当前位置:文档之家› 与三角形的角有关模型之欧阳光明创编

与三角形的角有关模型之欧阳光明创编

与三角形的角有关模型之欧阳光明创编
与三角形的角有关模型之欧阳光明创编

与三角形有关的角

欧阳光明(2021.03.07)

基础知识点回顾:

1、三角形的内角:三角形的内角和为180°;

2、三角形的外角:三角形一边与另一边延长线组成的角;

三角形外角定理:三角形的一个外角等于与它不相邻的两个内角的和。

知识讲解概览:

1、“8”字模型

2、飞镖模型

3、内外角平分线模型

一、“8”字模型与飞镖模型

(1)“8”字模型

如图,线段AB与CD相交于点O,连接A、C,连接B、D,则有∠A+∠C=∠B+∠D

(2)飞镖模型

如图,则有∠A+∠B+∠C=∠ADC

例1:下图是一个五角星,求∠A+∠B+∠C+∠D+∠E的大小。

例2:如下图,BE平分∠ABC,DE平分∠ADC,BE与AD相交于点G,BC与DE相交于点H。求证:2∠E=∠A+∠C。

二、内外角平分线问题

(1)内角平分线+内角平分线

如图,在△ABC 中,点P 是∠ABC 和∠ACB 角平分线的交点,则

∠P=90°+21

∠A

(2)内角平分线+外角平分线

如图,在△ABC 中,点P 是∠ABC 和外角∠ACD 角平分线的交

点,则∠P=21

∠A

(3)外角平分线+外角平分线

如图,在△ABC 中,点P 是∠ABC 和外角∠ACB 角平分线的交

点,则∠P=90°-21

∠A

例3:在△ABC 中,AD ⊥BC ,AE 平分∠BAC ,AG ⊥AE ,CG 是外角∠ACF 的平分线,若∠G -∠DAE =60°,则∠ACB=

各种三角形边长的计算公式

各种三角形边长的计算公式 解三角形 解直角三角形(斜三角形特殊情况): 勾股定理 ,只适用于直角三角形(外国叫“毕达哥拉斯定理”) a^2+b^2=c^2, 其中 a 和 b 分别为直角三角形两直角边,c 为斜边 .勾股弦数是指一组能使勾股定理关系成立的三个正整数.比如:3,4,5. 他们分别是 3,4 和 5 的倍数 .常见的勾股弦数有: 3,4,5 ;6,8,10 ; 5,12,13;10,24,26; 等等 . 解斜三角形: 在三角形ABC a/SinA=b/SinB=中 , 角A,B,C c/SinC=2R 的对边分别为a,b,c. 则有 (R 为三角形外接圆半径 ) ( 1 )正弦定理 ( 2 )余弦定理 a^2=b^2+c^2-2bc*CosA b^2=a^2+c^2-2ac*CosB c^2=a^2+b^2-2ab*CosC注:勾股定理其实是余弦定理的一种特殊情况(.3)余弦定理变形公式cosA=(b^2+C^2-a^2)/2bC cosb=(a^2+c^2-b^2)/2aC cosC=(a^2+b^2-C^2)/2ab 斜三角形的解法: 已知条件定理应用一般解法 一边和两角(如a、B、C)正弦定理由A+B+C=180˙,求角A,由正弦定理求出 b 与 c,在有解时有一解. 两边和夹角(如 a、b 、c) 余弦定理由余弦定理求第三边c,由正弦定理求出小边 所对的角 ,再由 A+B+C=180˙求出另一角,在有解时有一解. 三边 (如 a、 b、 c) 余弦定理由余弦定理求出角 A 、B,再利用 A+B+C=180˙,求出角 C 在有解时只有一解 .

两边和其中一边的对角( 如 a 、 b 、 A)正弦定理由正弦定理求出角B,由A+B+C=180˙求出角C,在利用正弦定理求出C边,可有两解、一解或无解. 勾股定理(毕达哥拉斯定理) 内容:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平 方.几何语言:若△ABC 满足∠ABC=90 °,则 AB2+BC 2=AC 2 勾股定理的逆定理也 成立 ,即两条边长的平方之和等于第三边长的平方 ,则这个三角形是直角三角形几 何语言:若△ABC 满足 ,则∠ABC=90 °. [3] 射影定理(欧几里得定理) 内容:在任何一个直角三角形中 ,作出斜边上的高 ,则斜边上的高的平方等于高所 在斜边上的点到不是两直角边垂足的另外两顶点的线段长度的乘积 .几何语言:若△ABC 满足∠ABC=90 °,作 BD ⊥AC,则 BD2 =AD ×DC 射影定理的拓展:若△ ABC满足∠ABC=90°,作BD ⊥ AC,(1)AB 2 =BD ·BC(2)AC 2 ;=CD ·BC (3)ABXAC=BCXAD 正弦定理 内容:在任何一个三角形中,每个角的正弦与对边之比等于三角形面积的两倍与 三边边长和的乘积之比几何语言:在△ABC 中,sinA/a=sinB/b=sinC/c=2S三 角形 /abc结合三角形面积公式,可以变形为a/sinA=b/sinB=c/sinC=2R(R是 外接圆半径) 余弦定理 内容:在任何一个三角形中,任意一边的平方等于另外两边的平方和减去这两边 的 2 倍乘以它们夹角的余弦几何语言:在△ABC中,a2=b 2+c 2-2bc×cosA此定 理可以变形为: cosA= ( b 2+c 2-a 2 )÷2bc

