金属电子论
- 格式:doc
- 大小:25.50 KB
- 文档页数:2
第四章 金属自由电子理论1.金属自由电子论作了哪些假设?得到了哪些结果?解:金属自由论假设金属中的价电子在一个平均势场中彼此独立,如同理想气体中的粒子一样是“自由”的,每个电子的运动由薛定谔方程来描述;电子满足泡利不相容原理,因此,电子不服从经典统计而服从量子的费米-狄拉克统计。
根据这个理论,不仅导出了魏德曼-佛兰兹定律,而且而得出电子气对晶体比热容的贡献是很小的。
2.金属自由电子论在k 空间的等能面和费米面是何形状?费米能量与哪些因素有关?解:金属自由电子论在k 空间的等能面和费米面都是球形。
费米能量与电子密度和温度有关。
3.在低温度下电子比热容比经典理论给出的结果小得多,为什么?解:因为在低温时,大多数电子的能量远低于费米能,由于受泡利原理的限制基本上不能参与热激发,而只有在费米面附近的电子才能被激发从而对比热容有贡献。
4.驰豫时间的物理意义是什么?它与哪些因素有关?解:驰豫时间的物理意义是指电子在两次碰撞之间的平均自由时间,它的引入是用来描写晶格对电子漂移运动的阻碍能力的。
驰豫时间的大小与温度、电子质量、电子浓度、电子所带电量及金属的电导率有关。
5.当2块金属接触时,为什么会产生接触电势差?解:由于2块金属中的电子气系统的费米能级高低不同而使热电子发射的逸出功不同,所以这2块金属接触时,会产生接触电势差。
6.已知一维金属晶体共含有N 个电子,晶体的长度为L ,设0=T K 。
试求: (1)电子的状态密度; (2)电子的费米能级; (3)晶体电子的平均能量。
解:(1)该一维金属晶体的电子状态密度为:dEdkdk dZ dE dZ E ⋅==)(ρ …………………………(1) 考虑在k 空间中,在半径为k 和dk k +的两线段之间所含的状态数为:dk Ldk dZ π=∆=k 2 …………………………(2) 又由于 mk E 222η=所以 mkdk dE 2η= …………………………(3) 将(2)和(3)式代入(1)式,并考虑到每个状态可容纳2个自旋相反的电子,得该一维金属晶体中自由电子的状态密度为:EmL E 22)(ηπρ= (4)(2)由于电子是费米子,服从费米—狄拉克统计,即在平衡时,能量为E 的能级被电子占据的几率为:11)(+=-TK E E B F eE f (5)于是,系统中的电子总数可表示为:⎰∞=)()(dE E E f N ρ (6)由于0=T K ,所以当0F E E >,有0)(=E f ,而当0F E E ≤,有1)(=E f ,故(6)式可简化为:⎰=)(FE dE E N ρ=⎰0022FE dE E m L ηπ=240FmE L ηπ由此可得: 222208mL N E Fηπ= (7)(3)在0=T K 时,晶体电子的平均能量为: ⎰∞=0)()(1dEE E Ef N E ρ=dE EmL E N FE 2210⎰⋅ηπ=230)(232F E m N L ηπ=022223124F E mL N =ηπ 7.限制在边长为L 的正方形中的N 个自由电子,电子的能量为)(2),(222y x y x k k mk k E +=η。
第六章 金属电子论1列出你所知道的几种金属—绝缘体相变的名称。
Wilson 转变,派尔斯转变,Mott 转变,安德森转变2什么是由于无序而导致的安德逊(Anderson )金属-绝缘体相变?改变无序度,使迁移率边的位置移动,就可能使费米面能级从位于定域态区域经过迁移率边进入扩展态区域使电导从非金属型转变成金属型,反之亦然,这类金属-绝缘体转变称为安德森转变。
3什么是派尔斯(Peierls )金属-绝缘体相变?4描述固体中电子输运的Boltzmann 方程和Kubo-Greenwood 公式各自的适用范围是什么?5什么是金属的剩余电阻,起因是什么?6利用费米子统计和自由电子气体模型说明低温下的电子比热满足T 线性关系。
0T K =时,自由电子气的总能量为:()()0,NE Ef E T N E dE ∞=⎰,可以求出电子平均能量E 为:()22354B F Fk T E E E π=+。
