有理数及其运算知识点
- 格式:doc
- 大小:342.00 KB
- 文档页数:8
有理数及其运算知识点总结整理本节介绍有理数的概念和相关知识点,需要认真研究并总结,自己理解部分知识可以帮助记忆。
1.正数和负数1) 大于零的数是正数。
2) 在正数前面加上负号“-”的数是负数。
3) 数既不是正数也不是负数,是正数和负数的分界。
4) 在同一个问题中,用正数和负数表示的量具有相反的意义。
2.有理数1) 能写成分数形式的数都是有理数,包括整数和分数。
注意:既不是正数也不是负数的数,可能不是负数,例如-(-2)=4,此时a=-2.π不是有理数。
正整数、零、负整数和分数分别属于正有理数、零、负有理数和负有理数。
2) 有理数可以分为两类:①有理数零;②有理数非零。
正分数、负有理数、负分数属于有理数非零;正整数属于有理数非零和有理数零;负整数属于有理数非零和有理数负数。
3.数轴【重点】1) 数轴是用一条直线上的点表示数的图示,满足以下要求:①在直线上任取一个点作为原点;②通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;③选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3…;从原点向左,用类似的方法依次表示-1,-2,-3…2) 数轴有三要素:原点、正方向、单位长度。
3) 画数轴的步骤:画一条直线并选取原点、取正反向、选取单位长度、标数字。
数轴的规范画法:直线上数字在下,字母在上。
需要注意的是,所有有理数都可以用数字上的点表示,但是数轴上的所有点并不都表示有理数。
4) 一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
4.相反数1) 只有符号不同的两个数互为相反数。
①注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;②相反数的商为-1;③相反数的绝对值相等。
(完整版)有理数的性质及其运算知识点汇总有理数的性质及其运算知识点汇总一、有理数性质有理数是可用两个整数的比表示的数,包括正整数、负整数和零。
有理数的性质如下:1. 有理数可以进行加法、减法、乘法和除法运算。
2. 有理数的加法和乘法满足交换律和结合律。
3. 有理数的乘法满足分配律。
4. 有理数的加法、减法和乘法仍然是有理数。
5. 有理数可以用小数形式表示。
二、有理数运算知识点1. 有理数的加法有理数的加法满足以下规则:- 两个正有理数相加,结果仍为正有理数。
- 两个负有理数相加,结果仍为负有理数。
- 正有理数和负有理数相加,结果为它们的差的绝对值的符号与较大绝对值的符号相同。
2. 有理数的减法有理数的减法可以转化为加法运算,规则如下:- 减去一个有理数等于加上这个有理数的相反数。
3. 有理数的乘法有理数的乘法满足以下规则:- 正有理数乘以正有理数,结果仍为正有理数。
- 负有理数乘以负有理数,结果仍为正有理数。
- 正有理数乘以负有理数,结果为它们的积的符号为负。
- 任何数乘以零,结果为零。
4. 有理数的除法有理数的除法可以转化为乘法运算,规则如下:- 除以一个有理数等于乘以这个有理数的倒数(除数不为零)。
5. 有理数的运算顺序有理数的运算顺序遵循以下规则:1. 先计算括号中的内容。
2. 然后按照先乘除,后加减的顺序计算。
3. 如果有多个乘法或除法,按照从左到右的顺序进行。
6. 有理数的小数形式表示有理数可以用小数形式表示,其中:- 有限小数是按照小数位数为限的。
- 循环小数是具有重复循环数字的。
以上是有理数的性质及其运算知识点的汇总,希望对你有所帮助。
⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数有理数及其运算知识点汇总 1、2、数轴的三要素:原点、正方向、单位长度(三者缺一不可)。
3、任何一个有理数,都可以用数轴上的一个点来表示。
(反过来,不能说数轴上所有的点都表示有理数)4、如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。
(0的相反数是0)5、在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。
数轴上两点表示的数,右边的总比左边的大。
正数在原点的右边,负数在原点的左边。
6、绝对值的定义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。
数a 的绝对值记作|a|。
7、正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。
⎪⎩⎪⎨⎧<-=>)0()0(0)0(||a a a a a a 或 ⎩⎨⎧<-≥)0()0(||a a a a a 8、绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数; 互为相反数的两数(除0外)的绝对值相等;任何数的绝对值总是非负数,即|a|≥09、比较两个负数的大小,绝对值大的反而小。
比较两个负数的大小的步骤如下: ①先求出两个数负数的绝对值;②比较两个绝对值的大小;③根据“两个负数,绝对值大的反而小”做出正确的判断。
10、绝对值的性质:①对任何有理数a ,都有|a|≥0②若|a|=0,则|a|=0,反之亦然③若|a|=b ,则a=±b④对任何有理数a,都有|a|=|-a|11、有理数加法法则:①同号两数相加,取相同符号,并把绝对值相加。
②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并 用较大数的绝对值减去较小数的绝对值。
