中考数学复习考点知识与典型题型专题讲解1---有理数的运算
- 格式:pdf
- 大小:217.00 KB
- 文档页数:11
知识回顾微专题专题01有理数2023年中考数学必考考点总结考点一:有理数之正数和负数1.正数和负数的定义:大于0的数叫做正数,小于0的数叫做负数。
0既不是正数也不是负数。
2.正数和负数的意义:表示具有相反意义的两个量。
3.正负号的化简:同号为正,异号为负。
1.(2022•西宁)下列各数是负数的是()A .0B .21C .﹣(﹣5)D .﹣5【解答】解:A .0既不是正数也不是负数,故A 不符合题意;B.>0,故B 不符合题意;C .﹣(﹣5)=5>0,故C 不符合题意;D .﹣<0,故D 符合题意.故选:D .2.(2022•贵阳)下列各数为负数的是()A .﹣2B .0C .3D .5【分析】根据小于0的数是负数即可得出答案.【解答】解:A .﹣2<0,是负数,故本选项符合题意;B .0不是正数,也不是负数,故本选项不符合题意;C .3>0,是正数,故本选项不符合题意;D .>0,是正数,故本选项不符合题意;故选:A .3.(2022•益阳)四个实数﹣2,1,2,31中,比0小的数是()A .﹣2B .1C .2D .31【分析】利用零大于一切负数来比较即可.【解答】解:根据负数都小于零可得,﹣<0.故选:A .4.(2022•雅安)在﹣3,1,21,3中,比0小的数是()A .﹣3B .1C .21D .3【分析】比0小的是负数.【解答】解:∵﹣<0,故选A .5.(2022•襄阳)若气温上升2℃记作+2℃,则气温下降3℃记作()A .﹣2℃B .+2℃C .﹣3℃D .+3℃【分析】根据上升与下降表示的是一对意义相反的量进行表示即可.【解答】解:∵气温上升2℃记作+2℃,∴气温下降3℃记作﹣3℃.故选:C .6.(2022•河池)如果将“收入50元”记作“+50元”,那么“支出20元”记作()A .+20元B .﹣20元C .+30元D .﹣30元【分析】根据正数与负数时表示具有相反意义的量直接得出答案.【解答】解:∵收入50元,记作“+50元”.且收入跟支出意义互为相反.∴支出20元,记作“﹣20元”.故选:B .7.(2022•桂林)在东西向的马路上,把出发点记为0,向东与向西意义相反.若把向东走2km 记做“+2km ”,那么向西走1km 应记做()A .﹣2kmB .﹣1kmC .1kmD .+2km知识回顾微专题【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:若把向东走2km 记做“+2km ”,那么向西走1km 应记做﹣1km .故选:B .8.(2022•云南)中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作()A .10℃B .0℃C .﹣10℃D .﹣20℃【分析】根据正数和负数可以用来表示具有相反意义的量解答即可.【解答】解:∵零上10℃记作+10℃,∴零下10℃记作:﹣10℃,故选:C .9.(2022•柳州)如果水位升高2m 时水位变化记作+2m ,那么水位下降2m 时水位变化记作.【分析】根据正负数的意义求解.【解答】解:由题意,水位上升为正,下降为负,∴水位下降2m 记作﹣2m .故答案为:﹣2m .10.(2022•百色)负数的概念最早出现在中国古代著名的数学专著《九章算术》中,负数与对应的正数“数量相等,意义相反”,如果向东走5米,记作+5米,那么向西走5米,可记作米.【分析】利用正负数可以表示具有相反意义的量.【解答】解:因为向东和向西是具有相反的意义,向东记作正数,则向西就记作负数.故正确答案为:﹣5.考点二:有理数之相反数1.相反数的定义:只有符号不同的两个数互为相反数。
考向02 有理数的运算【考点梳理】考点一:有理数的四则运算:(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加为0;0与任何数相加都等于任何数(2)有理数减法法则::减去一个数等于加上这个数的相反数(3)有理数的乘法法则:①两个数相乘,同号得正,异号得负,并把绝对值相乘; 0乘以任何一个数都等于0;②多个不为0的数相乘,积的符号由负因数的个数决定:负因数有偶数个时,积为正数,负因数有奇数个时,积为负数,再把各个因数的绝对值相乘(4)有理数的除法法则①两数相除,同号得正,异号得负,再把绝对值相除;0除以任何一个不为0的数都得0; ②除以一个不为0的数,等于乘以这个数的倒数考点二、有理数乘法的运算律:(1)乘法的交换律:ab=ba ; (2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .考点三、比较两个数的大小(1)负数< 0 < 正数,任何一个正数都大于一切负数 (2)数轴上的点表示的有理数,左边的数总比右边的数小(3)两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小 (4)两数相乘(或相除),同号得正 > 0,异号得负 < 0考点四、有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n=-a n或(a -b)n=-(b-a)n, 当n 为正偶数时: (-a)n=an或 (a-b)n =(b-a)n.考点五、科学记数法:一个大于10的数记成a ×10n 的形式,a 是整数数位只有一位的数,这种记数法叫科学记数法.考点六、非负数的性质:若02=++c b a ,则000===c b a 且且【题型探究】题型一:有理数的加法运算1.(2022·浙江温州·中考真题)计算9(3)+-的结果是( ) A .6B .6-C .3D .3-2.(2022·云南省昆明市第十中学三模)在《九章算术注》中用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(白色为正,黑色为负),如图1表示的是213211+-=-的计算过程,则图2表示的过程是在计算( )A .(13)(23)10-++=B .(31)(32)1-++=C .(13)(23)36+++=D .(13)(23)10++-=-3.(2022·贵州贵阳·一模)综合实践课上,同学们在如图所示的三阶幻方中,填写了一些数、式子和图案(其中每个式子或图案都表示一个数),若处于每一横行、每一竖列、两条斜对角线上的3个数之和都相等,则y x 的值为( )A .8-B .2C .16D .64题型二:有理数的减法运算4.(2022·黑龙江·哈尔滨市萧红中学校模拟预测)哈市某天的最高气温为15℃,最低气温为2-℃,则最高气温与最低气温的差为( ) A .5℃B .17℃C .17-℃D .5-℃5.(2022·山西·三模)计算()85---的结果是( ) A .3B .-3C .13D .-136.(2020·浙江温州·二模)如图是我国常年(1991~2020年)冬春两季各节气的平均气温折线统计图,根据图中的信息,各节气的平均气温最大值与最小值的差是( )A .8.75B .13.86C .18.28D .18.91题型三:有理数的加减混合运算7.