三角形中的边角关系

三角形中的边角关系 1、 A+B+C=π , 2C = 2 π-( 2A + 2 B ) 2、 sinC=sin(A+B), cosC=-cos(A+B) sin 2 C =cos( 2 A +2 B ), cos 2 C =sin( 2 A + 2 B ), tan 2 C =cot( 2 A + 2 B ) sin2C=-sin2(A+B), cos2C=cos2(A+B) 3、 三角形面积公式 S ?= 12 absinC= 12 bcsinA= 12 casinB p= 12 (a+b+c ) 4、 正弦定理sin sin sin a b c A B C = = =2R sinA ?sinB ? sinC ?a = b ? c sinA= 2a R ,sinB=2b R ,sinC= 2c R a=2RsinA , b=2RsinB , c=2RsinC 适用类型:AAS →S ,SSA →A (2,1,0解) 5、余弦定理2222cos a b c bc A =+- 2 2 2 co s 2b c a A b c +-= 适用类型:SSS →A ,SAS →S ,AAS →S(2,1,0解) 5、 判定三角形是锐角直角钝角三角形 设c 为三角形的最大边 2c <2a +2b ??ABC 是锐角三角形 2 c =2 a +2 b ??ABC 是直角三角形 2 c >2 a +2 b ??ABC 是钝角三角形 6、 tanA+tanB+tanC=tanAtanBtanC cotAcotB+cotBcotC+cotCcotA=1 tan 2 A tan 2 B +tan 2 B tan 2 C +tan 2 C tan 2 A =1 7* 、若三角形三内角成等差数列,则B=3 π 三边成等差数列,则0

三角形边角边面积公式

1 第一课:三角形“边角边”面积公式 1、借助“单位菱形面积”探索正弦定义; 2、运用正弦定义探索三角形的“边角边”面积公式; 3、运用“正弦定义、三角形的“边角边”面积公式”解决简单问题. 问题引入:求下面两个三角形的面积: 提问:已知“边角边”,你会求三角形的面积吗? 一、认识单位菱形的面积 基本概念: 1、四边都等于1的正方形叫单位正方形; 2、四边都等于1的菱形叫单位菱形 二、探索平行四边形的面积 1、如何计算长方形的面积; 2、如何计算平行四边形的面积 归纳: 三、核心概念:正弦定义 观察:单位菱形的面积与一个角的大小关系。 归纳:单位菱形的面积由其中一个角决定。 定义:设∠A 是单位菱形ABCD 的一个内角,单位菱形ABCD 的面积叫做∠A 的 ,记作: 。 即:._________________________________________====单位菱形 S A C DA= 60.0° B 3DA= 90.0°☆学习流程 ☆学习目标 D 11

2 练习1:问题解决:计算平行四边形的面积 A C DA= 60.0° 四、等角(或补角)的正弦 结论:等角(或补角)的正弦值 . [练习]1.填空: sin120sin( )°=° ,sin 45sin()°=°; 如图1,sin 1sin D= . 五、三角形边角边面积公式 1. 平行四边形的面积公式: 结论:平行四边形的面积= 一组邻边和它们夹角的 的乘积. 2.三角形“边角边”面积公式: 结论:三角形的面积=两边和它们夹角的 的乘积的 . 用“边角边”面积公式表示下面三个三角形的面积: A C [练习]2.三角形的两条边分别为3和6,这两条边的夹角为150°,三角形的面积为______. 3.如图2,分别以△ABC 的边AB 、AC 为边作正方形ABDE 、ACFG ,△AEG 、△ABC 的面积分别为1S ,2S .求证:12=S S .

三角形边长的计算公式

解三角形 解直角三角形(斜三角形特殊情况): 勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”)a^2+b^2=c^2,其中a和b 分别为直角三角形两直角边,c为斜边.勾股弦数是指一组能使勾股定理关系成立的三个正整数.比如:3,4,5.他们分别是3,4和5的倍数.常见的勾股弦数有:3,4,5;6,8,10;5,12,13;10,24,26;等等. 解斜三角形: 在三角形ABC中,角A,B,C的对边分别为a,b,c.则有(1)正弦定理a/SinA=b/SinB= c/SinC=2R (R为三角形外接圆半径) (2)余弦定理a^2=b^2+c^2-2bc*CosA b^2=a^2+c^2-2ac*CosB c^2=a^2+b^2-2ab*CosC 注:勾股定理其实是余弦定理的一种特殊情况.(3)余弦定理变形公式cosA=(b^2+C^2-a^2)/2bC cosb=(a^2+c^2-b^2)/2aC cosC=(a^2+b^2-C^2)/2ab 斜三角形的解法: 已知条件定理应用一般解法 一边和两角(如a、B、C)正弦定理由A+B+C=180˙,求角A,由正弦定理求出b与c,在有解时有一解. 两边和夹角(如a、b、c) 余弦定理由余弦定理求第三边c,由正弦定理求出小边所对的角,再由A+B+C=180˙求出另一角,在有解时有一解. 三边(如a、b、c) 余弦定理由余弦定理求出角A、B,再利用A+B+C=180˙,求出角C 在有解时只有一解. 两边和其中一边的对角(如a、b、A) 正弦定理由正弦定理求出角B,由A+B+C=180˙求出角C,在利用正弦定理求出C边,可有两解、一解或无解.

三角形的角及倒角模型

三角形的角及倒角模 型 Revised on November 25, 2020

第二讲三角形的角及倒角模型 1、如图1,求证:AB+AE>BC+CD+DE 1 2、如图2,AC、BD是四边形ABCD的对角线,且AC、BD相交于点O,求证:AC+BD> 2(AB+BC+CD+AD)。 3、如图3,⊿ADE和⊿ABC中,∠EAD=∠AED=∠BAC=∠BCA=45°又有∠BAD=∠BCF, (1)求∠ECF+∠DAC+∠ECA的度数; (2)判断ED与FC的位置关系,并对你的结论加以证明。 4、求∠a的度数。 5、如图5,∠A=30°,求∠B+∠C+∠D+∠E的度数。 6、将图6-1中线段AD上一点E(点A、D除外)向下拖动,依次可得图6-2、图6-3、图6-4,分别探究图6-2、图6-3、图6-4中∠A、∠B、∠C、∠D、∠E(∠AED)之间有什么关系 7、如图7,在⊿ABC中D是BC上任意一点,E是AD上任意一点,试说明:AB+AC>BE+EC。 8、如图8,已知DM平分∠ADC,BM平分∠ABC,且∠A=27°,∠M=33°,则∠C =。 9、如图9所示,点E和点D分别在⊿ABC的边BA和CA的延长线上,CF、EF分别平分∠ACB和∠AED,试探索∠F与∠B,∠D的关系:。

