第4章-图像增强(频率域)
- 格式:ppt
- 大小:3.23 MB
- 文档页数:45
信息工程学院实验报告课程名称:数字图像处理Array实验项目名称:实验四图像增强实验时间:班级:姓名:学号:一、实验目的1.了解图像增强的目的及意义,加深对图像增强的感性认识,巩固所学理论知识。
2. 掌握图像空域增强算法的基本原理。
3. 掌握图像空域增强的实际应用及MATLAB实现。
4. 掌握频域滤波的概念及方法。
5. 熟练掌握频域空间的各类滤波器。
6.掌握怎样利用傅立叶变换进行频域滤波。
7. 掌握图像频域增强增强的实际应用及MATLAB实现。
二、实验步骤及结果分析1. 基于幂次变换的图像增强程序代码:clear all;close all;I{1}=double(imread('fig534b.tif'));I{1}=I{1}/255;figure,subplot(2,4,1);imshow(I{1},[]);hold onI{2}=double(imread('room.tif'));I{2}=I{2}/255;subplot(2,4,5);imshow(I{2},[]);hold onfor m=1:2Index=0;for lemta=[0.5 5]Index=Index+1;F{m}{Index}=I{m}.^lemta;subplot(2,4,(m-1)*4+Index+1),imshow(F{m}{Index},[])endend执行结果:图1 幂次变换增强结果实验结果分析:由实验结果可知,当r<1时,黑色区域被扩展,变的清晰;当r>1时,黑色区域被压缩,变的几乎不可见。
2.直方图规定化处理程序代码:clear allclcclose all%0.读图像I=double(imread('lena.tiff'));subplot(2,4,1);imshow(I,[]);title('原图')N=32;Hist_image=hist(I(:),N);Hist_image=Hist_image/sum(Hist_image);Hist_image_cumulation=cumsum(Hist_image);%累计直方图subplot(245);stem(0:N-1,Hist_image);title('原直方图');%1.设计目标直方图Index=0:N-1;%正态分布直方图Hist{1}=exp(-(Index-N/2).^2/N);Hist{1}=Hist{1}/sum(Hist{1});Hist_cumulation{1}=cumsum(Hist{1});subplot(242);stem([0:N-1],Hist{1});title('规定化直方图1');%倒三角形状直方图Hist{2}=abs(2*N-1-2*Index);Hist{2}=Hist{2}/sum(Hist{2});Hist_cumulation{2}=cumsum(Hist{2});subplot(246);stem(0:N-1,Hist{2});title('规定化直方图2');%2. 规定化处理Project{1}=zeros(N);Project{2}=zeros(N);Hist_result{1}=zeros(N);Hist_result{2}=zeros(N);for m=1:2Image=I;%SML处理(SML,Single Mapping Law单映射规则for k=1:NTemp=abs(Hist_image_cumulation(k)-Hist_cumulation{m});[Temp1,Project{m}(k)]=min(Temp);end%2.2 变换后直方图for k=1:NTemp=find(Project{m}==k);if isempty(Temp)Hist_result{m}(k)=0;elseHist_result{m}(k)=sum(Hist_image(T emp));endendsubplot(2,4,(m-1)*4+3);stem(0:N-1,Hist_result{m}); title(['变换后的直方图',num2str(m)]);%2.3结果图Step=256/N;for K=1:NIndex=find(I>=Step*(k-1)&I<Step*k) ;Image(Index)=Project{m}(k);endsubplot(2,4,(m-1)*4+4),imshow(Imag e,[]);title(['变换后的结果图',num2str(m)]);end执行结果:原图规定化直方图2变换后的直方图1变换后的结果图1变换后的直方图2变换后的结果图2图2 直方图规定化实验结果分析:由实验结果可知,采用直方图规定化技术后,原图的直方图逼近规定化的直方图,从而有相应的变换后的结果图1和变换后的结果图2。
