我们将总结文章主要观点和结论。
1.3 目的本文旨在帮助读者更好地理解结构工程中强度和刚度这两个重要概念,并提供有关测试方法和设计要求方面的指导。
了解和运用这些知识对于合理地设计、评估和优化各种类型的建筑、桥梁、机械设备以及其他工程结构具有重要意义。
以上是文章“1. 引言”部分内容,详细阐述了本文的概述、结构和目的。
2. 结构构件的强度和刚度名词解释2.1 强度的定义与解释强度是指材料或构件抵抗外部力量造成破坏或变形的能力。
在结构工程中,强度通常指材料或结构承受极限荷载时的稳定性能。
对于不同类型的结构材料和构件,其强度有不同的评估标准和计算方法。
2.2 刚度的定义与解释刚度是指材料或构件在受力后抵抗变形或挠曲的能力。
刚度可以衡量材料或结构对应力响应的程度,即单位应变产生的单位应力。
动态刚度还可以描述结构在振动过程中所表现出来的特性。
2.3 强度和刚度之间的关系虽然强度和刚度是两个不同的概念,但它们之间存在密切联系。
一方面,在设计结构时,需要根据预期承受荷载选择合适的材料和尺寸来满足要求强度。
另一方面,合适的刚度设计对于确保结构在荷载作用下不会过分变形具有重要作用。
3. 强度与刚度测试方法为了评估结构构件的强度和刚度,需要进行相应的测试方法。
常用的测试方法包括压力试验、弯曲试验和拉伸试验。
通过这些试验可以获取材料或构件在不同类型载荷下的性能数据,从而评估其强度和刚度。
工程力学中的材料强度和刚度分析工程力学是研究物体在受到外力作用下的变形和破坏规律的学科。
在工程力学中,材料强度和刚度是非常重要的概念。
材料强度指的是材料承受外力时的抗力,而材料刚度则是指材料在受力时的变形程度。
一、材料强度分析在工程力学中,材料强度是指材料在受到外力作用时的抗力。
材料的强度可以通过材料的应力-应变关系来描述。
应力是指物体内部单位面积上受到的外力,应变是指物体受到外力后相对于原形态的变形程度。
材料的强度可以分为两种类型:拉伸强度和压缩强度。
拉伸强度指的是材料在受到拉力作用时的抗力,压缩强度指的是材料在受到压力作用时的抗力。
这两种强度可以通过实验得到,从而确定材料的强度参数。
材料的强度分析在工程设计中起着重要的作用。
通过对材料强度的分析,可以确定材料是否适用于特定的工程项目。
在工程施工过程中,必须合理选择材料的强度参数,以确保工程的安全性和可靠性。
二、材料刚度分析材料刚度是指材料在受力时的变形程度。
当材料受到外力作用时,会发生变形,而材料的刚度就是描述这种变形程度的参数。
材料的刚度可以通过材料的弹性模量来描述。
弹性模量是材料在受力下发生变形的能力。
材料的刚度与其弹性模量成正比,刚度越大,材料的变形程度越小。
材料刚度的分析在工程设计和施工中也十分重要。
合理选择材料的刚度参数,可以保证工程的稳定性和安全性。
在材料的刚度分析中,还需要考虑材料的形状和尺寸等因素,以确定合适的刚度参数。
三、综合分析在工程力学中,材料的强度和刚度分析是相互关联的。
强度分析主要关注材料在受力时的抗力,而刚度分析则关注材料在受力时的变形程度。
工程设计中需要综合考虑材料的强度和刚度参数,以满足工程的要求。
综合分析可以通过数学模型和实验方法来进行。
数学模型可以用来描述材料的应力-应变关系和变形方程,通过求解这些方程,可以得到材料的强度和刚度参数。
实验方法可以通过对材料进行拉伸、压缩等实验,得到材料的强度和刚度数据。
综合分析的结果可以应用于工程设计和施工中。