③一个数同0相加,仍得这个数。
六年级上册数学期末复习知识梳理第二章有理数及其运算2.1 有理数重点:有理数的意义,用正负数表示相反数意义的量难点:按不同的标准对有理数进行分类解题技巧在用正数和负数表示一对具有相反意义的量时,“正”和“负”是相对而言的,用“正”来表示其中的一个量,就用“负”来表示另一个与之意义相反的量,但我们一般把“增加”“上涨”“盈利”“高于”等记为“正”,把与它们有相反意义的量记为“负”此外,在用正负数表示一对具有相反意义的量时,不要少了后面的单位。
知识点拨。
③相反意义的量包含两个要素:一是它们的意义要相反;二是它们都是数量。
④意义相反的量中的两个量必须是同类量,如节约汽油3t与浪费1t水就不是具有相反意义的量。
2.2 数轴重点:用数轴表示有理数难点:利用数轴表示有理数的大小解题方法1.在数轴上表示有理数的方法:在数轴上,对于不为零的有理数,可以先由这个数的符号确定它在数轴上原点的哪一边,再在相应的方向上确定它与原点相距几个单位长度,然后标上相应的点。
2.找出数轴上的点对应的有理数的步骤:(1)确定点与原点的位置关系(负左正右);(2)确定点与原点的距离。
知识方法要点:1.数轴上表示的两个数,右边的总是比左边大。
2.正数大于0,负数小于0,正数大于负数。
2.3 绝对值重点:相反数和绝对值的概念及应用。
难点:利用绝对值的概念比较两个负数的大小。
a (a>0)|a| 0 (a=0)互为相反数的两个数绝对值等于0a (a<0)解题方法1.利用数轴确定一个数的绝对值时,首先确定这个数在数轴上表示的点,然后确定这个点到原点的距离即可。
2.对于绝对值的计算,首先要判断这个数是正数、零,还是负数.如果绝对值里面的数是非负数,那么这个数的绝对值就是它本身;如果绝对值里面的数是负数,那么这个数的绝对值就是它的相反数。
知识点拨比较两个负数的大小,可以运用绝对值法,根据“两个负数,绝对值大的反而小”来比较大小;也可以运用数轴法,把要比较大小的两个负数在数轴上表示出来,右边的数总大于左边的数”来判断。
有理数及其运算知识点一、有理数的定义和表示方式有理数是可以表示为两个整数的比的数,包括正有理数、负有理数和零。
有理数可以用分数形式或小数形式来表示。
1. 分数形式:有理数的分数形式是一个分子与一个不等于零的分母的比,分数形式可以是正数也可以是负数。
例如:2/3、-4/52. 小数形式:有理数的小数形式可以是有限小数或循环小数。
有限小数是指小数部分有限位数的小数,循环小数是指小数部分有无限循环的小数。
例如:0.5、-1.3333...(循环小数可以用省略号表示)二、有理数的四则运算有理数的四则运算包括加法、减法、乘法和除法,具体规则如下:1. 加法:有理数相加时,将分母相同的分数相加,然后保持分母不变。
如果分母不同,则需要化为通分后再相加。
同时,要注意正数加正数等于正数,负数加负数等于负数,正数加负数等于正负相消,负数加正数等于负正相消,零加任意数等于这个数本身。
2. 减法:有理数相减时,可以将减法转化为加法运算,即改为加上被减数的相反数。
例如,a-b可以转化为a+(-b)。
然后按照加法运算规则进行计算。
3. 乘法:有理数相乘时,分子相乘得到新的分子,分母相乘得到新的分母。
同时,要注意正数乘以正数等于正数,负数乘以负数等于正数,正数乘以负数等于负数,负数乘以正数等于负数,零乘以任意数等于零。
4. 除法:有理数相除时,可以将除法转化为乘法运算,即改为用除数的倒数乘以被除数。
例如,a/b可以转化为a*(1/b)。
然后按照乘法运算规则进行计算。
同时,要注意正数除以正数等于正数,负数除以负数也等于正数,正数除以负数等于负数,负数除以正数等于负数,零除以任意非零数等于零。
三、绝对值和相反数在有理数的运算中,还有两个重要的概念:绝对值和相反数。
1. 绝对值:一个数的绝对值表示该数与零之间的距离,总是为非负数。
正数的绝对值等于该正数本身,负数的绝对值等于该负数去掉负号得到的正数,零的绝对值等于零。
2. 相反数:一个数的相反数指的是与该数绝对值相等但符号相反的数。
九年级数学知识点提纲一、有理数及其运算1. 有理数概念2. 有理数的加减乘除3. 有理数的大小比较4. 有理数的绝对值二、代数式与分式1. 代数式的基本概念2. 代数式的运算法则3. 分式的概念与运算法则4. 分式方程的解法三、二次根式与无理数1. 二次根式的定义与性质2. 二次根式的化简与计算3. 无理数的概念与性质4. 无理数的运算法则四、平面图形的性质与计算1. 平面图形的基本概念2. 三角形的性质与分类3. 四边形的性质与分类4. 平行四边形与梯形的性质与计算五、三角形的性质与分类1. 三角形角度的性质2. 三角形边长的关系3. 三角形的分类与判定4. 三角形的面积计算与相似性质六、数列与函数1. 数列的概念与表示2. 等差数列与等比数列3. 函数的概念与性质4. 一次函数与二次函数七、方程与不等式1. 一元一次方程与二元一次方程2. 一元二次方程的解法3. 线性不等式的解法与图形表示4. 绝对值方程与不等式八、统计与概率1. 数据的收集与整理2. 统计图表的表示与分析3. 概率的基本概念与计算4. 事件的排列与组合计算九、几何变换与相似1. 平移、旋转、翻转的概念与性质2. 相似三角形的判定与性质3. 相似三角形的计算与应用4. 黄金分割与相似十、立体图形的认识与计算1. 空间图形的基本概念与性质2. 球体、圆锥、圆台的性质与计算3. 容积的计算与应用4. 空间立体图形的投影与展开图以上是九年级数学知识点提纲,包含了九年级数学的主要知识点。
通过学习这些知识点,可以帮助学生全面掌握九年级数学的基础概念、方法与技巧,为进一步学习高中数学奠定坚实的基础。
掌握了这些知识点,学生可以更好地解决数学问题,提高数学思维能力,并为将来的学习与应用打下坚实的数学基础。