(2022·湖南·长沙市中雅培粹学校二模)茶颜悦色是长沙本土知名奶茶品牌,更是被全国奶茶爱好者所知的“网红”品牌,2013年创立于长沙,目前在长沙地区有100多家直营门店.黄经理负责其中一家门店,若一杯幽兰拿铁成本是7元,卖17元,某顾客来买了一杯幽兰拿铁,给了黄经理一张50元纸币,黄经理没零钱,于是找邻居换了50元零钱.事后邻居发现那50元纸币是假的,最后黄经理又赔了邻居50元.请问黄经理一共亏了 __元.8.(2021·江苏宿迁·三模)如果△+△=★,〇=□+□,△=〇+〇+〇+〇,那么★÷□的值为_____.9.(2022·河北·邯郸市邯山区芳园实验中学一模)已知一列数2,0,﹣1.﹣12. (1)求最大的数和最小的数的差;(2)若再添上一个有理数m ,使得五个有理数的和为0,求m 的值.题型四:有理数的乘法运算律10.(2022·浙江丽水·三模)如图,运算中的( )处,填写的理由是( ) 5(12)(37)6-⨯-⨯537126=⨯⨯(乘法交换律)537126⎛⎫=⨯⨯ ⎪⎝⎭( ) 3710370=⨯=.A .乘法交换律B .乘法结合律C .分配律D .加括号11.(2022·河北唐山·一模)计算117313(24)126424⎛⎫-+-⨯- ⎪⎝⎭的结果是( )A .1B .1-C .10D .10-12.(2022·河北邯郸·二模)在简便运算时,把47249948⎛⎫⨯- ⎪⎝⎭变形成最合适的形式是( )A .12410048⎛⎫⨯-+ ⎪⎝⎭B .12410048⎛⎫⨯-- ⎪⎝⎭ C .47249948⎛⎫⨯-- ⎪⎝⎭ D .47249948⎛⎫⨯-+ ⎪⎝⎭题型五:有理数的除法13.(2022·山西·模拟预测)计算()62-÷的结果是( ) A .-3B .3C .-12D .1214.(2021·安徽·郎溪实验一模)两旅客坐火车外出旅游,希望座位连在一起,且有一个靠窗的座位,已知火车上的座位的排法如图所示,那么下列座位号码符合要求的是( )A .48,49B .62,63C .75,76D .84,8515.(2021·四川·绵阳外国语实验学校一模)如果□×(﹣12019)=1,则“□”内应填的实数是( ) A .12019B .2019C .﹣12019D .﹣2019题型六:有理数的乘法16.(2022·河北唐山·二模)计算222333m n ++⋅⋅⋅++⨯⨯⋅⋅⋅⨯=个个( )A .32m n +B .23+m nC .23m n +D .23n m +17.(2022·广东番禺中学三模)若2423y x x =--,则2022()x y +等于( ) A .1B .5C .5-D .1-18.(2022·湖北鄂州·中考真题)生物学中,描述、解释和预测种群数量的变化,常常需要建立数学模型.在营养和生存空间没有限制的情况下,某种细胞可通过分裂来繁殖后代,我们就用数学模型2n 来表示.即:21=2,22=4,23=8,24=16,25=32,……,请你推算22022的个位数字是( ) A .8B .6C .4D .2题型七:科学计算法19.(2022·浙江·南海实验学校三模)据国家统计局数据公报,2021年虽受“新冠疫情”影响,但全年国内生产总值仍高达1143670亿元,比上年同比增长8.1%.数据“1143670”用科学记数法可表示为( ) A .511.4367010⨯ B .61.14367010⨯C .71.14367010⨯D .80.114367010⨯20.(2022·吉林·长春市第一〇八学校二模)第24届冬季奥林匹克运动会,于2022年2月4日在我国首都北京开幕,据统计,北京冬奥会开幕式电视直播观众规模达3.16亿,是历史上收视率最高的一届冬奥会,数据3.16亿用科学记数法可以表示为( ) A .93.1610⨯ B .90.31610⨯C .731.610⨯D .83.1610⨯21.(2022·四川·威远县凤翔中学二模)据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( ) A .733.8610⨯B .83.38610⨯C .90.338610⨯D .93.38610⨯题型八:近似数22.(2022·河北沧州·一模)网聚正能量,构建同心圆.以“奋斗的人民 奋进的中国”为主题的2021中国正能量“五个一百”网络精品征集评选展播活动进入火热的展播投票阶段.截至2021年11月26日18点,“五个一百”活动投票量累计13909615次,数据13909615用科学记数法表示并精确到百万位为( ) A .80.13910⨯B .71.3910⨯C .80.1410⨯D .71.410⨯23.(2022·江苏盐城·一模)西溪天仙缘景区建筑以汉朝风格为主,美丽的传说,各式传统的小吃,吸引着无数游客心驰神往.景区游客日最大接待量为55500人,数字55500用四舍五入法精确到千位可以表示为( ) A .55.610⨯B .45.610⨯C .45610⨯D .50.5610⨯24.(2022·上海金山区世界外国语学校一模)某市参加毕业考试的学生人数约为8.63×410人.关于这里的近似数8.63×410,下列说法正确的是( ) A .精确到百分位,有3个有效数字; B .精确到百位,有3个有效数字; C .精确到百分位,有5个有效数字;D .精确到百位,有5个有效数字.题型九:有理数的混合运算25.(2022·广西·宾阳县教育局教学研究室三模)计算:()()2231524÷-+⨯-+-.26.(2022·河北沧州·一模)计算:()44881999⎛⎫-⨯-÷- ⎪.(1)解法1是从第______步开始出现错误的;解法2是从第______步开始出现错误的;(填写序号即可) (2)请给出正确解答.27.(2022·山东济宁·一模)阅读材料: 求2320212022122222++++++的值.解:设2320212022122222S =++++++①将①×2得:234202220232222222S =++++++②由②-①得:202321S =-, 即2320212022202312222221++++++=-请你仿照此法计算:2313333n +++++(其中n 为整数)【必刷基础】一、单选题28.(2022·河南洛阳·二模)今年的“两会”上,李克强总理在谈到今年需要就业的新增劳动力时,指出今年高校毕业生1076万,是历年最高.数据“1076万”用科学记数法表示为( ) A .71.07610⨯B .81.07610⨯C .610.7610⨯D .80.107610⨯29.(2022·江苏·常州市北郊初级中学二模)42-的值为( ) A .16-B .16C .8-D .830.(2022·四川·绵阳中学英才学校二模)已知点P 的坐标为(),m n ,且22440m n n n -+++=,则点P 关于x 轴的对称点坐标为( ) A .()4,2-B .()4,2-C .()4,2D .()2,4-31.