其中第一项是基态的电子平均能量,第二项是热激发的能量,由此可得电子的比热为:e E C n T T γ∂==∂,222B F nk E πγ=。
——电子比热系数。
7重费米系统、接触电势、安德森转变。
重费米系统:接触电势:任意两个不同的导体A 和B 相接触,或以导线相联结时,就会带电并产生不同的电势V A 和V B ,称为接触电势。
8为什么金属电子自由程是有限的但又远远大于原子间距?按照能带论,在严格周期性势场中,电子可以保持在一个本征态中,具有一定的平均速度,并不随时间改变,这相当于无限的自由程。
实际自由程之所以是有限的,则是由于原子振动或其他原因致使晶体势场偏离周期场的结果。
9利用能带图定性说明主要金属-绝缘体转变类型10在低温下金属钾的摩尔热容量的实验结果可写成C e= 2.08T+ 2.57T3 mJ/mol⋅K,如果一个摩尔的金属钾有N =6×1023个电子,求钾的费米温度T F。
如有侵权请联系告知删除,感谢你们的配合!。
金属自由电子理论Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】第四章金属自由电子理论1.金属自由电子论作了哪些假设得到了哪些结果解:金属自由论假设金属中的价电子在一个平均势场中彼此独立,如同理想气体中的粒子一样是“自由”的,每个电子的运动由薛定谔方程来描述;电子满足泡利不相容原理,因此,电子不服从经典统计而服从量子的费米-狄拉克统计。
根据这个理论,不仅导出了魏德曼-佛兰兹定律,而且而得出电子气对晶体比热容的贡献是很小的。
2.金属自由电子论在k空间的等能面和费米面是何形状费米能量与哪些因素有关解:金属自由电子论在k空间的等能面和费米面都是球形。
费米能量与电子密度和温度有关。
3.在低温度下电子比热容比经典理论给出的结果小得多,为什么解:因为在低温时,大多数电子的能量远低于费米能,由于受泡利原理的限制基本上不能参与热激发,而只有在费米面附近的电子才能被激发从而对比热容有贡献。
4.驰豫时间的物理意义是什么它与哪些因素有关解:驰豫时间的物理意义是指电子在两次碰撞之间的平均自由时间,它的引入是用来描写晶格对电子漂移运动的阻碍能力的。
驰豫时间的大小与温度、电子质量、电子浓度、电子所带电量及金属的电导率有关。
5.当2块金属接触时,为什么会产生接触电势差解:由于2块金属中的电子气系统的费米能级高低不同而使热电子发射的逸出功不同,所以这2块金属接触时,会产生接触电势差。
6.已知一维金属晶体共含有N 个电子,晶体的长度为L ,设0=T K 。
试求:(1)电子的状态密度;(2)电子的费米能级;(3)晶体电子的平均能量。
解:(1)该一维金属晶体的电子状态密度为:dE dk dk dZ dE dZ E ⋅==)(ρ …………………………(1) 考虑在k 空间中,在半径为k 和dk k +的两线段之间所含的状态数为:dk L dk dZ π=∆=k 2 (2)又由于 mk E 222 = 所以 mk dk dE 2 = (3)将(2)和(3)式代入(1)式,并考虑到每个状态可容纳2个自旋相反的电子,得该一维金属晶体中自由电子的状态密度为:Em LE 22)( πρ= …………………………(4) (2)由于电子是费米子,服从费米—狄拉克统计,即在平衡时,能量为E 的能级被电子占据的几率为: 11)(+=-T K E E B Fe E f (5)于是,系统中的电子总数可表示为:⎰∞=0)()(dE E E f N ρ (6)由于0=T K ,所以当0F E E >,有0)(=E f ,而当0F E E ≤,有1)(=E f ,故(6)式可简化为:⎰=00)(FE dE E N ρ =⎰0022FE dE E m L π=240F mE L π 由此可得: 222208mL N E Fπ= …………………………(7) (3)在0=T K 时,晶体电子的平均能量为: ⎰∞=00)()(1dE E E Ef N E ρ=dE Em L E N FE 22100⎰⋅ π=230)(232F E m N L π=022223124F E mL N = π 7.限制在边长为L 的正方形中的N 个自由电子,电子的能量为)(2),(222y x y x k k mk k E += 。