(完整版)有理数的除法及其运算知识点汇
总
1. 有理数的除法规则
- 有理数除以非零有理数,除数不为负时,商为正,除数为负时,商为负。
2. 有理数的除法步骤
- 将除法转化为乘法:除法问题可以转化为乘法问题,即将除数的倒数与被除数相乘。
- 计算乘积:将除数的倒数与被除数相乘,并化简答案。
3. 有理数的除法性质
- 除法的运算交换律:a ÷ b = b ÷ a
- 除法的运算结合律:(a ÷ b) ÷ c = a ÷ (b × c)
- 除法的运算分配律:a ÷ (b + c) = a ÷ b + a ÷ c
4. 有理数的除法运算技巧
- 将除数写成一个最简分数或小数,有助于计算时减小出错概率。
- 当除数很接近被除数时,可通过调整被除数变成除数的倍数,从而简化除法计算。
5. 有理数除法应用
- 有理数的除法在实际生活中有广泛应用,比如计算货币兑换、计算长短时间等。
6. 实例演算
以下是一个有理数的除法示例演算过程:
例如:计算-0.5 ÷ 0.2
从上述示例可见,有理数的除法运算需要注意符号、化简答案
和特殊情况的处理。
以上是有理数的除法及其运算知识点的汇总。
希望对您有帮助!。
第二章有理数及其运算一、有理数1.用正、负数表示具有相反意义的量2.有理数的分类(1)按定义分类(2)按符号分类二、数轴1.数轴的概念规定了原点、正方向、单位长度的直线叫做数轴.2.用数轴上的点表示有理数任何一个有理数都可以用数轴上的一个点来表示.3.比较有理数的大小(1)数轴上两个点表示的数,右边的总比左边的大.(2)正数大于0,0大于负数,正数大于负数.三、绝对值1.相反数的概念及性质(1)只有符号不同的两个数叫做互为相反数(2)互为相反数的两个数到原点的距离相等2.绝对值的概念及性质(1)一个数在数轴上对应的点到原点的距离叫做这个数的绝对值(2)一个正数的绝对值是它本身.(3)一个负数的绝对值是它的相反数.(4)0的绝对值是0.3.比较两个负数的大小两个负数,绝对值大的反而小.三、有理数的运算1.有理数的加法(1)加法法则同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值.一个数同0相加,仍得这个数。
(2)加法的运算律加法的交换律加法的结合律2.有理数的减法减法法则:减去一个数,等于加上这个数的相反数.3.有理数的乘法(1)乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.(2)乘法的运算律乘法的交换律乘法的结合律乘法对加法的分配律4.有理数的除法除法法则:除以一个数,等于乘以这个数的倒数.5.有理数的乘方乘方运算规律:(1)正数的任何次幂都是正数.(2)负数的偶次幂是正数,负数的奇次幂是负数.(3)0的任何正整数次幂都是0.(4)a的偶次幂是正数,即a n≥0(其中n为偶数).6.有理数的混合运算有理数混合运算的顺序:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.四、科学记数法1.科学记数法的概念一个大于10的数可以表示成a×10n的形式,其中1≤a<10,n是正整数,这种记数方法叫做科学记数法.2.a与n的取法在a×10n形式中,n的值是原数整数位数减1,a 则是将原数保留一位整数得来的.。
初三数学重要知识点1一.有理数的运算1.加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
2.减法:减去一个数,等于加上这个数的相反数。
3.乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
4.除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。
5.乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
6.混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
二.代数式代数式:单独一个数或者一个字母也是代数式。
合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
②把同类项合并成一项就叫做合并同类项。
③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
三.整式1.整式的定义:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做这个单项式的次数。
③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
2.整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
3.整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
四.圆周角定理及其推论1.圆周角顶点在圆上,并且两边都和圆相交的角叫做圆周角。
2.圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。
有理数及其运算知识点总结
1. 有理数是可以表达为两个整数的比值的数,包括正整数、负整数、零以及可以用分数表示的数。
2. 有理数的加法和减法运算:
- 相同符号的有理数相加减,绝对值相加减,结果带相同符号。
- 不同符号的有理数相加减,绝对值相减,结果带绝对值大的符号。
3. 有理数的乘法和除法运算:
- 相同符号的有理数相乘、相除,结果为正数。
- 不同符号的有理数相乘、相除,结果为负数。
4. 有理数的乘法:
- 非零有理数相乘,绝对值相乘,符号由乘法规则决定。
- 0乘以任何数等于0。
5. 有理数的除法:
- 非零有理数相除,绝对值相除,符号由除法规则决定。
- 0不能作为除数。
6. 有理数的乘方:
- 正数的乘方:底数不变,指数相乘。
- 零的非负整数次幂为0,零的负整数次幂没有定义。
- 1的任何整数次幂仍为1。
- 负数的偶次幂为正数,奇次幂为负数。
7. 有理数的相反数是指与其绝对值相等,但符号相反的数。
8. 有理数的倒数是指其倒数等于它的分子和分母互换位置后的比值。
9. 有理数的绝对值是指其去掉符号的值。
10. 有理数的大小比较:
- 两个有理数绝对值相等,但符号相反时,负数较大。
- 两个正数比较大小,绝对值大的数较大。
- 两个负数比较大小,绝对值小的数较大。
这些是有理数及其运算的基本知识点总结,能够帮助理解有理数的概念和规则。
有理数及其运算知识点一、有理数的定义有理数是可以表示为两个整数比的数,形式为a/b,其中a和b是整数,且b不为零。
有理数集合包括所有整数、分数和它们的负数。
二、有理数的分类1. 整数:包括正整数、零和负整数,如1, 0, -2等。
2. 分数:分子和分母都是整数的比值,如3/4, -5/2等。
3. 混合数:包含整数部分和分数部分的数,如1 3/4。
三、有理数的性质1. 封闭性:有理数集合在加法、减法、乘法和除法(除数不为零)运算下是封闭的。
2. 有序性:任何两个有理数都可以比较大小。
3. 加法和乘法的交换律、结合律:有理数的加法和乘法满足交换律和结合律。
4. 加法和减法的逆元:任何有理数a都有加法逆元(-a),使得a + (-a) = 0;任何非零有理数a都有减法逆元(-a/a = -1)。
四、有理数的运算规则1. 加法:a. 同号相加,取相同的符号,并将绝对值相加。
b. 异号相加,取绝对值较大的数的符号,并将绝对值相减。
c. 任何数与零相加,结果为原数。
2. 减法:a. 减去一个数等于加上它的相反数。
b. a - b = a + (-b)。
3. 乘法:a. 同号得正,异号得负,并将绝对值相乘。
b. 任何数与零相乘,结果为零。
c. 乘法满足交换律和结合律。
4. 除法:a. 除以一个非零数等于乘以它的倒数。
b. a / b = a * (1/b)。
c. 除数不能为零。
5. 混合运算:a. 在混合运算中,先进行乘除运算,再进行加减运算。
b. 同级运算应按照从左到右的顺序进行。
五、有理数的运算律1. 加法交换律:a + b = b + a2. 加法结合律:(a + b) + c = a + (b + c)3. 乘法交换律:a * b = b * a4. 乘法结合律:(a * b) * c = a * (b * c)5. 分配律:a * (b + c) = a * b + a * c六、有理数的比较1. 正数大于零,零大于所有负数。
《有理数及其运算》知识点 xsh1、最小的正整数_________最大的负整数_________相反数等于本身的数__________互为相反数的两个数的和__________互为相反数的两个数(0除外)的商__________绝对值等于本身的数__________绝对值大于本身的数__________绝对值不大于本身的数__________倒数等于本身的数__________互为倒数的两个数的积__________互为负倒数的两个数的积__________平方等于本身的数__________立方等于本身的数__________2、(-1)2n -1=____________ (-1)2n=__________ -3.4的倒数是_________ 相反数是__________3、|x|=2,则x=__________ |-x|=3,则x=__________ |x -2|=5,则x=_______ x 2=16,则x=__________x 3=-64,则x=________ x 6=64. 则x=__________4、a 的相反数是________,-a 是负数吗?_____,a -b 的相反数_______,a+b 的相反数_______|a|=a ,则a_____0,|a|=-a ,则a_____0,|a -2|=2-a ,则a__________5、|x -2|+(y -3)2=0,则x+y=________-(-2011),则a=_________6、绝对值不大于4的非负整数有________________,整数有_______个。
绝对值不大于2011的所有整数的和为_________,积为_________。
7、x 、z 互为倒数,|y|=7,m 、n 互为相反数,求y y n m xy -++-105=_________ 8、-24=________,(-2)4=__________,-(-2)4=___________。
有理数及其运算知识点有理数是指可以表示为两个整数的比值的数,包括正整数、负整数、零和分数。
在数学中,有理数的运算是非常重要的基础知识点之一。
本文将介绍有理数的基本概念和运算规则。
首先,让我们来了解有理数的定义。
有理数可以表示为 p/q 的形式,其中 p 和 q 是整数,且 q 不等于零。
有理数包含了整数、分数和小数。
例如,2、-3、1/2 和 0.75 都是有理数。
有理数的运算主要包括加法、减法、乘法和除法。
下面将详细介绍每种运算的规则。
1. 加法有理数的加法是一个基本的运算。
当两个有理数的符号相同时,只需按照整数的加法规则相加,并保留符号。
例如,2+3=5,-5+(-2)=-7。
当两个有理数的符号不同时,我们需要先计算绝对值的和,然后根据绝对值的大小决定结果的符号。
例如,2+(-3)=-1,-5+3=-2。
2. 减法有理数的减法可以转化为加法运算。