10、如图10,⊿ABC的一条外角平分线是CE,F是CA延长线上一点,FG∥EC交AB于点G,已知∠DCE=50°,∠ABC=40°,求∠FGA的度数。 11、如图11,在⊿ABC中,∠B=∠C,FD⊥BC,ED⊥AB,∠AFD=158°,则∠EDF =。 12、如图12-1,BP、CP是任意⊿ABC的∠B、∠C的角平分线。 (1)探求∠BPC与∠A的数量关系。 (2)∠BPC能等于90度吗说明理由。 (3)当∠A为多少度时,∠BPC=2∠A (4)把图12-1中的⊿ABC变成图12-2中的四边形ABCD,BP、CP仍然是∠B、∠C的角平分线,猜想∠BPC与∠A,∠D有何数量关系(只写出猜想结果,不写说理过程)。 13、如图13,在⊿ABC中,∠ABC的两个外角平分线交于点F,探索∠F和∠A的关系。 14、如图14,在⊿ABC中,∠ABC的平分线与∠ABC的外角平分线交于点A 1 ,若∠A= 40°,则∠A 1为度;同样的方法作出∠A 2 ,则∠A 2 的度数是度;依次下 去,当作出∠A n 时,它的度数是度。 15、如图15,由图15-1的⊿ABC沿DE折叠得到图15-2;图3;图4。(1)如图2,猜想∠BDA+CEA与∠A的关系,并说明理由; (2)如图3,猜想∠BDA+CEA与∠A的关系,并说明理由; (3)如图4,猜想∠BDA+CEA与∠A的关系,并说明理由;

三角形的边与角试题与答案

三角形的边与角 一、选择题 1. (2016·湖北咸宁)如图,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论: ①BC DE =21 ; ② S S COB DOE △△=21; ③AB AD =OB OE ; ④ S S ADE ODE △△=31. 其中正确的个数有( ) A. 1个 B. 2个 C.3个 D. 4个 (第1题) 【考点】三角形中位线定理,相似三角形的判定和性质. 【分析】①DE 是△ABC 的中位线,根据三角形的中位线等于第三边长度的一半可判断;②利用相似三角形面积的比等于相似比的平方可判定;③利用相似三角形的性质可判断;④利用相似三角面积的比等于相似比的平方可判定. 【解答】解:①∵DE 是△ABC 的中位线, ∴DE=21 BC ,即BC DE =21 ; 故①正确; ②∵DE 是△ABC 的中位线, ∴DE ∥BC ∴△DOE ∽△COB ∴ S S COB DOE △△=(BC DE )2=(21)2=41 , 故②错误; ③∵DE ∥BC ∴△ADE ∽△ABC ∴AB AD =BC DE △DOE ∽△COB ∴OB OE =BC DE ∴AB AD =OB OE ,

故③正确; ④∵△ABC 的中线BE 与CD 交于点O 。 ∴点O 是△ABC 的重心, 根据重心性质,BO=2OE ,△ABC 的高=3△BOC 的高, 且△ABC 与△BOC 同底(BC ) ∴S △ABC =3S △BOC , 由②和③知, S △ODE =41 S △COB ,S △ADE =41 S △BOC , ∴ S S ADE ODE △△=31. 故④正确. 综上,①③④正确. 故选C. 【点评】本题考查了三角形中位线定理,相似三角形的判定和性质.要熟知:三角形的中位线平行于第三边并且等于第三边长度的一半;相似三角形面积的比等于相似比的平方. 2. (2016·四川广安·3分)下列说法: ①三角形的三条高一定都在三角形内 ②有一个角是直角的四边形是矩形 ③有一组邻边相等的平行四边形是菱形 ④两边及一角对应相等的两个三角形全等 ⑤一组对边平行,另一组对边相等的四边形是平行四边形 其中正确的个数有( ) A .1个 B .2个 C .3个 D .4个 【考点】矩形的判定;三角形的角平分线、中线和高;全等三角形的判定;平行四边形的判定与性质;菱形的判定. 【分析】根据三角形高的性质、矩形的判定方法、菱形的判定方法、全等三角形的判定方法、平行四边形的判定方法即可解决问题. 【解答】解:①错误,理由:钝角三角形有两条高在三角形外.

三角形边长公式

三角形边长公式 解三角形 解直角三角形(斜三角形特殊情况): 勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”)a^2+b^2=c^2, 其中a和b分别为直角三角形两直角边,c为斜边。勾股弦数是指一组能使勾股定理关系成立的三个正整数。比如:3,4,5。他们分别是3,4和5的倍数。常见的勾股弦数有:3,4,5;6,8,10;5,12,13;10,24,26;等等. 解斜三角形: 在三角形ABC中,角A,B,C的对边分别为a,b,c. 则有(1)正弦定理 a/SinA=b/SinB= c/SinC=2R (R为三角形外接圆半径) (2)余弦定理 a^2=b^2+c^2-2bc*CosA b^2=a^2+c^2-2ac*CosB c^2=a^2+b^2-2ab*CosC 注:勾股定理其实是余弦定理的一种特殊情况。(3)余弦定理变形公式cosA=(b^2+C^2-a^2)/2bC cosb=(a^2+c^2-b^2)/2aC cosC=(a^2+b^2-C^2)/2ab 斜三角形的解法: 已知条件定理应用一般解法 一边和两角(如a、B、C)正弦定理由A+B+C=180˙,求角A,由正弦定理求出b与c,在有解时有一解。 两边和夹角(如a、b、c) 余弦定理由余弦定理求第三边c,由正弦定理求出小边所对的角,再由A+B+C=180˙求出另一角,在有解时有一解。 三边(如a、b、c) 余弦定理由余弦定理求出角A、B,再利用A+B+C=180˙,求出角C 在有解时只有一解。 两边和其中一边的对角(如a、b、A) 正弦定理由正弦定理求出角B,由 A+B+C=180˙求出角C,在利用正弦定理求出C边,可有两解、一解或无解。 勾股定理(毕达哥拉斯定理) 内容:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方。几何语言:若△ABC满足∠ABC=90°,则AB2+BC2=AC2勾股定理的逆定理也成立,即两条边长的平方之和等于第三边长的平方,则这个三角形是直角三角形几何语言:若△ABC满足,则∠ABC=90°。 [3]射影定理(欧几里得定理) 内容:在任何一个直角三角形中,作出斜边上的高,则斜边上的高的平方等于高所在斜边上的点到不是两直角边垂足的另外两顶点的线段长度的乘积。几何语言:若△ABC满足∠ABC=90°,作BD⊥AC,则BD2=AD×DC 射影定理的拓展:若△ABC满足∠ABC=90°,作BD⊥AC,(1)AB2=BD·BC (2)AC2;=CD·BC (3)ABXAC=BCXAD 正弦定理 内容:在任何一个三角形中,每个角的正弦与对边之比等于三角形面积的两倍与三边边长和的乘积之比几何语言:在△ABC中,sinA/a=sinB/b=sinC/c=2S

