探究点三:分式的通分
【例 3】 通分:
(1) c , 1 , a ;
ab c 2c2
【导学探究】 1.题(1)的最简公分母为
2abc2
.
解:(1) c , 1 , a 的最简公分母是 2abc2,
ab c 2c2
所以 c = c 2c2 = 2c3 ,
ab ab 2c2 2abc2
1 = 1 2abc = 2abc ,
公因式 的分式称为最简分式.化简分式时,通常要使结果为
最简分式或者整式.
4.通分
把几个异分母的分式分别化为与原来的分式相等的同分母的分式,叫分式的通分.
探究点一:分式的基本性质
【例 1】 利用分式的基本性质填空:
(1) 7xy = 7
5x2 y 5x
;(2)
x
x
y
=
x
x y y
x y
x
=
xy x2 x2 2xy y2
2.分式的基本性质
1.分式的基本性质
分式的分子与分母都乘(或都除以)同一个不等于零的 整式
,分式的值不
变.用式子表示为 A = A M , A = A M (其中 M 为不等于零的整式).
B BM B BM
2.约分
把一个分式的分子和分母的
公因式 约去,这种变形称为分式的约分.
3.最简分式 分子与分母没有
确定最简公分母的一般步骤:
1.(2018 灵宝期中)下列各式从左到右的变形不正确的是( D )
(A) 2 =- 2
3y 3y
(B) y = y
6x 6x
(C) 3x =- 3x
4 y 4 y
(D)- 8x = 8x
3y 3y