对于一个减法运算 a-b,我们可以将其转化为 a+(-b) 的形式,然后按照加法的规则进行计算。
例如,2-3 可以写成 2+(-3),然后计算为 -1。
3. 乘法有理数的乘法运算是通过相乘得到一个新的有理数。
当两个有理数的符号相同时,乘积为正;当两个有理数的符号不同时,乘积为负。
例如,2*3=6,-2*(-3)=6,-2*3=-6。
4. 除法有理数的除法是通过相除得到一个新的有理数。
除法的结果可以通过将被除数除以除数得到。
如果除数为零,则除法运算没有意义。
例如,3/2=1.5,-10/5=-2。
除了基本的四则运算外,还有一些其他的运算法则和性质与有理数相关。
一些重要的知识点如下:- 乘法逆元:对于一个非零有理数 a,它的乘法逆元记为 1/a。
乘法逆元满足 a*(1/a) = 1。
- 除法换算:对于一个有理数 a 和非零有理数 b,a/b 可以换算为 a*(1/b)。
- 分数化简:将一个有理数化为最简分数形式,也就是将分子和分母的公因子约去。
除了以上的运算规则和知识点,有理数还有很多应用和拓展。
有理数知识点考点难点总结归纳理数是数的一种,它包括整数、分数和小数。
在初中数学中,有理数是一个重要的知识点,学生需要掌握有理数的性质、运算和应用。
下面我来总结归纳一下有理数的知识点、考点和难点。
一、有理数的基本概念1.整数:正整数、负整数、零。
整数的性质:加法逆元、乘法逆元、绝对值。
2.分数:分子、分母、约分、通分、分数的比较大小、分数的性质。
3.小数:有限小数、无限循环小数、无限不循环小数。
二、有理数的运算1.四则运算:加法、减法、乘法、除法及其性质。
2.混合运算:不同运算符的运算顺序。
3.绝对值与大小比较:有理数的绝对值性质、绝对值大小的比较。
4.整数幂:整数的正、负、零幂及其性质。
5.分数的四则运算:加法、减法、乘法、除法及其性质。
6.有理数的乘方:有理数的正、负、零次幂及其性质。
三、有理数的应用1.推理与解答问题:通过有理数知识解答实际问题。
2.田字格法则:计算有理数乘法与除法的结果。
3.分数的应用:计算问题中的比例、百分数、利率等。
四、有理数的考点1.正数、负数、零的概念及其性质与运算。
2.分数的概念、运算、比较和应用。
3.分数与整数、分数与小数的转化。
4.有理数四则运算的规则与性质。
5.有理数乘方与有理数四则混合运算。
6.有理数的比较和绝对值的计算。
7.有理数运算在实际问题中的应用。
五、有理数的难点1.分数的约分、通分和比较大小。
2.分数与整数、小数的互化。
3.有理数四则运算的运算顺序。
4.有理数运算的特殊性质的把握。
6.有理数应用题的解答思路与方法。
以上是有理数的知识点、考点和难点的总结归纳。
通过系统学习和不断练习,学生可以掌握有理数的基本概念、运算规则和应用技巧,提高数学能力。
北师大版初一上册第二章有理数概念及其运算知识点总结一、有理数有理数包括正整数、负整数、0和分数。
其中正整数和负整数统称为整数。
有理数可以用分数的形式表示,即分子、分母都是整数,并且分母不为0。
二、有理数的比较两个有理数的大小关系取决于它们的大小和符号,具体规则如下:- 同号,比大小;- 异号,比绝对值大小,正数大于负数。
三、有理数的加减运算有理数的加减运算遵循以下规则:- 同号相加,不改变符号,绝对值相加;- 异号相加,绝对值相减,符号与绝对值较大的数相同。
例如:- $2-3=-1$- $-2+3=1$- $-2-(-3)=1$- $-2+(-3)=-5$四、有理数的乘法有理数的乘法运算遵循以下规则:- 同号相乘得正,异号相乘得负;- 0乘任何数都得0。
例如:- $2\times 3=6$- $-2\times 3=-6$- $-2\times (-3)=6$- $0\times 5=0$五、有理数的除法有理数的除法其实就是乘以倒数,即$\dfrac{a}{b}\div\dfrac{c}{d}=\dfrac{a}{b}\times \dfrac{d}{c}$。
其中$b\neq 0$,$c\neq 0$。
例如:- $\dfrac{2}{3}\div \dfrac{4}{5}=\dfrac{2}{3}\times\dfrac{5}{4}=\dfrac{5}{6}$- $(-2)\div \dfrac{3}{4}=(-2)\times \dfrac{4}{3}=-\dfrac{8}{3}$六、绝对值一个数的绝对值表示这个数到0点的距离,记作$|a|$。
其中:- 若$a>0$,则$|a|=a$;- 若$a<0$,则$|a|=-a$;- 若$a=0$,则$|a|=0$。
例如:$|-5|=5$,$|6|=6$,$|0|=0$。
七、有理数的混合运算有理数的混合运算是指有理数的加减乘除四则运算的有理数表达式计算。
有理数及其运算知识点总结有理数是指可以表示为两个整数的比值的数,包括整数、分数和小数。
在数学中,有理数是重要的数集,是整数的推广,可以用来表示包括整数在内的所有数。
有理数主要涉及四则运算、绝对值、比较大小、转化等方面的知识。
一、有理数的定义和性质1.有理数的定义:有理数是可以记作a/b的数,其中a、b是整数,b≠0,a和b没有公共因子。
2.有理数的性质:(1)有理数可以分为整数、正分数和负分数三种形式。
(2)有理数可以相加、相减、相乘、相除,并且运算结果仍然是有理数。
(3)有理数的相反数是指具有相同绝对值但符号相反的数,如-2的相反数是2(4)有理数加0的运算性质:a+0=a,0+a=a。
(5)有理数的逆元:对于任何有理数a,存在一个有理数-b,使得a+(-b)=0。
(6)有理数的乘法消去律:对于任何有理数a、b、c,如果ab=ac且a≠0,则b=c。
二、有理数的四则运算1.加法:两个有理数相加时,将它们的分子通分为相同的分母,然后将分子相加即可。