三角形的角及倒角模型

第二讲 三角形的角及倒角模型 1、 如图1,求证:AB +AE >BC +CD +DE 2、 如图2,AC 、BD 是四边形ABCD 的对角线,且AC 、BD 相交于点O ,求证:AC +BD >2 1(AB +BC +CD +AD )。 3、 如图3,⊿ADE 和⊿ABC 中,∠EAD =∠AED =∠BAC =∠BCA =45°又有∠BAD =∠BCF , (1) 求∠ECF +∠DAC +∠ECA 的度数; (2) 判断ED 与FC 的位置关系,并对你的结论加以证明。 4、 求∠a 的度数。 5、如图5,∠A =30°,求∠B +∠C +∠D +∠E 的度数。 6、将图6-1中线段AD 上一点E (点A 、D 除外)向下拖动,依次可得图6-2、图6-3、图6-4,分别探究图6-2、图6-3、图6-4中∠A 、∠B 、∠C 、∠D 、∠E (∠AED )之间有什么关系? 7、如图7,在⊿ABC 中D 是BC 上任意一点,E 是AD 上任意一点,试说明:AB +AC >BE +EC 。 8、如图8,已知DM 平分∠ADC ,BM 平分∠ABC ,且∠A =27°,∠M =33°,则∠C = 。 9、如图9所示,点E 和点D 分别在⊿ABC 的边BA 和CA 的延长线上,CF 、EF 分别平分∠ACB 和∠AED ,试探索∠F 与∠B ,∠D 的关系: 。 10、如图10,⊿ABC 的一条外角平分线是CE ,F 是CA 延长线上一点,FG ∥EC 交AB 于点G ,已知∠DCE =50°,∠ABC =40°,求∠FGA 的度数。 11、如图11,在⊿ABC 中,∠B =∠C ,FD ⊥BC ,ED ⊥AB ,∠AFD =158°,则∠EDF

三角形边角关系-第3讲的角与边学

第三讲三角形的角与边 一、基础知识 本讲重点介绍三角形的边、角不等关系,包括同一个三角形中的边、角不等关系以及不同三角形中的边、角不等关系. 1.边与边的关系 (1)在同一个三角形中两边之和大于第三边,两边之差小于第三边(三边满足什么条件时,三角形必然存在?); (2)勾股定理:即在直角三角形中两条直角边的平方和等于斜边的平方. 2.角与角的关系 (1)三角形的内角和为180?; (2)直角三角形中两锐角互余; (3)三角形的一个外角大于任何一个与它不相邻的内角; (4)三角形的一个外角等于与它不相邻的两内角之和. 3.边和角的关系 (1)在同一个三角形中,大边对大角,大角对大边; (2)在两个三角形中,如果有两条边对应相等,那么夹角大的所对的边也大;反之也成立,即在两个三角形中,如果有两条边对应相等,那么第三边大,则所对的角也大. 4.不等式变形时常用的性质 (1)若a>b,c>d,则a+c>b+d; (2)若a>b,c>d,则a-d>b-c; (3)若a>b,c>0,则ac>bc; 若a>b,c<0,则acb>0,则11 a b < ; (5)总量大于任何一个部分量. 5.三角形中的不等关系根源: (1)两点之间线段最短; (2)垂线段最短. 二、例题 第一部分边的问题 例1. (★★希望杯训练题)将三边长为a,b,c的三角形记作(a,b,c).写出周长为20,各边长为正整数的所有不同的三角形.

例2. (★★★ 2000年希望杯竞赛题)一个三角形的三条边的长分别是a,b,c(a,b,c都是质数),且a+b+c=16,则这个三角形是() A.直角三角形 B.等腰三角形 C.等边三角形 D.直角三角形或等腰三角形 例3. (★★★1998年江苏省竞赛题)在不等边三角形中,如果有一条边长等于另两条边长的平均值,那么最大边上的高与最小边上的高的比值的取值范围是( ) A.3 1 4 k << B. 1 1 3 k << C.12 k << D. 1 1 2 k << 例4. (★★★1997年北京市竞赛题)等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm 两部分,则这个等腰三角形的底边的长为( ) A.17cm B.5cm C.17cm或5cm D.无法确定 例5. (★★★)如图3-1,已知P为三角形ABC内一点, 求证: 1 () 2 AB AC BC PA PB PC AB AC BC ++<++<++. 例6. (★★★第三十二届美国邀请赛试题)不等边三角形ABC的两条高长度为4和12,若第三条高的长也是整数,试求它的长.