数字图像处理知识点总结第二章:数字图像处理的基本概念2.3 图像数字化数字化是将一幅画面转化成计算机能处理的数字图像的过程。
包括:采样和量化。
2.3.1、2.3.2采样与量化1.采样:将空间上连续的图像变换成离散点。
(采样间隔、采样孔径)2.量化:采样后的图像被分割成空间上离散的像素,但是灰度是连续的,量化就是将像素灰度转换成离散的整数值。
一幅数字图像中不同灰度值的个数称为灰度级。
二值图像是灰度级只有两级的。
(通常是0和1)存储一幅大小为M×N、灰度级数为G的图像所需的存储空间:(bit)2.3.3像素数、量化参数与数字化所得到的数字图像间的关系1.一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时会出现国际棋盘效应。
采样间隔越小,所的图像像素数越多,空间分辨率高,图像质量好,但是数据量大。
2.量化等级越多,图像层次越丰富,灰度分辨率高,图像质量好,但数据量大。
量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓,质量变差,但数据量小。
2.4 图像灰度直方图2.4.1定义灰度直方图是反映一幅图像中各灰度级像素出现的频率,反映灰度分布情况。
2.4.2性质(1)只能反映灰度分布,丢失像素位置信息(2)一幅图像对应唯一灰度直方图,反之不一定。
(3)一幅图像分成多个区域,多个区域的直方图之和是原图像的直方图。
2.4.3应用(1)判断图像量化是否恰当(2)确定图像二值化的阈值(3)物体部分灰度值比其他部分灰度值大的时候可以统计图像中物体面积。
(4)计算图像信息量(熵)2.5图像处理算法的形式2.5.1基本功能形式(1)单幅->单幅(2)多幅->单幅(3)多幅/单幅->数字或符号2.5.2图像处理的几种具体算法形式(1)局部处理(邻域,如4-邻域,8-邻域)(移动平均平滑法、空间域锐化等)(2)迭代处理反复对图像进行某种运算直到满足给定条件。
(3)跟踪处理选择满足适当条件的像素作为起始像素,检查输入图像和已得到的输出结果,求出下一步应该处理的像素。
数字图像处理教案.(总22页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--本册教案目录常州大学教案第 1 次课 2 学时授课时间教案完成时间第 1 页常州大学教案第 2 次课 2 学时授课时间教案完成时间第 2 页常州大学教案第 3 次课 2 学时授课时间教案完成时间第 3 页常州大学教案第 4 次课 2 学时授课时间教案完成时间第 5 次课 2 学时授课时间教案完成时间第 6 次课 2 学时授课时间教案完成时间第 7 次课 2 学时授课时间教案完成时间第 8 次课 2 学时授课时间教案完成时间第 9 次课 2 学时授课时间教案完成时间第 9 页常州大学教案第 10 次课 2 学时授课时间教案完成时间第 10 页常州大学教案第 11 次课 2 学时授课时间教案完成时间第 11 页常州大学教案第 12 次课 2 学时授课时间教案完成时间第 12 页常州大学教案第 13 次课 2 学时授课时间教案完成时间第 13 页常州大学教案第 14 次课 2 学时授课时间教案完成时间第 14 页常州大学教案第 15 次课 2 学时授课时间教案完成时间第 15 页常州大学教案第 16 次课 2 学时授课时间教案完成时间第 16 页常州大学教案第 17 次课 2 学时授课时间教案完成时间第 17 页常州大学教案第 18 次课 2 学时授课时间教案完成时间第 18 页常州大学教案第 19 次课 2 学时授课时间教案完成时间第 19 页学生反馈。