2.减法:两个有理数相减时,可以转化为加法运算,即将被减数加上减数的相反数。
3.乘法:两个有理数相乘时,将它们的分子和分母分别相乘即可。
如果两个有理数都为分数,可以先约分,再相乘。
4.除法:两个有理数相除时,可以转化为乘法运算,即将除数乘以被除数的倒数。
三、有理数的绝对值1.绝对值的定义:一个数a的绝对值,记作,a,是指a与0之间的距离,可以表示为:当a≥0时,a,=a;当a<0时,a,=-a。
2.绝对值的性质:(1)非负性:对于任何有理数a,有,a,≥0;(2)相等性:对于任何有理数a,有,a,=0当且仅当a=0;(3)三角不等式:对于任何有理数a、b,有,a+b,≤,a,+,b。
四、有理数的比较大小1.有理数的大小比较遵循以下规则:(1)对于相同符号的两个有理数,绝对值越大,表示的值越大;(2)对于不同符号的两个有理数,正数大于负数;(3)对于两个正数来说,分母相同的情况下,分子越大,表示的值越大;(4)对于两个负数来说,分母相同的情况下,分子越小,表示的值越大。
)(无限不循环小数负有理数正有理数无理数⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧--⎩⎨⎧---)()32,21()32,21()()3,2,1()3,2,1,0(无限循环小数有限小数整数负分数正分数小数分数负整数自然数整数有理数、、 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧实数一、有理数及其运算1.有理数: (1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (aa ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 8. 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac . 9.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 10.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; 11.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.二、 实数1.算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么正数x 叫做a 的算术平方根,记作a 。
第七节有理数的乘法考点一:有理数的乘法法则1、法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘,积仍为0。
2、方法导引:(1)几个有理数相乘,先确定积的符号,再把绝对值相乘。
(2)当几个因数中有一个为0时,不用再判断符号,直接得0. 3、总结提升:(1)两个有理数相乘,积的符号是由两个因数的符号确定,同号(++,或--)得正,异号(+-或-+)得负。
(2)0与任何数相乘,积都是0.(3)1乘任何数得原数,-1乘任何数得原数的相反数。
4、题型解析:例1 (1)已知两个数a,b在数轴上对应的点如图所示,下列结论正确的是()A、-a<-bB、a+b>0C、ab<0D、b-a>0(2)一个有理数与它的相反数的积是()A 、正数B 、负数C 、非正数D 、非负数 (3)计算3×(-2)的结果是(4)计算 ①-2×(-5) ②34×(83-) ③-3×0 ④(-312)×(-3)考点二:倒数1、定义:如果两个有理数的乘积为1,那么称其中的一个数是另一个数的倒数,也称这两个有理数互为倒数,如54和45,-7和71-互为倒数。
2、 求法:求带分数的倒数时,先把带分数化成假分数,再求倒数;求小数的倒数时,先把小数化成分数,在求倒数;求整数的倒数时,先把整数看作是分母为1的分数,在求倒数。
3、辨析:(1)0没有倒数。
(2)互为倒数的两个数的符号相同,即正数的倒数是正数,负数的倒数是负数。
(3)若两个数互为倒数,则它们的成绩为1. (4)倒数等于它本身的数是1和-1. 4、题型解析:例2 (1)有理数51-的倒数为( )A 、5B 、51C 、-51 D 、-5 (2)2017的倒数为( ) A 、20171 B 、2017 C 、-2017 D-20171(3)相反数是其本身的是 ,倒数是其本身的是 。
(4)若a,b 互为相反数,c,d 互为倒数,m 的绝对值是3,求:cd m ba -++35的值。
⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数有理数及其运算※※数轴的三要素:原点、正方向、单位长度(三者缺一不可)。
※任何一个有理数,都可以用数轴上的一个点来表示。
(反过来,不能说数轴上所有的点都表示有理数)※如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。
(0的相反数是0)※在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。
¤数轴上两点表示的数,右边的总比左边的大。
正数在原点的右边,负数在原点的左边。
※绝对值的定义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。
数a 的绝对值记作|a|。
※正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。
⎪⎩⎪⎨⎧<-=>)0()0(0)0(||a a a a a a 或 ⎩⎨⎧<-≥)0()0(||a a a a a※绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;互为相反数的两数(除0外)的绝对值相等; 任何数的绝对值总是非负数,即|a|≥0※比较两个负数的大小,绝对值大的反而小。