三角形的四大模型

三角形的四大模型 令狐采学 一、三角形的重要概念和性质 1、三角形的内角和定理:三角形的内角和等于180° 2、三角形的外角和定理:三角形的一个外角等于和它不相邻的两个内角的和 3、三角形角平分线(角分线)中线(分面积等)高(直角三角形两锐角互余) 二、八字模型: 证明结论:∠A+∠B=∠C+∠D 三、飞镖模型: 证明结论:1.∠BOC=∠A+∠B+∠C 四、角分线模型: 如图,BD、CD分别是∠ABC和∠ACB的角平分线,BD、CD相交于点D, 试探索∠A与∠D之间的数量关系,并证明你的结论. 如图,△ABC两个外角(∠CAD、∠ACE)的平分线相交于点P. 探索∠P与∠B有怎样的数量关系,并证明你的结论. 题型一、三角形性质等应用

1.如图,小亮从A点出发前进10m,向右转15°,再前进10m,又向右转15°,这样一直走下去,他第一次回到出发点A时,一共走了米数是() A.120 B.150 C.240 D.360 2.如图所示是重叠的两个直角三角形.将其中一个直角三角形沿BC方向平移得到△DEF. 如果AB=8cm,BE=4cm,DH=3cm,则图中阴影部分面积为cm2. 3.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点, 且S△ABC=4cm2,则S阴影=cm2. 4.A、B、C是线段A1B,B1C,C1A的中点,S△ABC的面积是1,则S△A1B1C1的面积. 5.一个四边形截去一个角后,剩下的部分可能是什么图形?画出所有可能的图形,并分别说出内角和和外角和变化情况.6.如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角) (1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;

三角形的边与角的认识

三角形三大专题 知识互联网 题型一:整数边三角形 思路导航 1、边长都是整数的三角形,称为整数边三角形. 2、若三角形三边的长为a ,b ,c 且a b c ≤≤,则 ⑴ 三角形的最小的边a 满足:03 a b c a ++<≤,当且仅当a b c ==时,等号成立; ⑵ 三角形的最大的边c 满足:32 a b c a b c c ++++< ≤,当且仅当a b c ==时,等号成立. 方程(特别是不定方程)和不等式是解决整数边三角形或内角是整数的三角形的常用工具.运用这一工具时,枚举法(树状图)则是常用的方法,但要注意对求得的结果进行检验. 例题精讲 【引例】 已知等腰三角形的周长是8,边长是整数,则腰长是多少? 典题精练 【例1】 ⑴若三角形的周长为60,求最大边的范围. ⑵设m 、n 、p 均为自然数,且m n p ≤≤,15m n p ++=,试问以m 、n 、p 为边长 的三角形共有多少个? 【例2】 ⑴三角形三边长a 、b 、c 都是整数,且a b c <<,若7b =,则有 个满足题意的 三角形. ⑵三角形三边长a 、b 、c 都是整数,且a b c <≤,若7b =,则有 个满足题意的三角形. ⑶三角形三边长a 、b 、c 都是整数,且a b c ≤≤,若7b =,则有 个满足题意的三角形.

题型二:多边形及其内、外角和 思路导航 多边形及其内、外角和 (一)多边形及其内角和 1.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形. ① 多边形的顶点、边、内角、外角、对角线 内角:A ∠、ABC ∠、C ∠、CDE ∠、E ∠…… 外角:α∠ 对角线:连接不相邻两个顶点的线段是多边形的对角线.如BD . n 边形对角线条数: (3) 2 n n -条 ② 凸、凹多边形:多边形的每一边都在任何一边所在直线的同一侧,叫做凸多边形;反之叫做凹多边形.(如图) 图(a )为凸多边形 图(b )为凹多边形 ( a ) (b ) ③ 正多边形:各个角都相等,各条边都相等的多边形叫做正多边形 (如图正六边形) AB=BC=CD=DE=EF=AF A B C D E F ∠=∠=∠=∠=∠=∠ 2.多边形内角和:n 边形内角和等于(2)180n -?° ① 多边形内角和公式推理方法一: 过n 边形一个顶点,连对角线,可以得(3)n -条对角线,并且将n 边形分成 (2)n -个三角形,这(2)n -个三角形的内角和恰好是多边形的内角和. 将n 边形分成()2n -个三角形 ② 多边形内角和公式推理方法二: 在n 边形边上取一点与各顶点相连,得(1)n -个三角形,n 边形内角和等于这 (1)n -个三角形内角和减去在所取的一点处的一个平角,即 (1)180180(2)180n n -?-=-?°°° 将n 边形分成()1n -个三角形 F E D C B A

三角形的角及倒角模型

第二讲三角形的角及倒角模型 1、如图1,求证:AB+AE>BC+CD+DE 2、如图2,AC、BD是四边形ABCD的对角线,且AC、BD相交于点O,求证:AC+BD1。AD)BC+CD+>(AB+2=∠BADBCA=45°又有∠中,∠EAD=∠AED=∠BAC=∠ 3、如图3,⊿ADE和⊿ABC ,BCF 的度数;DAC +∠ECA求∠(1) ECF+∠的位置关系,并对你的结论加以证明。ED与FC(2)判断的度D+∠EB=30°,求∠+∠C+∠ 4、求∠a的度数。 5、如图5,∠A 数。、、图6-3D除外)向下拖动,依次可得图6-2上一点 6、将图6-1中线段ADE(点A、)之(∠AEDC、∠D、∠E6-2、图6-3、图6-4中∠A、∠B、∠,分别探究图图6-4 间有什么关系?AC+是EAD上任意一点,试说明:AB、如图7,在⊿ABC中D是BC上任意一点,7 。>BE +ECC°,则∠M=33平分∠ABC,且∠A=27°,∠DM8、如图8,已知平分∠ADC,BM =。分别、EFBA的边和CA的延长线上,CF99、如图所示,点E和点D分别在⊿ABC 。∠D的关系: B平分∠ACB和∠AED,试探索∠F与∠, AB∥EC交,CEF是CA延长线上一点,FG,⊿10、如图10ABC的一条外角平分线是的度数。=40°,求∠FGA°,∠,已知∠于点GDCE=50ABCEDF°,则∠158=AFD,∠AB⊥ED,BC⊥FD,C=∠B中,∠ABC,在⊿11、如图11.=。 12、如图12-1,BP、CP是任意⊿ABC的∠B、∠C的角平分线。 (1)探求∠BPC与∠A的数量关系。