(2022·广东·深圳市南山外国语学校三模)已知a 、b 互为相反数,c 、d 互为倒数,则代数式()52a b cd +-的值为( ) A .3B .2-C .3-D .032.(2022·广东·东莞市光明中学三模)在6-,12,()5--,3--,21-,0这六个数中,负数的个数有( ) A .0个B .1个C .2个D .3个33.(2022·宁夏·中考真题)已知实数a ,b 在数轴上的位置如图所示,则a ba b+的值是( )A .2-B .1-C .0D .234.(2022·内蒙古包头·中考真题)若a ,b 互为相反数,c 的倒数是4,则334a b c +-的值为( ) A .8-B .5-C .1-D .1635.(2022·黑龙江齐齐哈尔·中考真题)下列计算正确的是( ) A .2ab ab b ÷= B .222()a b a b -=- C .448235m m m +=D .33(2)6-=-a a36.(2022·安徽·三模)下列各数中,化简结果最小的是( ) A .-5B .5C .()15--D .()25-37.(2022·新疆·乌鲁木齐市第六十八中学模拟预测)计算:()()1202011322π-⎛⎫-⨯-+-+- ⎪⎝⎭.38.(2022·浙江杭州·中考真题)计算:()32623⎛⎫-⨯-- ⎪⎝⎭■.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是12,请计算()3216232⎛⎫-⨯-- ⎪⎝⎭.(2)如果计算结果等于6,求被污染的数字.【必刷培优】一、单选题39.(2022·湖南·吉首市教育科学研究所模拟预测)观察下列等式:122=,224=,328=,4216=,5232=,6264=,⋅⋅⋅,根据这个规律,则1234202222222++++⋅⋅⋅+的末尾数字是( ) A .0B .2C .4D .640.(2022·江苏苏州·中考真题)下列运算正确的是( ) A .()277-=-B .2693÷= C .222a b ab += D .235a b ab ⋅=41.(2022·河北·中考真题)若x 和y 互为倒数,则112x y y x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的值是( )A .1B .2C .3D .442.(2022·湖北武汉·中考真题)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x 与y 的和是( )A .9B .10C .11D .1243.(2022·湖南娄底·中考真题)在古代,人们通过在绳子上打结来计数.即“结绳计数”.当时有位父亲为了准确记录孩子的出生天数,在粗细不同的绳子上打结(如图),由细到粗(右细左粗),满七进一,那么孩子已经出生了( )A .1335天B .516天C .435天D .54天44.(2022·湖南娄底·中考真题)若10x N =,则称x 是以10为底N 的对数.记作:lg x N =.例如:210100=,则2lg100=;0101=,则0lg1=.对数运算满足:当0M >,0N >时,()lg lg lg M N MN +=,例如:lg3lg5lg15+=,则()2lg5lg5lg 2lg 2+⨯+的值为( ) A .5B .2C .1D .0二、填空题45.(2022·江苏·靖江市滨江学校三模)5-的倒数是 ____.46.(2022·重庆八中模拟预测)计算:1122-⎛⎫-+-= ⎪⎝⎭________.47.(2022·江苏·常州市北郊初级中学二模)为做好新冠疫情常态化防控,更好保护人民群众身体健康,常州市开展新冠疫苗检测工作.截至4月底,已累计新冠疫苗检测27000000剂次,数据27000000用科学记数法可表示_____ 48.(2022·江苏·盐城市初级中学三模)小余同学计划在某外卖网站点如下表所示的菜品,已知每份订单的配送费为4元,商家为了促销,对每份订单的总价(不含配送费)提供满减优惠:满30元减12元,满60元减30元,满100元减45元,如果小余在购买下表中所有菜品时,采取适当的下单方式,那么他点餐总费用最低可为____________元. 菜品单价(含包装费) 数量 水煮牛肉(小份)30元1 醋溜土豆丝(小份) 12元 1 豉汁排骨(小份) 30元1 手撕包菜(小份) 12元1 米饭 3元249.(2022·重庆文德中学校二模)计算:()2022120221212-⎛⎫⋅+-= ⎪⎝⎭______.50.(2022·广东·深圳市南山外国语学校三模)某种细菌培养过程中每半小时分裂1次,每次一分为二,若这种细菌由1个分裂到128个,那么这个过程要经过______小时. 51.(2022·西藏·中考真题)已知a ,b 都是实数,若2120220a b,则b a =_____.三、解答题52.(2022·广西·南宁二中三模)计算:21116(2)324⎛⎫⨯---÷ ⎪⎝⎭.53.(2023·河北·九年级专题练习)对于任意的实数x ,y ,规定运算“※”如下:x y ax by =+※. (1)当3a =,4b =时,求12-※()的值; (2)若5316=※,232-=-※(),求a 与b 的值.54.(2022·河北·平泉市教育局教研室二模)在城区老旧小区改造中,为了提高居民的宜居环境,某小区规划修建一个广场(平面图如图中阴影部分所示).(1)用含m ,n 的式子表示广场(阴影部分)的面积S ;(2)若30m =米,20n =米,修建每平方米需费用200元,用科学记数法表示修建广场的总费用W 的值.55.(2022·安徽·二模)古老而悠久的民族文化宝典中,有一颗璀璨夺目的明珠一一河图洛书(如图1).人们为河图洛书神话般的传说、高深的奥义、丰富的内容、简洁的形式万分惊讶,对河图洛书与中国的思想文化、社会科学、自然科学的密切联系更是迷惑不解,然而,令我们每个人吃惊和迷惑不解的是,河图洛书只是两个简单的数字图,如图2,在33⨯的九官格中,每行每列及每条对角线上的三数之和都相等.(1)将图2九宫格中的数改为如图3的形式,则九宫格中n= ,e= ;(2)若用-5,-4,-3,-2,-1,0,1,2,3这九个数填在如图4的九宫格中,试求图中m的值.参考答案:1.A【分析】根据有理数的加法法则计算即可.【详解】解:9(3)+-(93)=+-=6故选:A .【点睛】本题考查了有理数的加法,掌握绝对值不相等的异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值时解题的关键.2.A【分析】根据图1可知,一横表示10,一竖表示1,白色为正,黑色为负,由此即可得出答案.【详解】解:由图1可知,一横表示10,一竖表示1,白色为正,黑色为负,则图2表示的过程是在计算()()132310-++=,故选:A .【点睛】本题考查了有理数的加减法,掌握理解每个算筹所表示的数是解题关键.3.D【分析】根据幻方的特点列出算式-2+y +6=2y +y +0=x -2+0,再根据法则计算可得.【详解】解:根据题意知-2+y +6=2y +y +0=x -2+0,则y +4=3y ,3y =x -2,∴y =2,x =3y +2=8,∴y x =82=64,故选:D .