比较两个负数的大小的步骤如下: ①先求出两个数负数的绝对值; ②比较两个绝对值的大小;③根据“两个负数,绝对值大的反而小”做出正确的判断。
※绝对值的性质:①对任何有理数a ,都有|a|≥0 ②若|a|=0,则|a|=0,反之亦然 ③若|a|=b ,则a=±b④对任何有理数a,都有|a|=|-a|※有理数加法法则: ①同号两数相加,取相同符号,并把绝对值相加。
②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值。
③一个数同0相加,仍得这个数。
※加法的交换律、结合律在有理数运算中同样适用。
¤灵活运用运算律,使用运算简化,通常有下列规律:①互为相反的两个数,可以先相加; ②符号相同的数,可以先相加; ③分母相同的数,可以先相加;④几个数相加能得到整数,可以先相加。
※有理数减法法则: 减去一个数,等于加上这个数的相反数。
¤有理数减法运算时注意两“变”:①改变运算符号; ②改变减数的性质符号(变为相反数) 有理数减法运算时注意一个“不变”:被减数与减数的位置不能变换,也就是说,减法没有交换律。
¤有理数的加减法混合运算的步骤:越来越大①写成省略加号的代数和。
在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;②利用加法则,加法交换律、结合律简化计算。
(注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变成它本身的相反数。
) ※有理数乘法法则: ①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘,积仍为0。
※如果两个数互为倒数,则它们的乘积为1。
(如:-2与21 、 3553与…等)※乘法的交换律、结合律、分配律在有理数运算中同样适用。
¤有理数乘法运算步骤:①先确定积的符号; ②求出各因数的绝对值的积。
¤乘积为1的两个有理数互为倒数。
注意: ①零没有倒数②求分数的倒数,就是把分数的分子分母颠倒位置。
一个带分数要先化成假分数。
③正数的倒数是正数,负数的倒数是负数。
※有理数除法法则: ①两个有理数相除,同号得正,异号得负,并把绝对值相除。
②0除以任何非0的数都得0。
0不可作为除数,否则无意义。
※有理数的乘方 ※注意:①一个数可以看作是本身的一次方,如5=51;②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。
※乘方的运算性质:①正数的任何次幂都是正数;②负数的奇次幂是负数,负数的偶次幂是正数; ③任何数的偶数次幂都是非负数;④1的任何次幂都得1,0的任何次幂都得0; ⑤-1的偶次幂得1;-1的奇次幂得-1;⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。
※有理数混合运算法则:①先算乘方,再算乘除,最后算加减。
②如果有括号,先算括号里面的。
专题一:正数和负数1、下列各数中,大于-21小于21的负数是( ) A.-32B.-31C.312、负数是指( )A.把某个数的前边加上“-”号B.不大于0的数C.除去正数的其他数D.小于0的数 3、关于零的叙述错误的是( )A.零大于所有的负数B.零小于所有的正数C.零是整数D.零既是正数,也是负数 4、非负数是( )A.正数B.零C.正数和零D.自然数 5、文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( ) A.文具店 B.玩具店 C.文具店西40米处 D.玩具店西60米处 6、大于-的所有负整数为_____.=⨯⨯⨯⨯a n a a a a 个7、珠穆朗玛峰高出海平面8848米,表示为+8848米.吐鲁番盆地低于海平面155米,表示为____. 8、请写出3个大于-1的负分数_____.9、某旅游景点一天门票收入5000元,记作+5000元,则同一天支出水、电、维修等各种费用600元,应记作_____. 10请回答,该生成绩最好和最差的科目分别是什么专题二:数轴与相反数1、下面正确的是( )A.数轴是一条规定了原点,正方向和长度单位的射线B.离原点近的点所对应的有理数较小C.数轴可以表示任意有理数D.原点在数轴的正中间 2、关于相反数的叙述错误的是( )A.两数之和为0,则这两个数为相反数B.如果两数所对应的点到原点的距离相等,这两个数互为相反数C.符号相反的两个数,一定互为相反数D.零的相反数为零3、若数轴上A 、B 两点所对应的有理数分别为a 、b ,且B 在A 的右边,则a -b 一定( )A.大于零B.小于零C.等于零D.无法确定 4、在数轴上A 点表示-31,B 点表示21,则离原点较近的点是_____. 5、两个负数较大的数所对应的点离原点较_____.6、在数轴上距离原点为2的点所对应的数为_____,它们互为_____.7、数轴上A 、B 、C 三点所对应的实数为-32,-43,54,则此三点距原点由近及远的顺序为_____. 8、数轴上-1所对应的点为A ,将A 点右移4个单位再向左平移6个单位,则此时A 点距原点的距离为_____. 9、在等式3215⨯-⨯=的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立。