(2)∠BPC能等于90度吗?说明理由。 (3)当∠A为多少度时,∠BPC=2∠A? (4)把图12-1中的⊿ABC变成图12-2中的四边形ABCD,BP、CP仍然是 ∠B、∠C的角平分线,猜想∠BPC与∠A,∠D有何数量关系?(只写出猜想结果,不写说理过程)。 13、如图13,在⊿ABC中,∠ABC的两个外角平分线交于点F,探索∠F和∠A的关系。 14、如图14,在⊿ABC中,∠ABC的平分线与∠ABC的外角平分线交于点A,若∠A1=40°,则∠A为度;同样的方法作出∠A,则∠A的度数是度;221依次下去,当作出∠A时,它的度数是度。 、如图15,由图15-1的⊿ABC沿DE折叠得到图15-2;图3; n15 图4。 (1)如图2,猜想∠BDA+CEA与∠A的关系,并说明理由; (2)如图3,猜想∠BDA+CEA与∠A的关系,并说明理由; (3)如图4,猜想∠BDA+CEA与∠A的关系,并说明理由; 16、如图16,已知⊿ABC,将点A向下拖动,依次可得到图1、图2、图3。分别探究图中 ∠A、∠B、∠C、∠D、∠E有什么关系? 17、(1)小明有两根5㎝、8㎝的木棒,他想以这两根木棒为边做一个等 腰三角形,)长的木棒。还需再选用一根(. A、5㎝ B、8㎝ C、5㎝或8㎝ D、大于3㎝且小于13㎝的任意长

三角形中边与角之间的不等关系

三角形中边与角之间的不等关系 《三角形中边与角之间的不等关系》教学设计教学目标: 1. 通过 实验探究发现:在一个三角形中边与角之间的不等关系; 2. 通过实验探究和推理论证,发展学生的分析问题和解决问题的能力;通过探索、总结形成利用图形的翻折等变换是解决几何问题常见的策略; 3. 提供动手操作的机会,让学生体验数学活动中充满着探索与创新,激发学生学习几何的兴趣。教学重点:三角形中边与角之间的不等关 系及其探究过程。教学难点:如何从实验操作中得到启示,写成几 何证明的表达。教具准备:三角形纸片数张、剪刀、圆规、三角板等。教学过程一、知识回顾 1. 等腰三角形具有什么性质? 2. 如何判定一个三角形是等腰三角形?从这两条结论来看,今后要在同 一个三角形中证明两个角相等,可以先证明它们所对的边相等;同样要证明两条边相等可以先证明它们所对的角相等。二、引入新课问题:在三角形中不相等的边所对的角之间又有怎样的大小关系呢?或者不相等的角所对的边之间大小关系又怎样?方法回顾:在探究 “等边对等角”时,我们采用将三角形对折的方式,发现了“在三角形中相等的边所对的角相等”,从而利用三角形的全等证明了这些性质。现在请大家拿出三角形的纸片用类似的方法探究今天的问题。三.探究新知实验与探究1:在△ABC中,如果AB>AC,那么我们可以将△ABC沿∠BAC的平分线AD折叠,使点C落在AB边上的点E处,即AE=AC,这样得到∠AED=∠C,再利用∠AED是△BDE的外角的关系得到∠AED>∠B,从而得到∠C>∠B。由上面的操作过程得到启示, 请写出证明过程。(提示:作∠BAC的平分线AD,在AB边上取点E,使AE=AC,连结DE。)形成结论1:在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大。思考:是否还 有不同的方法来证明这个结论? 实验与探究2:在△ABC中,如果∠C>∠B,那么我们可以将△ABC沿BC的垂直平分线MN折叠,使点B落在点C上,即∠MCN=∠B,于是MB=MC,这样AB=AM+MB=AM+MC>AC. 由上面的操作过程得到启示,请写出证明过程。 形成结论2:在一个三角形中,如果两个角不等,那么它们所对的边

初中奥数讲义_三角形的边与角附答案

三角形的边与角 三角形是最基本的图形之一,是研究其他复杂图形的基础,三角形的三边相互制约,三个内角之和为定值,边与角之间有密切的联系(如大角对大边、大边对大角等),反映三角形的边与角关联的基本知识有:三角形三边关系定理及推论、三角形内角和定理及推论等,它们在线段。角度的计算、图形的计数等方面有广泛的应用. 解与三角形的边与角有关的问题时,往往要用到数形结合及分类讨论法,即用代数方法(方程、不等式)解几何计算题及简单的证明题,按边或角对三角形进行分类. 熟悉以下基本图形、并证明基本结论: (1) ∠l +∠2=∠3+∠4; (2) 若BD 、CO 分别为∠ABC 、∠ACB 的平分线,则∠BOC=90°+ 21∠A ; (3) 若BO 、CO 分别为∠DBC 、∠ECB 的平分线,则∠BOC=90°- 21∠A ; (4) 若BE 、CE 分别为∠ABC 、∠ACD 的平分线,则∠E= 2 1∠A . 注: 中线、角平分线、高是三角形中的重要线段,它们的差别在于高随着三角形形状的不同,可能在三角内部、边上或外部. 代数法解几何计算问题的基本思路是通过设元,运用几何知识建立方程(组)、不等式(组),将问题转化为解方程(组)或解不等式(组). 例题求解 【例1】 在△ABC 中,三个内角的度数均为整数,且∠A<∠B<∠C ,4∠C =7∠A ,则∠B 的度数为 .(北京市竞赛题) 思路点拨 设∠C =x °,根据题设条件及三角形内角和定理把∠A 、∠B 用x 的代数式表示,建立关于x 的不等式组. 【例2】以1995的质因数为边长的三角形共有( ) A .4个 B .7个 C .13个 D .60个 (河南省竞赛题) 思路点拨 1995=3×5×7×19,为做到计数的准确,可将三角形按边分类,注意三角形三边应满足的