【点睛】本题主要考查有理数的加法和乘方,解题的关键是掌握有理数的加减运算法则及幻方的特点.4.B【分析】用该市当天的最高气温减去最低气温,即可求出结果.【详解】解:最高气温与最低气温的差为:()--=15217℃故选:B .【点睛】本题考查了有理数的减法,熟练掌握有理数的运算法则是解决本题的关键.5.C【分析】根据绝对值的意义和有理数的减法运算法则计算即可.【详解】解:原式=8+5=13.故选:C .【点睛】本题考查绝对值的意义,有理数的减法运算,熟练掌握这些知识点是解题关键.6.D【分析】观察折线统计图可得各节气的平均气温最大值为13.86℃,最小值为-5.05℃,即可求解.【详解】解:根据题意得:各节气的平均气温最大值为13.86℃,最小值为-5.05℃, ∴各节气的平均气温最大值与最小值的差是()13.86 5.0518.91--=℃.故选:D【点睛】本题主要考查了折线统计图,准确从统计图获取信息是解题的关键.7.40【分析】首先算出黄经理总的支出,再求出他的总收入,进而得出黄经理的亏损.【详解】解:根据题意可得:总支出:幽兰拿铁成本是7元,找零钱()5017-元,赔邻居50元,共()750175090+-+=(元),总收入:和邻居换钱得50元,总共50元,剩余:509040-=-(元),即黄经理一共亏了40元.故答案为:40.【点睛】本题考查有理数加减运算的实际应用,读懂题意,计算出总的收入和总的支出是解题的关键.8.16【分析】根据题意可知★=2个△=8个〇=16个□,再代入★÷□即可计算求解.【详解】解:∵△+△=★,∴★=2个△,∵△=〇+〇+〇+〇,∴★=8个〇,∵〇=□+□,∴★=16个□,∴★÷□=16.故答案为:16.【点睛】本题考查了等式的性质与有理数的混合运算,由题得出★=16个□是解题关键.9.(1)3;(2)m =-12.【分析】(1)首先得出最大数和最小数,进而得出答案;(2)根据题意列出方程,解方程即可求解.(1)解:∵最大的数是2,最小的数是-1,∴最大的数与最小的数之差为2-(-1)=2+1=3;(2)解:根据题意得:2+0+(-1)+(-12)+m =0, 解得:m =-12. 【点睛】本题考查有理数的运算,一元一次方程的应用;熟练掌握解一元一次方程的方法和步骤是解本题的关键.10.B【分析】根据运算过程可知是根据乘法结合律.【详解】解:()()512376-⨯-⨯ 537126=⨯⨯(乘法交换律) 537126⎛⎫=⨯⨯ ⎪⎝⎭(乘法结合律) 3710=⨯=370故选:B .【点睛】本题考查了有理数的乘法运算律,熟练掌握和运用有理数的乘法运算律是解决本题的关键.11.A【分析】原式利用乘法分配律计算即可求出值【详解】解:原式=117313(24)(24)(24)(24)126424⨯--⨯-+⨯--⨯- =-22+28-18+13=6-18+13=-12+13=1,故选:A【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.A【分析】根据乘法分配律即可求解. 【详解】47249948⎛⎫⨯- ⎪⎝⎭=12410048⎛⎫⨯-+ ⎪⎝⎭计算起来最简便, 故选A .【点睛】此题主要考查有理数的运算,解题的关键是熟知乘法分配律的运用.13.A【分析】根据有理数的除法法则即可解答.【详解】解:−6÷2=-3,故选A .【点睛】本题考查了有理数的除法,解决本题的关键是熟记有理数的除法法则.14.D【分析】根据图形中的数据变化,可得被5除余1的数,和能被5整除的座位号靠窗,座位连在一起,且有一个靠窗的座位,通过分析选项即可得结论.【详解】解:由已知图形中座位的排列顺序,可得:被5除余1的数,和能被5整除的座位号靠窗,由于两位旅客希望座位连在一起,且有一个靠窗的座位,48593÷=,故A 选项不符合; 625122÷=,故B 选项不符合;75515÷=,故C 选项不符合;85517÷=,故D 符合,故选:D .【点睛】本题考查了数据的变化规律,对数据的处理,并能正确找出其中的规律是解题的关键.15.D【分析】根据乘除互逆运算的关系求解可得.【详解】解:1÷(﹣12019 )=﹣2 019 故选:D .【点睛】本题主要考查有理数的除法,解题的关键是掌握有理数的乘法与除法是互逆的运算关系.16.D【分析】根据乘法的含义,可得:222m ++⋅⋅⋅+=个2m ,根据乘方的含义,可得:333n ⨯⨯⋅⋅⋅⨯=个3n ,据此求解即可.【详解】解:222333m n ++⋅⋅⋅++⨯⨯⋅⋅⋅⨯=个个2m +3n .故选:D .【点睛】此题主要考查了有理数的乘法、有理数的乘方,解答此题的关键是要明确乘法、乘方的含义.17.A【分析】直接利用二次根式中被开方数是非负数,得出x 的值,进而得出y 的值,再利用有理数的乘方运算法则计算即可. 【详解】解:由题意可得:20420x x -≥⎧⎨-≥⎩, 解得:x =2,故y =-3,∴20222022()(213)=x y +=-.故选:A .【点睛】此题主要考查了二次根式有意义的条件以及有理数的乘方运算,正确掌握被开方数为非负数是解题关键.18.C【分析】利用已知得出数字个位数的变化规律进而得出答案.【详解】解:∵21=2,22=4,23=8,24=16,25=32,…,∴尾数每4个一循环,∵2022÷4=505……2,∴22022的个位数字应该是:4.故选:C .【点睛】此题主要考查了尾数特征,根据题意得出数字变化规律是解题关键.19.B【分析】直接利用科学记数法表示即可得到答案.【详解】解:61.143611436707010⨯=,故选B .【点睛】本题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯,其中110a ≤<,n 为整数,解题关键是确定a 和n 的值.20.D【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:3.16亿8316000000 3.1610==⨯.故选:D .【点睛】此题考查科学记数法的表示方法,解题的关键是掌握科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数,表示时关键要正确确定a 的值以及n 的值.21.B【分析】科学记数法要表示成()n 1010⨯<<0a a .【详解】解:数字338 600 000用科学记数法可简洁表示为83.38610⨯,故选B .【点睛】本题主要考查科学记数法的运用,能够熟练根据要求转化数字是解题关键.22.D【分析】首先精确到百万位,再用科学记数法表示.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:原数精确到百万位为:13909615≈14000000,再用科学记数法表示为:14000000=1.4×107,故选D .【点睛】本题考查取近似数和科学记数法的综合应用,熟练掌握精确度的意义和四舍五入的方法、科学记数法的意义和算法是解题关键.23.B【分析】先用科学记数法表示出所给的数,再按精确度的要求进行四舍五入即可得到答案.