第四章 图像增强1. 图像增强的目的是什么?它包含哪些内容?图像增强的目的在于:1.采用一系列技术改善图像的视觉效果,提高图像的清晰度;2.将图像转换成一种更适合于人或机器进行分析处理的形式。
2. 直方图修正有哪两种方法?二者有何主要区别与联系?直方图修正方法通常有直方图均衡化及直方图规定化两类。
区别与联系:直方图均衡化是通过对原图像进行某种变换使原图像的灰度直方图修正为均匀的直方图的。
直方图规定化是使原图像灰度直方图变成规定形状的直方图而对直方图做出修正的增强方法。
在做直方图规定化时首先要将原始图像作均衡化处理。
直方图均衡化是直方图规定化的一个特例,而规定化是对均衡化的一种有效拓展。
3.在直方图修改技术中对变换函数的基本要求是什么?直方图均衡化处理采用何种变换空间域点运算 局部运算灰度变换直方图修正法局部统计法均衡化规定化图像平滑图像锐化频率域高通滤波低通滤波同态滤波增强彩色增强伪彩色增强彩色图像增强常规处理假彩色增强彩色平衡彩色变换增强代数运算图像增强函数?什么情况下采用直方图均衡法增强图像?T(r)为变换函数,应满足下列条件:(1)在0 ≤r ≤1内为单调递增函数;(2)在0≤r ≤1内,有0≤T(r)≤1。
s=T(r)=∫ p r (r)dr 原始图像灰度分布在较窄区间,引起图像细节不够清晰。
直方图均衡化减少图像灰度级,对比度扩大。
4. 何谓图像平滑?试述均值滤波的基本原理。
为抑制噪声、改善图像质量所进行的处理称为图像平滑或去噪。
均值滤波的基本原理:用均值代替原图像中的各个像素值,即对待处理的当前像素点(x ,y ),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x ,y ),作为处理后图像在该点上的灰度个g (x ,y ),即个g (x ,y )=1/m ∑f (x ,y ) m 为该模板中包含当前像素在内的像素总个数。
5. 何谓中值滤波?有何特点?中值滤波是对一个滑动窗口内的诸像素灰度值排序,用其中值代替窗口中心像素的灰度值的滤波方法,是一种非线性的平滑法。
第四章 图像增强图像增强处理的目的,是突出图像中的有用信息,扩大不同影像特征(例如灰度或不同的颜色)之间的差别,以便提高对图像的解译和分析能力,使之更适合实际应用。
图像中的各种信息或影像特征是由亮度值或灰度的差别反映出来的,因而最基本的增强方法是扩大不同亮度值之间的差别,一般多达到256个等级,而人眼能够识别的灰度等级比这个数目要小得多。
因此,增强是相对的和有选择性的,就是说用某种方法增强某些信息的同时,另一些信息实际上被压缩了。
图像增强处理方法的选择和应用,取决于研究的对象、目的和要解决的问题以及图像本身的信息特征。
一种增强处理方法的效果与图像的数据特征(如统计特征、空间频谱特征等)有直接关系。
图像增强处理有多种不同的方法,根据增强的目的不同可选择不同的方法。
增强的目的有:改变灰度等级.提高对比度;消除噪声.平滑图像;突出边缘,锐化图像;形成彩色图像;减少波段图像个数(特征选择),突出某些信息特征。
可以选择的增强技术主要有。
空间域(又称图像域)增强、频率域增强、彩色增强及多光谱图像增强等。
4.1灰度变换 对比度增强是增强技术中比较简便但又十分重要的一种方法。
这种处理只是逐点修改输入图像中每一像素的灰度,图像中各像素的位置并不改变,是一种输入与输出像素间一对一的运算,是一种点运算。
4.1.1 线性变换 为了改善图像的对比度,作像元灰度值的变换,如果变换函数是线性的就称为线性变换。
如图4-1所示,变换前图像对比度较差,灰度范围窄,表示在X a 轴上最小灰度值为1a ,最大灰度值为2a ,变换后图像对比度提高、灰度范围扩大,表示在x b 轴上,最小值为1b ,最大值为2b 。
因为变换关系是直线,变换方程可写为:()],[],,[2121121121b b x a a x a a a x b b b x b a a b ∈∈−−=−−于是111212)(b a x a a b b x a b+−−−=通过直线方程(4-1)可以把[1a ,2a ]范围内任一a x 值交换成b x,从而使原来较窄的直方图(图4-1b )变化成范围较宽的直方图(图4-1c ),有时称之为直方图拉伸。