工程流体力学(清华版)
- 格式:pdf
- 大小:882.71 KB
- 文档页数:16
3.1 流体运动的描述方法第3章 流体运动学本章: 描述流体运动的方法,流动的分类 ; 流体微团运动分析; 连续性方程。
3.1.1 拉格朗日法(质点法):研究流体质点的运动规律,综合得到流体的整体运动规律物理学里质点群的运动: r r rk = rk (t ) ,即 xk = xk(t),yk = yk(t),zk = zk(t) (k = 1,……,n)质点速度 即ukxr dr r uk = k , dt dx k dyk dz k = ,uky = ,ukz = dt dt dt2课件制作: 赵 昕 武汉大学水利水电学院1质点加速度r r d u k d 2rk r = ak = dt 2 dtd 2z k d 2xk d 2y k a = a = 2 , ky 2 , kz dt dt dt 2uy =dz z (a , b , c , t ) dy ∂y (a , b , c , t ) , = uz = = dt ∂t ∂t dt(a, b, c不随时间变)即a kx =流体质点:无穷多个,以初始时刻的位置(a, b, c)为标记 质点轨迹 x = x (a, b, c, t) y = y (a, b, c, t) z = z (a, b, c, t) ◆ (a, b, c, t)称为拉格朗日变数质点加速度ax = ay = az =d 2 x ∂ 2 x (a , b , c , t ) = dt 2 ∂t 2 d 2y ∂ 2y (a , b , c , t ) = dt 2 ∂t 2 d 2 z ∂ 2 z (a , b , c , t ) = dt 2 ∂t 2dx ∂x (a , b , c , t ) = 质点速度 u x = dt ∂t3,43.1.2 欧拉法(流场法):研究流动空间中各固定点上任一时刻的质点流动参数,得到流 动参数的场 ux = ux(x, y, z, t) p = p(x, y, z, t), uy = uy(x, y, z, t) ρ = ρ(x, y, z, t), uz = uz(x, y, z, t) …… ◆ (x, y, z, t)称为欧拉变数 ◆ 流场: 指 流动参数的上述分布规律◆ 流体力学多用欧拉法。