【详解】解:用科学记数法表示:455500 5.5510=⨯,四舍五入法精确到千位得:445.551015.60≈⨯⨯.故选:B .【点睛】本题考查了近似数和科学记数法.解题的关键是先用科学记数法表示出所给的数,再按精确度的要求进行四舍五入,注意近似数末尾有意义的0.24.B【分析】在标准形式a ×10n 中a 的部分中,从左边第一个不为0的数字数起,共有3个有效数字是8,6,3,且其展开后可看出精确到的是百位.【详解】解:8.63×104=86300,所以有3个有效数字,8,6,3,精确到百位.故选:B .【点睛】此题主要考查科学记数法与有效数字,解答的关键是明确用科学记数法表示的数的有效数字的确定方法.25.3【详解】解:原式()91104=÷+-+()9104=+-+3=.【点睛】本题考查了有理数的混合运算,解题关键是熟记有理数混合运算顺序和法则,准确进行计算.26.(1)①;③(2)解答过程见详解【分析】(1)根据有理数运算法则判断即可;(2)按照运算法则,先进行乘除运算,再进行加减运算即可.【详解】(1)解:解法1,步骤①中“先算加减后算乘除”不符合有理数混合运算法则,故步骤①错误;解法2,11363622-+≠-,步骤③不符合有理数加法法则,故步骤③错误. 故答案为:①;③.(2)解:原式()44981998⎛⎫=-⨯-⨯- ⎪⎝⎭ 1236=-+ 1235=- 【点睛】本题主要考查了有理数的混合运算,解题关键在于熟练掌握有理数混合运算的运算法则.27.1312n -+ 【分析】仿照材料中的方法解答即可.【详解】解:设231133333n n S -=+++++①,将等式两边同时乘3,得231333333n n S +=+++++②, ②−①,得3S −S =131n -+,即2S =131n -+,则S =1312n -+, 所以23113312333n n+++++=-+.【点睛】本题主要考查数字的变化规律,解答的关键是理解清楚所给的解答方式,并灵活运用.28.A【分析】科学记数法的表示形式为10na⨯的形式,其中1||10a<,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值10时,n是正整数;当原数的绝对值1<时,n是负整数,由此即可得到答案.【详解】解:7107610760000 1.07610==⨯万.故选:A.【点睛】本题主要考查了科学记数法,解题的关键是熟练掌握科学记数法的定义.29.A【分析】根据乘方定义计算即可.【详解】422222=16-=-⨯⨯⨯.故选:A.【点睛】本题主要考查了乘方的运算,理解定义是解题的关键.30.A【分析】根据二次根式的非负性和完全平方公式求出m,n的值,进而即可求解.【详解】解:2440n n++=,()220n+=,∴20,20m n n-=+=,解得:4,2m n=-=-,∴P的坐标为()4,2--,∴点P关于x轴的对称点坐标为()4,2-.故选:A.【点睛】本题主要考查二次根式与平方的非负性,点的坐标,轴对称变换,根据非负数的性质,求出m,n的值是关键.31.B【分析】根据a,b互为相反数,c,d互为倒数,可以得到a+b=0,cd=1,然后代入所求式子计算即可.【详解】解:∵a,b互为相反数,c,d互为倒数,∴a+b=0,cd=1,∴5(a+b)﹣2cd=5×0﹣2×1=0﹣2=﹣2,故选:B .【点睛】本题考查了相反数和倒数,有理数的混合运算,解答本题的关键是求出a +b 、cd 的值.32.D【分析】先利用相反数、绝对值和乘方的意义计算出()55--=,33--=-,211-=-,然后根据实数的分类求解.【详解】解:()55--=,33--=-,211-=-,所以这六个数中,负数为6-,3--,21-.故选:D .【点睛】本题考查了有理数的分类,有理数乘方:求n 个相同因数积的运算,叫做乘方.也考查了绝对值和相反数,熟知相关知识是解题的关键.33.C【分析】根据数轴上点的位置可得a<0,0b >,据此化简求解即可.【详解】解:由数轴上点的位置可得a<0,0b >, ∴110a b a b a b a b+=+=-+=-, 故选:C .【点睛】本题主要考查了化简绝对值,根据数轴上点的位置判断式子符号,有理数的除法,正确得到a<0,0b >是解题的关键.34.C【分析】根据a ,b 互为相反数,可得0a b +=,c 的倒数是4,可得14c =,代入即可求解. 【详解】∵a ,b 互为相反数,∴0a b +=,∵c 的倒数是4, ∴14c =, ∴334a b c +-()34a b c =+-130414=⨯-⨯=-, 故选:C【点睛】本题考查了代数式的求值问题,利用已知求得0a b +=,14c =是解题的关键. 35.A 【分析】根据单项式除以单项式,完全平方公式,合并同类项,有理数的乘方的运算法则进行计算求解即可.【详解】解:A 中2ab ab b ÷=,正确,故符合题意;B 中()222222-=-+≠-a b a ab b a b ,错误,故不符合题意;C 中44482355m m m m +=≠,错误,故不符合题意;D 中()333286a a a -=-≠-,错误,故不符合题意;故选A .【点睛】本题考查了单项式除以单项式,完全平方公式,合并同类项以及有理数的乘方.解题的关键在于熟练掌握运算法则并正确的计算.36.A【分析】分别计算绝对值,负整数指数幂,乘方运算,再比较各数的大小,从而可得答案. 【详解】解:12155,5,525,5 而15525,5 125555, 所以最小的数是5,-故选:A【点睛】本题考查的是绝对值的含义,负整数指数幂的含义,有理数的乘方运算,有理数的大小比较,掌握以上基础知识是解本题的关键.37.1【分析】根据()1n -运算、零指数幂、负整数指数幂及绝对值运算分别求解后,利用有理数的混合运算法则求解即可得到结论【详解】解:()()12020011322π-⎛⎫-⨯-+-+- ⎪⎝⎭ 1122=⨯-+1=.【点睛】本题考查有理数混合运算,涉及到()1n-运算、零指数幂、负整数指数幂及绝对值运算等知识,熟练掌握运算法则及运算顺序是解决问题的关键.38.(1)-9(2)3【分析】(1)根据有理数混合运算法则计算即可;(2)设被污染的数字为x ,由题意,得()326263x ⎛⎫-⨯--= ⎪⎝⎭,解方程即可;【详解】(1)解:()()32116268326⎛⎫-⨯--=-⨯- ⎪⎝⎭189=--=-; (2)设被污染的数字为x ,由题意,得()326263x ⎛⎫-⨯--= ⎪⎝⎭,解得3x =, 所以被污染的数字是3.【点睛】本题主要考查有理数的混合运算、一元一次方程的应用,掌握相关运算法则和步骤是接替的关键.39.D【分析】通过观察发现2n 的个位数字是2、4、8、6四个数字依次不断循环,直接填空即可;【详解】解:通过观察发现2n 的个位数字是2、4、8、6四个数字依次不断循环,且2+4+8+6=20,尾数为02022÷4=500……2,则尾数为2+4=6,故选D .【点睛】此题考查幂的乘方末尾的数字规律,注意观察循环的数字规律,利用规律解决问题.40.Ba =,判断A 选项不正确;C 选项中2a 、2b 不是同类项,不能合并;D 选项中,单项式与单项式法则:把单项式的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式;B 选项正确.【详解】A. 7=,故A 不正确; B. 2366932÷=⨯=,故B 正确; C. 222a b ab +≠,故C 不正确;D. 236a b ab ⋅=,故D 不正确;故选B .【点睛】本题考查二次根式的性质、有理数的除法及整式的运算,灵活运用相应运算法则是解题的关键.41.B【分析】先将112x y y x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭化简,再利用互为倒数,相乘为1,算出结果,即可。