直角三角形的边角关系--知识点

直角三角形的边角关系知识考点 知识讲解: 1.锐角三角函数的概念 如图,在ABC 中,∠C 为直角,则锐角A 的各三角 函数的定义如下: (1)角A 的正弦:锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA , 即sinA =a c (2)角A 的余弦:锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA , 即cosA =b c (3)角A 的正切:锐角A 的对边与邻边的比叫做∠A 的正切,记作t an A , 即t an A =a b (4)角A 的余切:锐角A 的邻边与对边的比叫做∠A 的余切,记作c ot A , 即c ot A =b a 2.直角三角形中的边角关系 (1)三边之间的关系:a 2+b 2=c 2 (2)锐角之间的关系:A +B =90° (3)边角之间的关系: sinA =cosB =a c , cosA =sinB =b c t an A =c ot B =a b , cot A =t an B =b a

3.三角函数的关系 (1)同角的三角函数的关系 1)平方关系:sinA2+cosA2=1 2)倒数关系:t an A·c ot A=1 3)商的关系:t an A=sinA cosA ,c ot A=cosA sinA (2)互为余角的函数之间的关系 sin(90°-A)=cosA,cos(90°-A)=sinA t an(90°-A)=c ot A, cot(90°-A)=t an A 4.一些特殊角的三角函数值

5.锐角α的三角函数值的符号及变化规律. (1)锐角α的三角函数值都是正值 (2)若0<α<90°则sinα,tanα随α的增大而增大,cosα,cotα随α的增大而减小. 6.解直角三角形 (1)直角三角形中的元素:除直角外,共有5个元素,即3条边和2个锐角. (2)解直角三角形:由直角三角形中除直角外的已知元素,求出所有未知的元素的过程叫做解直角三角形. 7.解直角三角形的应用, 解直角三角形的应用,主要是测量两点间的距离,测量物体的高度等,常用到下面几个概念: (1)仰角、俯角 视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角 (2)坡度=坡面的铅直高度h与水平宽度l的比叫做坡度,常用字母i表示, 即i=h l (3)坡角:坡面与水平面的夹角叫做坡角,用字母α表示,则tanα=i=h l (4)方位角:从某点的指北方向线,按顺时针方向转到目标方向线所成的角.

八年级三角形边角关系 经典例题

1、 如图,BE 是∠ABD 的平分线,CF 是∠ACD 的平分线,BE 、CF 相交于点G,∠BDC=140°, ∠BGC=110°。求∠A 的度数. 2、如图,已知P 是△ABC 内一点,连结AP,PB,PC 求证:(1)PA+PB+PC > 2 1(AB+AC+BC) (2)PA+PB+PC < AB+AC+BC 3、如图1,△ABC 中,点P 是∠ABC 与∠ACB 平分线的交点. (1)求∠P 与∠A 有怎样的大小关系? (2)如图2,点P 是∠CBD 与∠BCE 平分线的交点,求∠P 与∠A 的关系. (3)如图3,点P 是∠ABC 与∠ACF 平分线的交点,求∠P 与∠A 的关系. 4、如图1,在△ABC 中,AD ⊥BC,AE 是角平分线, (1)求∠DAE 与∠B 、∠C 之间的关系; (2)如图2,AE 是∠BAC 的角平分线,FD 垂直于BC 于D,求∠DFE 与∠B 、∠C 之间的关系. (3)如图3,当点F 在AE 延长线上时,FD 仍垂直于BC 于D ,继续探讨∠DFE 与∠B 、∠C 的关系 E G A B D C F 十一章经典例题 图1 图2 F 图3

5、如图△ABC中, ∠BAD=∠CBE=∠ACF, ∠ABC=50°,∠ACB=62°,求∠DFE的大小. 6、△ABC中,AD、BE、CF是角平分线,交点是点G,GH⊥BC 求证:∠BGD=∠CGH. 7、如图,∠xOy=90°,点A、B分别在坐标轴Ox、Oy上移动,BF是∠ABP的平分线,BF的反向延 长线与∠OAB的平分线交于点C,求证∠ACB的度数是定值. 8、在平面直角坐标系中,点O为坐标原点,点A在第一象限, 点B是x正半轴上一点。过点O做OD∥AB,∠BAO的平分线与 ∠MOD的平分线相交于点Q, 求 AQO AON ∠ ∠ 的值 9、直角坐标系中,OP平分∠XOY,B为Y轴正半轴上一点,D为第四象限内一点,BD交x轴 于C,过D作DE∥OP交x轴于点E,CA平分∠BCE交OP于A,∠BDE的平分线交OP 于G,交直线AC于M,如图 求证2OGD OED OAC ∠-∠ ∠ 为定值 E D C B A F G A B C D E F H M D B A Q N y x O