u tΔΔS为平均附加速度:v0.23~2.4 nm电子在发生碰撞前可自由穿过10个晶格。
A. Sommerfeld下,电子的能量和动量不随时间或位置改变,此时可以用: ,其中的方向为平面波的方向,(E)和动量(P)由德布罗意关系表示n 2、n 3是整数。
从上述分析可见,在k 空间,电子的状态是分立的,只允许波矢k 具有确定的分立值。
这样k 可以被解释为量子数。
因此单电子的本征能量亦取分立值。
由于单电子的本征能量为:的区域所允许的k 点(许可态)的数目个电子对许可k 态的占据,简单地由泡利不相容原理态,电子自旋能够取两个可能值:k 空间的电子态密度自由电子气系统的基态T=0K ,N 个自由电子的基态,可从能量最态开始,按能量从低到态两个电子,依次填充个电子,它的空间具有最k F 为半费米球,其。
对于基态,费米球内所有状态都被电子占据,而费米球外的状态全部未被定义为费米球的表面,在基态它把占据态和未N 个自由电子的基态为电子浓度。
相对应的能量称为费米能量:所受到的外力为:由于自由电子的动量与波矢之间的关系:则由牛顿第二定律可知:从上式可以看出,波矢k将随时间变化。
时刻将电场施加到电子气的基态,则在后一时刻费米球中心将移到新的位置:如果不发生碰撞,恒定的外加电场将使k空间中的费米球匀速移动。
由于电子与离子实的碰撞将使电子失τ为迟豫时间,Δk决定电子的漂移速度(平均速度) 。
不同的是,在量子体系中,由于非平衡费米球中与E=0时费米球交叠部分,方向上分布的对称性,对电流没有贡献。
电流来源于原费米球面撞,费米球整体的位移Δk和外力F的关系可由下式给出:为电子的漂移速度。
项为自由电子加速度而项表示碰撞效应项(相当于电子遭受碰撞而引入的摩擦阻力。
作用在一个电子上的洛仑兹力为:数为零,于是:则运动方程为:轴平行于磁场,于是运动方程可写为:其中。
:固体的界面效应和表面效应在金属自由电子模型中,金属内部被假设为均匀势场,离子实提供一个正电背景。
第六章 金属电子论
1列出你所知道的几种金属—绝缘体相变的名称。
Wilson 转变,派尔斯转变,Mott 转变,安德森转变
2什么是由于无序而导致的安德逊(Anderson )金属-绝缘体相变
改变无序度,使迁移率边的位置移动,就可能使费米面能级从位于定域态区域经过迁移率边进入扩展态区域使电导从非金属型转变成金属型,反之亦然,这类金属-绝缘体转变称为安德森转变。
3什么是派尔斯(Peierls )金属-绝缘体相变
4描述固体中电子输运的Boltzmann 方程和Kubo-Greenwood 公式各自的适用范围是什么
5什么是金属的剩余电阻,起因是什么
6利用费米子统计和自由电子气体模型说明低温下的电子比热满足T 线性关系。
0T K =时,自由电子气的总能量为:()()0,NE Ef E T N E dE ∞
=⎰,可以求出电子平均能量E 为:()22354B F F
k T E E E π=+。
其中第一项是基态的电子平均能量,第二项是热激发的能量,由此可得电子的比热为:e E C n T T γ∂==∂,222B F nk E πγ=。
——电子比热系数。
7重费米系统、接触电势、安德森转变。
重费米系统:
接触电势:任意两个不同的导体A 和B 相接触,或以导线相联结时,就会带电并产生不同的电势V A 和V B ,称为接触电势。
8为什么金属电子自由程是有限的但又远远大于原子间距?
按照能带论,在严格周期性势场中,电子可以保持在一个本征态中,具有一定的平均速度,并不随时间改变,这相当于无限的自由程。
实际自由程之所以是有限的,则是由于原子振动或其他原因致使晶体势场偏离周期场的结果。
9利用能带图定性说明主要金属-绝缘体转变类型
10在低温下金属钾的摩尔热容量的实验结果可写成
C= + mJ/mol⋅K,如果一个摩尔的金属钾有N =6×1023个电子,
求钾的费米温度T 。