知识点:1,有理数加法法则:同号两数相加,取相同符号,并把两数绝对值相加;异号两数相加,取绝对值大的数的符号,并用较大数的绝对值减去较小数的绝对值;若两数绝对值相等,则和为0;一个数与0相加仍得这个数;2,有理数加法运算规律:加法交换律: a+b=b+a;加法结合律:(a+b)+c=a+(b+c);3,有理数减法法则:减去一个数,就等于加上这个数的相反数;4,有理数加减法混合运算:统一成加法运算;5,有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘;任何数与0相乘都得0;6,倒数:两个乘积为1的有理数称互为倒数;0没有倒数;7,多个有理数相乘乘法法则:(1)负因数个数为奇数时符号为负,负因数个数为偶数时符号为正;(2)积的绝对值等于各因数绝对值的积;(3)几个数相乘,其中有一个为0,则结果为0;反之,若结果为0,则至少有一个因数为0;8,乘法运算律:(1)乘法交换律:a*b=b*a;(2)乘法结合律:(a*b)*c=a*(b*c);(3)乘法分配律:a*(b+c)=a*b+a*c;9,有理数除法法则:两数相除,同号得正,异号得负,绝对值相除;0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数;10,乘方的概念:n个相同的因数a相乘记作a n;这种运算叫做乘方,乘方的结果叫做幂,a叫做底数,n叫做指数;11,有理数乘方运算法则:先确定正负号,再转化为乘法运算;12,有理数加减乘除、乘方混合运算:先算乘方,再算乘除,最后算加减,若有括号,先算括号内的;13,科学计数法的概念:把一个大于10的数表示成a*10n的形式,其中1≤a<10,n为正整数,这种技术方法叫做科学计数法;14,科学计数法与普通计数法互换:普通计数法表示的数最高位数后加小数点,然后小数点需要向右移动多少位才能与该数相同位数,就乘以10的几次方;科学计数法表示的数,乘以了10的几次方,就把小数点向右移动几位,没有数了填0;15,近似数的概念:近似数就是十分接近准确数的数;生活中有些需要度量的数据,很难用准确值表示,有时没有必要测出完全准确的数据,所以需要使用近似数;16,精确度的概念:近似数与准确数的接近程度叫做精确度;一个近似数是由准确数四舍五入到哪一位得到的,就说这个近似数精确到了哪一位;17,求一个数的近似数:四舍五入法结合科学计数法。
有理数知识点梳理考点01 正数和负数1.正数:像1,2,3,4,0.1等这样大于0的数叫作正数。
正数的前面的“+”可以省略不写。
2.负数:像-0.2.-2.-6这样在正数前面加上符号“-”(负号)的数叫作负数。
3.注意事项:(1)0既不是正数也不是负数.0是正数和负数的分界线;(2)对于正数和负数.不能简单地理解为带“+”号的数就是正数.带负号的数就是负数.要根据正负数的含义.看其是符合正数的定义还是符合负数的定义。
4.正负习惯:习惯上把零上、增加、前进、海平面以上、收入、向南、盈利、上升等记为正.把与它们意义相反的量记为负。
考点02 有理数与数轴1.有理数定义:正整数、0、负整数统称整数.正分数、负分数统称分数.整数和分数统称有理数。
2.有理数的分类3.注意:(1)整数可以看成是分母为1的分数.所以有理数都可以写成分数的形式;有限小数和无限循环小数都可以写成分数形式.所以有限小数和无限循环小数都是有理数。
(2)正数和零统称为非负数;负数和零统称为非正数。
4.零的作用(1)表示数的性质.例如0是自然数;(2)表示没有.例如有5个本子.用+5表示.没有本子用0表示;(3)表示正数与负数的分界。
5.数轴定义:规定了原点、正方向和单位长度的直线叫作数轴。
数轴的三要素即原点、正方向和单位长度。
6.数轴上的点与有理数有理数都可以用数轴上的点来表示.任何一个有理数都能在数轴上找到与它对应的点.而且是唯一的点.但数轴上的点不一定都是有理数。
考点03 相反数和绝对值1.相反数的代数意义:只有符号不同的两个数叫作互为相反数.把其中一个数叫作另一个数的相反数。
0的相反数是0.2.相反数的几何意义:两个互为相反数的数在数轴上所表示的点在原点的两侧且到原点的距离相等;这两点关于原点对称。
3.多重符号的化简:数字前面的“-”号的个数若有偶数个.化简结果为正;有奇数个时.花间结果为负。
4.相反数的性质:如果b a 、互为相反数.那么0=+b a 或b a -=或a b -=;反过来.如果0=+b a .那么b a 、互为相反数。
一对一七年级数学教师辅导讲义④负有理数、0统称为非正有理数数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
2.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。
(如,数轴上的点π不是有理数)3.利用数轴表示两数大小⑴在数轴上数的大小比较,右边的数总比左边的数大;⑵正数都大于0,负数都小于0,正数大于负数;⑶两个负数比较,距离原点远的数比距离原点近的数小。
4.数轴上特殊的最大(小)数⑴最小的自然数是0,无最大的自然数;⑵最小的正整数是1,无最大的正整数;⑶最大的负整数是-1,无最小的负整数5.a可以表示什么数⑴a>0表示a是正数;反之,a是正数,则a>0;⑵a<0表示a是负数;反之,a是负数,则a<0⑶a=0表示a是0;反之,a是0,,则a=06.数轴上点的移动规律根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。
相反数⒈相反数只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。
注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负;⑶0的相反数是它本身;相反数为本身的数是0。
2.相反数的性质与判定⑴任何数都有相反数,且只有一个;⑵0的相反数是0;⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=03.相反数的几何意义在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。
