- 3<a< 3).
(2)∵函数 f(x)的值域为 R,∴u=g(x)的值域应包含(0,+∞).因此
Δ=4a2-12≥0,即 a≥ 3或 a≤- 3.故实数 a 的取值范围是(-∞,- 3]∪[ 3,+∞).
(3)∵题干中命题等价于 x2-2ax+3>0 的解集为{x|x<1 或 x>3},
∴x2-2ax+3=0 的两根为 1 和 3.故 2a=1+3,即 a=2.
【解】设 f1(x)=(x-1)2,f2(x)=logax,要使当 x∈(1,2)时,不等式(x-1)2<logax
恒成立,只需函数 f1(x)=(x-1)2 在区间(1,2)上的图象在函数 f2(x)=logax 的图象
的下方即可.
当 0<a<1 时,显然不成立;
当 a>1 时,如图,
要使函数 f1(x)=(x-1)2 的图象在函数 f2(x)=logax 的图象下方,只需
且 3.2<3.6<12.96,∴a>c>b.
T 题型五简
单的反函数问题
例 5 若函数 y=f(x)是函数 y=ax(a>0,且 a≠1)的反函数,其图象经
过点( a,a),则 f(x)等于(
A.log2x
)
B.lo1x
C.
2
1
2x
【答案】B
【解析】由题意知函数 f(x)=logax 的图象经过点( a,a),
A.
2a+b
1+a
B.
2a+b
1-a
D.
C.
)
a+2b
1+a