x 2xy y
换元法化简思想:
设
1.已知
xy 2=3 =
=k
Z ,试求 4
则x=2k,y=3k,z=4k
代入换元
x+y-z
x+y+z
的值.
=1/9
例1.已(知 x +1x)2 =32,
求
1
x2 +x2
的值.
x2
1 x2
2
9
变: 已知 x2 – 3x+1=0 ,求 x2+
1
x2
的值.
x
x
变:已知 x+ 1 =3 ,求
3.分式值为 0 的条件: A=0且 B ≠0 A
4.分式 B > 0 的条件: A>0 ,B>0 或 A<0, B<0 分式 A < 0 的条件: A>0 ,B<0 或 A<0 ,B>0 B
【例1】下列代数式中:,是分式的有:
1
x , 1 x y, a b , x2 y2 , x y
2
ab x y x y
例析
将下列各组分别进行通分:
(1)(单单式) 1 , 1 ; 4a 2b 6a3b2c
(2)(单多式)
3 6x2
,
4x2
5 8x3
(3( ) 多多式) 1 , 1
;
x2 y 2 xy y 2
(4)
1 x2
x
,
x2
1 2x
1
整体代入法化简思想:
【例1】已知:1x
1 y
5
,求 2x 3xy 2y 的值.
5mnp 3q
1/2n2
(7)