中考数学考点精讲:有理数的运算为您整理“中考数学考点精讲:有理数的运算”,欢迎阅读参考,更多有关内容请继续关注本网站中考栏目。
中考数学考点精讲:有理数的运算1.有理数的加法:加法一般步骤:①确定符号:同号取相同的符号。
异号取绝对值大的加数的符号。
②确定绝对值:同号将绝对值相加。
异号用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
一个数与0相加,仍得这个数。
用字母表示加法的交换律a+b=b+a;加法结合律a+b+c=(a+b)+c=a+(b+c)。
三个或三个以上有理数相加,可以写成这些数的连加式,对于连加式,根据加法交换律和加法结合律,可以任意交换加数的位置,也可先把其中的某几个数相加。
根据算式的特征,恰当地运用运算律,可以使运算简便:①符号相同的数先相加--同号结合法②互为相反数的先相加--相反数结合法③分母相同的数先相加--同分母结合法④正数与正数,小数与小数相加--同形结合法2.有理数的减法:减法法则:减去一个数,等于加上这个数的相反数。
加减法混合运算,把减法转化为加法再计算。
3.代数和:有理数加减混合运算时,将加减法统一成加法运算,转化为求几个正数或负数的和。
在一个和式中,可以把各个加数的括号和括号前面的加号省略不写,写成省略加号的和的形式。
4.有理数的乘法:乘法步骤:确定符号:同号正,异号负。
绝对值:求积。
任何数与0相乘,都得0。
任何数与-1相乘都得这个数的相反数。
多个有理数相乘的运算:几个非0有理数相乘时,当负因数个数是偶数时,积为正;负因数个数是奇数时,积为负;乘法交换律,乘法结合律,乘法分配律;5.有理数的除法:除法步骤:确定符号:同号正,异号负。
绝对值:相除。
除以一个不等于0的数等于乘上这个数的倒数。
0除以任何一个不等于0的数都得0。
中考重点有理数的加减乘除有理数是我们数学学习中的重要内容之一,也是中考的重点之一。
在中考中,涉及到有理数的加减乘除的题目屡见不鲜。
下面我将详细介绍有理数的加减乘除的相关知识,希望能够对广大考生有所帮助。
一、有理数的加法有理数的加法很简单,只需要按照正负数的原则进行操作即可。
具体步骤如下:步骤一:判断两个数的符号,如果两数符号相同,则将它们的绝对值相加,符号不变即可;如果两数符号不同,则将它们的绝对值相减,取绝对值较大的符号即可。
例如:(-7) + (-3) = -10,(-7) + 3 = -4,7 + (-3) = 4,7 + 3 = 10步骤二:将所得的结果与零比较,如果结果为零,则直接写出零;如果结果大于零,则标记为正数;如果结果小于零,则标记为负数。
例如:(-7) + (-3) = -10,结果小于零,标记为负数;7 + 3 = 10,结果大于零,标记为正数二、有理数的减法有理数的减法实际上是加法的逆运算,所以它的操作和加法是一样的。
具体步骤如下:步骤一:将减法转化为加法,即 a - b 可以写成 a + (-b) 的形式。
步骤二:按照加法的规则进行操作。
例如:(-5) - (-3) = (-5) + 3 = -2,(-5) - 3 = (-5) + (-3) = -8,5 - (-3) = 5 + 3 = 8,5 - 3 = 2三、有理数的乘法有理数的乘法简单易懂,只需要按照正负数的原则进行操作即可。
具体步骤如下:步骤一:判断两个数的符号,如果两数符号相同,则将它们的绝对值相乘,结果为正数;如果两数符号不同,则将它们的绝对值相乘,结果为负数。
例如:(-4) × (-3) = 12,(-4) × 3 = -12,4 × (-3) = -12,4 × 3 = 12步骤二:将所得的结果与零比较,如果结果为零,则直接写出零;如果结果大于零,则标记为正数;如果结果小于零,则标记为负数。
专题01 有理数运算的六技巧【专题综述】有理数运算是中学数学中一切运算的基础,同学们在理解有理数的概念、法则的基础上,能够利用法则、公式等正确地运算。
但有些有理数计算题,数字大、项数多,结构貌似复杂,致使同学们望题生畏,不知所措。
下面介绍几种有理数的计算方法,以帮助同学们轻松地进行计算,从而提高运算能力,发展思维的敏捷性与灵活性。
【方法解读】 一、连续自然数的和 11212312341248 1.2334445555494949++++++++++++++例计算【举一反三】观察下列砌钢管的横截面图:则第n 个图的钢管数是 (用含n 的式子表示)二、凑整法例2.计算3998+2997+1996+195【举一反三】阅读下列第(1)题中的计算方法,再计算第(2)题中式子的值.(1)﹣556+(﹣923)+1734+(﹣312) 解:原式=[(﹣5)+(﹣56)]+[(﹣9)+(﹣23)]+[(+17)+(+34)]+[(﹣3)+(﹣12)] =[(﹣5)+(﹣9)+(+17)+(﹣3)]+[(﹣56)+(﹣23)+(+34)+(﹣12)] =0+(﹣114) =﹣114仿照上述方法计算: (2)(﹣200856)+(﹣200723)+401723+(﹣112)三、拆项相消法111 3.12231011+++⨯⨯⨯例计算:【举一反三】计算:2222122334(1)n n +++⋅⋅⋅+⨯⨯⨯+=__________(n 为正整数).四、分组法例4.计算123420012002s =-+-++-【举一反三】 计算:101﹣102+103﹣104+…+199﹣200=______.五、错位相减法例5.计算232018*********s =+++++【举一反三】在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S =1+3+32+33+34+35+36+37+38 ①,然后在①式的两边都乘以3,得:3S =3+32+33+34+35+36+37+38+39 ②,②一①得:3S ―S =39-1,即2S =39-1, ∴S =9312-. 得出答案后,爱动脑筋的张红想:如果把“3”换成字母m (m ≠0且m ≠1),能否求出1+m +m 2+m 3+m 4+…+m 2016的值?如能求出,其正确答案是___________.六、倒序相加法例6.计算135799+++++【举一反三】 符号“H ”表示一种运算,它对正整数的运算结果如下:H (1)=2,H (2)=3,H (3)=4,H (4)=5… 则H (7)+H (8)+H (9)+…+H (91)的结果为____.【强化训练】1.计算1﹣2+3﹣4+5﹣6+…+2005﹣2006的结果是( )A. 0B. 100C. ﹣1003D. 10032.六个整数的积36a b c d e f ⋅⋅⋅⋅⋅=, a b c d e f 、、、、、互不相等,则a b c d e f +++++= ( ) .A. 0B. 4C. 6D. 83.50个连续正奇数的和1+3+5+7+…+99与50个连续正偶数的和:2+4+6+8+…+100,它们的差是( )A. 0B. 50C. ﹣50D. 50504.对于正数x ,规定f (x )=x x +1,例如f (2)=32212=+,f (31)=4131131=+,根据规定,计算f (1)+f (2)+f (3)+…+f (2015)+f (21)+f (31)+f (41)+…+f (20151)= . 