则第一个方格内的数是__________.10、写出大于-小于的所有整数,并把它们在数轴上表示出来..专题三:绝对值1、任何一个有理数的绝对值一定( )A.大于0B.小于0C.不大于0D.不小于0 2、若a >0,b <0,且|a |<|b |,则a +b 一定是( )A.正数B.负数C.非负数D.非正数 3、下列说法正确的是( )A.一个有理数的绝对值一定大于它本身B.只有正数的绝对值等于它本身C.负数的绝对值是它的相反数D.一个数的绝对值是它的相反数,则这个数一定是负数 4、下列结论正确的是( )A.若|x |=|y |,则x =-yB.若x =-y ,则|x |=|y |C.若|a |<|b |,则a <bD.若a <b ,则|a |<|b | 5、一个数的绝对值越小,则该数在数轴上所对应的点,离原点越_____. 6、绝对值大于小于的所有负整数为_____.7、甲、乙两同学进行数字猜谜游戏:甲说一个数a 的相反数就是它本身,乙说一个数b 的倒数也等于本身,请你猜一猜|a-b|=8、某班举办“迎五一”知识竞赛,规定答对一题得10分,不答得0分,答错一题扣10分,今有甲、乙、丙、丁四名同学所得分数,分别为+50,+20,0,-30,请问哪个同学分数最高,哪个最低,为什么最高分高出最低分多少专题四:有理数的加减法1、有理数a ,b 在数轴上对应位置如图所示,则a +b 的值为( )A.大于0B.小于0C.等于0D.大于a 2、下列结论不正确的是( )A.若a >0,b >0,则a +b >0B.若a <0,b <0,则a +b <0C.若a >0,b <0,则|a |>|b |,则a +b >0D.若a <0,b >0,且|a |>|b |,则a +b >03、如果|c |=-c ,则c -21一定是( ) A.正数 B.负数 D.可能为正数也可能为负数4、下面等式错误的是( )A.21-31-51=21-(31+51) B.-5+2+4=4-(5+2)C.(+3)-(-2)+(-1)=3+2-1-3-4=-(-2)-(+3)+(-4)5、-21与32的相反数的绝对值之和是______. 6、已知a 、b 互为相反数,c 是绝对值最小的数,d 是负整数中最大的数,则a +b +c -d =_____. 7、若|2x -3|+|3y +2|=0,则x -y =_____. 8、计算: (1)-31+41-65+73 (2)31-65+32-61 (3)-341-(-265)+3529、已知a =2,b =-3,c =-1,计算|a -b |+|b -c -a |+|3b -4c |. 10、“学雷锋活动月”活动中,对某小组做好事情况进行统计如下表姓名 小明 小红 小娟 小青 好事件数 18 16本人所做好事与人均好事的差值+3-4(1)完成上表.(2)谁做的好事最多,谁最少 (3)最多的比最少的多多少11、10名学生体检测体重,以50千克为基准,超过的数记为正,不足的数记为负,称得结果如下(单位:千克):2,3,-,-3,5,-8,,,8,-这10名学生的总体重为多少10名学生的平均体重为多少12、一辆货车从货场A 出发,向东走了2千米到达批发部B ,继续向东走千米到达商场C ,又向西走了千米到达超市D ,最后回到货场.(1)用一个单位长度表示1千米,以东为正方向,以货场为原点,画出数轴并在数轴上标明货场A ,批发部B ,商场C ,超市D 的位置.(2)超市D 距货场A 多远(3)货车一共行驶了多少千米专题五:有理数的乘除法1、若mn >0,则m ,n ( )A.都为正B.都为负C.同号D.异号2、若m 、n 互为相反数,则( )<0 >0 ≤0 ≥0 3、下列结论正确的是( )A.-31×3=1 B.|-71|×71=-491 C.-1乘以一个数得到这个数的相反数 D.几个有理数相乘,同号得正 4、如果两数之和等于零,且这两个数之积为负数,那么这两个数只能是( )A.两个互为相反数的数B.符号不同的两个数C.不为零的两个互为相反数的数D.不是正数的两个数 5、如果一个数的绝对值与这个数的商等于-1,则这个数是( )A.正数B.负数C.非正D.非负 6、如果abcd <0,a +b =0,cd >0,那么这四个数中负因数的个数至少有( )个 个 个 个 7、下列运算错误的是( )A.31÷(-3)=3×(-3)B.-5÷(-21)=-5×(-2) -(-2)=8+2 ÷3=0 8、在某地区,夏季高山上的温度从山脚起每升高100米平均降低 ℃,已知山脚的温度是24 ℃,山顶的温度是4 ℃,试问这座山的高度是 米; 9、计算:(241343671211-+-)×(-48) (1)121×75-(-75)×221+(-21)×75 (2)492524×(-5) (3)[432×(-145)+(-÷(-254)]×15110、.某班举办数学知识比赛,共分五个小组,其中四个小组的成绩如表所示,请问1 23 (1)这四个小组的总平均分比全班的平均分高还是低为什么专题六:有理数的乘方1、如果a 2=a ,那么a 的值为( )或0 D.-1 2、一个数的平方等于16,则这个数是( )A.+4B.-4C.±4D.±83、a 为有理数,则下列说法正确的是( )>0 -1>0 +1>0 +1>0 4、下列式子中,正确的是( )A.-102=(-10)×(-10)=3×2 C.(-21)3=-21×21×21 =325、(-2)3的底数是_______,结果是_______;-32的底数是_______,结果是_______. 6、n 为正整数,则(-1)2n=_______,(-1)2n +1=_______.7、一个数的平方等于这个数本身,则这个数为_______;一个数的立方与这个数的差为0,则这个数是_______. 8、质点P 从距原点1个单位的A 点处向远点方向跳动,第一次跳动到OA 的中点A 1处,第二次从A 1点跳动到OA 1的中点A 2处,第三次从A 2点跳动到OA 2的中点A 3处,如此不断跳动下去,则第n 次跳动后,该质点到原点O 的距离为_______。