三角形的边和角练习题

3 题图⑥⑤④③② ①6题图 7题图 5题图 D D F D E B C C B B C 三角形的边和角练习题 1、下列长度的三条线段能组成三角形的是( ) A 、3,4,8 B 、5,6,11 C 、1,2,3 D 、5,6,10 2、长为11,8,6,4的四根木条,选其中三根组成三角形,有____种选法,它们分别是_________________________________________. 3、下列图形中具有稳定性的有( )个 A 、2 B 、3 C 、4 D 、5 4、等腰三角形两边长分别为3,7,则它的周长为( ) A 、13 B 、17 C 、13或17 D 、不能确定 5、如图,BD=DE=EF=FC ,那么,A E 是 _____ 的中线。 6、如图,BD=1 2 B C ,则BC 边上的中线为 ______,ABD S ?=__________。 7、如图,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且ABC S ?= 42cm ,则S 阴影等于( )。 A .22cm B. 12cm C. 12 2 cm D. 14 2 cm 8、△ABC 中,如果AB=8cm ,BC=5cm ,那么AC 的取值范围是________________. 9、等腰三角形的一边长为3cm,周长为19cm,则该三角形的腰长为( )cm. A 、3 B 、8 C 、3或8 D 、以上答案均不对 10、若三角形两边长分别为6cm,2cm,第三边长为偶数,则第三边长为( ) A 、2cm B 、4cm C 、6cm D 、8cm 11、在△ABC 中,D 是BC 上的点,且BD ∶DC=2∶1,A C D S ?=12,那么ABC S ?等于( ). A .30 B. 36 C. 72 D. 24 12、若三角形三个内角的比为1∶2∶3,则这个三角形是( ) A 、锐角三角形 B 、直角三角形 C 、等腰三角形 D 、钝角三角形 13、在△ABC 中,∠A=2(∠B+∠C),则∠A 的度数为( ) A 、100° B 、120° C 、140° D 、160° 14、已知△ABC 中,∠A=20°,∠B=∠C ,那么△ABC 是( ) A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、等边三角形 15、一个三角形至少有( ) A 、一个锐角 B 、两个锐角 C 、一个钝角 D 、一个直角

角边角以及角角边判定

11.2 三角形全等的判定(3) 教学目标 ①探索并掌握两个三角形全等的条件:“ASA”“AAS”,并能应用它们判别两个三角形是否全等. ②经历作图、比较、证明等探究过程,提高分析、作图、归纳、表达、逻辑推理等能力;并通过对知识方法的总结,培养反思的习惯,培养理性思维. ③敢于面对教学活动中的困难,能通过合作交流解决遇到的困难. 教学重点 理解,掌握三角形全等的条件:“ASA”“AAS”. 教学难点 探究出“ASA”“AAS”以及它们的应用. 教学过程(师生活动) 创设情境 复习: 师:我们已经知道,三角形全等的判定条件有哪些? 生:“SSS”“SAS” 师:那除了这两个条件,满足另一些条件的两个三角形是否 也可能全等呢?今天我们就来探究三角形全等的另一些条件。 探究新知: 一张教学用的三角形硬纸板不小心 被撕坏了,如图,你能制作一张与原来 同样大小的新教具?能恢复原来三角形 的原貌吗? 1.师:我们先来探究第一种情况.(课件出示“探究5……”) (1)探究5 先任意画出一个△ABC,再画一个△A'B'C',使A'B'=AB,∠A'=∠A,∠B'=∠B(即使两角和它们的夹边对应相等).把画好的△A'B'C'剪下,放到△ABC 上,它们全等吗? 师:怎样画出△A'B'C'?先自己独立思考,动手画一画。 在画的过程中若遇到不能解决的问题.可小组合作交流解决. 生:独立探究,试着画△A'B'C',(有问题的,可以小组内交流解决……)…… (2)全班讨论交流 师:画好之后,我们看这儿有一种画法:(课件出示画法,出现一步,画一步) 你是这样画的吗? 师:把画好的△A'B'C'剪下,放到△ABC上,看看它们是否全等. 生:(剪△A'B'C',与△ABC作比较……) 师:全等吗? 生:全等. 师:这个探究结果反映了什么规律?试着说说你的发现. 生1:我发现…… 生2:…… 生3:两角和它们的夹边对应相等的两个三角形全等.

三角形倒角

【例1】 (北京市竞赛题)在ABC ?中,三个内角的度数均为整数,且A B C ∠<∠<∠,47C A ∠=∠,则B ∠的 度数为 . 【解析】 设C x ∠=?,则4()7A x ∠=?,11 1801807 B A C x ∠=?-∠-∠=?-?, 则411 18077x x x <-<,解得7084x <<, 又4 7 x 是整数,得77x =,故44A ∠=?,59B ∠=?. 【例2】ABC ?中,A ∠是最小角,B ∠是最大角,且25B A ∠=∠,若B ∠的最大值是m ?,最小值是n ?.则m n += . 【解析】 25A B ∠=∠,依题意得27 18055 B B B ∠?-∠∠≤≤,解得75100B ?∠?≤≤,故175m n +=. 【例3】 ⑴(河南竞赛题)若三角形的三个外角的比是234∶∶,则这个三角形的最大内角的度数是 . ⑵ ABC ?的内角A ∠、B ∠、C ∠满足35A B ∠>∠,32C B ∠∠≤,则这个三角形是( ). A . 锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定 ⑴ 三角形内角和360?,故最小的外角为2 360809 ??=?,它对应的内角为最大内角为100?. ⑵ C .∵35B A ∠<∠,∴22 35 C B A ∠∠<∠≤, ∴B C A ∠+∠<∠,180A A ?-∠<∠,90A ∠>?. 【例5】在ABC ?中,若2AB BC =,2B A ∠=∠,判断ABC ?的形状(锐角三角形、直角三角形或钝角三角形),并写出理由. D A C B . AB C ?是直角三角形. 理由:如上图,∵2AB BC =,∴AB BC >, 根据大边对大角:ACB A ∠>∠,作ACD A ∠=∠,CD 与AB 交于点D , 根据等角对等边:AD CD =, 由外角定理:2BDC A ACD A ∠=∠+∠=∠, 又∵2B A ∠=∠,∴B BDC ∠=∠, 由等角对等边:CD BC =, 又∵2AB BC =, ∴1 2 AD BD CD BC AB ==== , ∴60B BCD BDC ∠=∠=∠=?, ∴1 302 ACD BDC ∠=∠=?, ∴90ACB ACD BCD ∠=∠+∠=?. 【例6】 如下图所示,在ABC ?中,90ACB ∠=?,D 、E 为AB 上两点,若AE AC =,45DCE ∠=?,求证: BC BD =.

相关主题
文本预览
相关文档 最新文档