5.已知f (x )=1+x 1,其中f (a )表示当x =a 时代数式的值,如f (1)=1+11,f (2)=1+21, f (a )=1+a1,则f (1)·f (2)·f (3)…·f (100)= . 6.已知0|1||2|=-+-a ab ,则: a = ,b = .在此条件下,计算:+ab 1()()111++b a ()()221+++b a ++ ()()201420141++b a = .7.请观察下列等式的规律:111(1)1323=-⨯,1111()35235=-⨯, 1111()57257=-⨯,1111()79279=-⨯, …则111113355799101+++⋅⋅⋅+⨯⨯⨯⨯= .8.为了求1+3+32+33+…+3100的值,可令M =1+3+32+33+…+3100,则3M =3+32+33+34+…+3101,因此,3M ﹣M =3101﹣1,所以M =101312-,即1+3+32+33+…+3100=101312-,仿照以上推理计算:1+5+52+53+…+52015的值是 .9.若1(21)(21)n n -+=21a n -+ 21b n +,对任意自然数n 都成立,则a = ,b = ; 计算:m =113⨯+135⨯+157⨯+ …+11921⨯= .10.【问题一】:观察下列等式 111122=-⨯, 1112323=-⨯, 1113434=-⨯, 将以上三个等式两边分别相加得: 1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)猜想并写出: ()11n n =+_____________. (2)直接写出下列各式的计算结果:①111112233420162017++++=⨯⨯⨯⨯____________; ②()11111223341n n ++++=⨯⨯⨯+______________. (3)探究并计算:①111113355720152017++++⨯⨯⨯⨯. ②1111111132435465717191820-+-+++-⨯⨯⨯⨯⨯⨯⨯ 【问题二】:为了求23201712222+++++的值, 可令23201712222S =+++++, 则23201822222S =++++,因此2018221S S -=-,所以. 23201720181222221+++++=-. 仿照上面推理计算:(1)求23201715555+++++的值; (2)求23499100333333-+-++-的值.。
中考数学一轮复习专题解析—有理数的运算复习目标1.有理数乘方及混合运算。
2.正确运用科学记数法及近似数和有效数字。
3.能合理、自觉运用有理数运算律进行简便运算。
4.科学记数法中10的幂指数特征;近似数概念的理解. 考点梳理 一、有理数加法1. 有理数加法法则: ⑴同号两数相加,取相同的符号,并把绝对值相加;⑵绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;⑶一个数同0相加,仍得这个数。
例1、计算:(1)(﹣3)+(﹣9) (2) (﹣21)+(﹢31) (3)(﹢4)+(﹣3) (4)(﹣5.25)+5 (5)(﹣20032002)+0 【答案】(1)-12 (2)61 (3)1 (4)-0.25 (5)﹣20032002 【归纳总结】进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.2. 有理数加法运算律:①有理数的加法交换律是:两个数相加,交换加数的位置,和不变.即加法交换律a b b a +=+ .②有理数的加法结合律是:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.即加法结合律)()(c b a c b a ++=++ .③交换律和结合律可以推出:三个以上有理数相加,可以任意交换加数的位置,也可先把其中的几个数相加,无论各数相加的先后次序如何,其和不变。
例2、(1)38+(-22)+(+62)+(-78)(2)(-8.25)+8.25+(-0.25)+(-5.75)+(-7.5)(3))31(524)325(535-++-+ 【答案】(1)0 (2)0 (3)4 【归纳总结】对于三个以上有理数相加,按下列过程计算比较简便:(1)凑零凑整:互为相反数的两个数结合先加;和为整数的加数结合先加;(2)同号集中:按加数的正负分成两类分别结合相加,再求和;(3)同分母结合:把分母相同或容易通分的结合起来;(4)带分数拆开:计算含带分数的加法时,可将带分数的整数部分和分数部分拆开,分别结合相加。
有理数的运算知识点汇总知识点1:有理数的加减法一、有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加;2.异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;3.一个数与0相加,仍得这个数.二、有理数加法运算律:1.加法的交换律:a+b=b+a;2.加法的结合律:(a+b)+c=a+(b+c).3.在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:(1)互为相反数的两个数先相加——“相反数结合法”;(2)符号相同的两个数先相加——“同号结合法”;(3)分母相同的数先相加——“同分母结合法”;(4)几个数相加得到整数,先相加——“凑整法”;(5)整数与整数、小数与小数相加——“同形结合法”。
三、有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).知识点2:有理数的乘除法一、有理数乘法:1.有理数乘法法则法则一:两数相乘,同号得正,异号得负,并把绝对值相乘;(“同号得正,异号得负”专指“两数相乘”的情况,如果因数超过两个,就必须运用法则三)法则二:任何数同0相乘,都得0;法则三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数;法则四:几个数相乘,如果其中有因数为0,则积等于0.2.有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .二、有理数除法法则1.除以一个不等0的数,等于乘以这个数的倒数。
2.两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0三.有理数的加减乘除混合运算1.乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。
2.有理数加减乘除混合运算,如果有括号先计算括号里的,如果无括则按照‘先乘除,后加减’的顺序进行。
知识点3:有理数乘方一、乘方1.乘方的概念(1)求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。