成正比例的量(11)
- 格式:ppt
- 大小:2.25 MB
- 文档页数:131
《成正比例的量》教案设计第一章:正比例的概念介绍1.1 引入正比例的概念:两个变量x和y,如果它们的比值(x/y)始终保持不变,这两个变量就称为成正比例的量。
1.2 解释正比例的数学表达式:x/y = k(其中k是常数,称为比例常数)。
1.3 举例说明正比例的关系:如身高与脚长的关系,当身高增加时,脚长也随之增加,且它们的比值保持不变。
第二章:比例常数的确定2.1 解释比例常数k的意义:比例常数k表示两个成正比例的量之间的比例关系。
2.2 方法一:通过两组具体的成正比例的量,计算它们的比值,求得比例常数k。
2.3 方法二:利用图形(如直线图)观察成正比例的量的变化趋势,确定比例常数k。
第三章:正比例的性质3.1 成正比例的量的图像特点:成正比例的量在直角坐标系中形成一条通过原点的直线。
3.2 成正比例的量的运算性质:两个成正比例的量相加(或相减)后,它们的比值仍等于原来的比例常数k。
3.3 成正比例的量的比例运算:已知两个成正比例的量x1和y1,以及它们的比例常数k,求第三个成正比例的量x2和y2的关系。
第四章:正比例的应用4.1 成正比例的量在实际生活中的应用:如计算单价、计算速度等。
4.2 利用成正比例的关系解决问题:已知两个成正比例的量中的一个,求解另一个未知量。
4.3 成正比例的量在科学实验中的应用:如实验数据的处理和分析。
第五章:正比例的拓展5.1 反比例的概念介绍:两个变量x和y,如果它们的乘积(xy)始终保持不变,这两个变量就称为成反比例的量。
5.2 解释反比例的数学表达式:xy = k(其中k是常数)。
5.3 举例说明反比例的关系:如车速与时间的乘积等于路程,当车速增加时,所需时间减少,且它们的乘积保持不变。
第六章:正比例函数的图像与性质6.1 介绍正比例函数的图像:y = kx(k为常数)。
6.2 解释正比例函数的图像特点:通过原点的一条直线,斜率为k。
6.3 探讨正比例函数的性质:随着x的增大或减小,y值按比例增大或减小;当x=0时,y=0。
成正比例的量在数学中,我们经常会遇到成正比例的量。
成正比例的量指的是两个变量之间的关系符合比例关系,即当一个量的值增加(或减少)时,另一个量的值也相应地按照固定的比例变化。
概念成正比例的量与比例关系是数学中的重要概念。
它由两个变量组成,通常用字母表示。
我们假设两个变量分别为x和y,它们之间成正比例的关系可以表示为:y = kx其中,k是比例常数。
它是一个恒定的值,代表着两个变量之间的比例关系。
例子让我们来看一些实际生活中的例子,以更好地理解成正比例的量。
例子1:考试成绩与学习时间假设我们有两个变量x和y,分别表示考试成绩和学习时间。
如果两者成正比例,那么学习时间越长,考试成绩也会相应增加。
这个关系可以由下面的公式表示:y = kx这里的y表示考试成绩,x表示学习时间,k是一个常数。
例子2:人口增长与时间我们知道,人口增长和时间之间存在一定的关系。
如果人口的增长是成正比例的,那么随着时间的推移,人口数量也会按照一定的比例增加。
这个关系可以用下面的公式表示:y = kx这里的y表示人口数量,x表示时间,k是一个常数。
性质成正比例的量有一些重要的性质,这些性质对于我们理解和应用成正比例的量是非常有帮助的。
性质1:零点对于成正比例的量来说,它们之间的比例关系不会出现零点。
也就是说,当x 为零时,y也会为零。
性质2:相似三角形如果两个三角形的对应边成正比例,那么这两个三角形是相似的。
这是因为成正比例的量表示两个变量之间的比例关系,所以它们之间的比值总是相同的。
而相似三角形有着相同的比例关系,因此成正比例的量是判断两个三角形是否相似的一个重要条件。
性质3:图形变换成正比例的量还可以描述图形的变换关系。
例如,在平面几何中,如果将一个图形的边长按照一定的比例进行伸缩,那么这个图形的形状将保持不变,只是相似于原来的图形。
这是因为成正比例的量表示了图形的边长之间的比例关系,所以在进行伸缩时,图形的形状不会发生改变。
常见的成比例的量速度一定,路程和时间成正比。
时间一定,路程和速度成正比。
单价一定,总价和数量成正比。
数量一定,总价和单价成正比。
工作效率一定,工作总量和时间成正比。
工作时间一定,工作效率和工作总量成正比。
圆的直径和半径成正比。
圆的周长和直径成正比。
圆的周长和半径成正比。
圆的面积和半径的平方成正比。
正方形的周长和边长成正比。
正方体的表面积和棱长的平方成正比。
正方体的表面积和底面积成正比。
长方形的长一定,面积和宽成正比。
长方形的宽一定,面积和长成正比。
长方体的高一定,体积和底面积成正比。
长方体的底面积一定,体积和高成正比。
平行四边形的底一定,面积和高成正比。
平行四边形的高一定,面积和底成正比。
圆柱的高一定,体积和底面积成正比。
圆柱的底面积一定,体积和高成正比。
看的天数一定,总页数和每天看的页数成正比。
每天看的页数一定,总页数和看的天数成正比。
打字速度一定,总字数和打字时间成正比。
打字时间一定,总字数和打字速度成正比。
每行人数一定,总人数和行数成正比。
行数一定,总人数和每行人数成正比。
每公顷产量一定,总产量和公顷数成正比。
公顷数一定,总产量和每公顷产量成正比。
同一时间同一地点,物体的影子和物体实际高度成正比。
成正比例的量是指在两个变量之间存在一种数学关系,即一个量随着另一个量的增加而增加,随着另一个量的减少而减少,且它们的比值(即变化的量与另一个变量的比值)是一个常数。
这种关系在数学中被称为正比例关系。
为了更好地理解成正比例的量,我们可以从以下几个角度来探讨:
1. 定义:首先,我们需要明确什么是正比例。
在两个变量x和y中,如果满足y=kx,其中k 为常数,那么我们就说这两个变量成正比例。
其中x是自变量,y是因变量。
2. 特征:成正比例的量具有以下特征:当一个量增加时,另一个量相应地增加;它们的比值是一个常数;两个量的变化方向一致。
例如,在速度和距离的关系中,速度是距离的函数,当速度增加时,距离也相应增加;而且,由于速度和距离的比值是一个常数(如每小时行驶的距离),所以它们是成正比例的量。
3. 举例:在日常生活中,有许多成正比例的例子。
例如,在电力和温度的关系中,当电力增加时,温度也会相应增加;而在水和压力的关系中,当压力增加时,水的体积也会相应地增加。
这些都是成正比例的量。
4. 实际应用:成正比例的量在许多领域都有应用。
例如,在生产线上,机器的速度和产量是成正比例的;在商业中,销售量和销售额也是成正比例的。
这些量之间的关系可以帮助我们更好地理解事物之间的联系,以及制定更好的决策和策略。
总之,成正比例的量是一种重要的数学关系,它可以帮助我们更好地理解事物之间的联系,以及制定更好的决策和策略。
在实际应用中,我们可以通过观察和分析这些量之间的关系来更好地理解和处理各种问题。
成正比例的量邹城市第二实验小学李本鹏教学内容:人教版六年级下册正比例和反比例的意义例1教学目标:知识与技能1、通过观察、比较、判断、归纳等方法认识成比例的量,理解正比例的意义。
2、能根据正比例的意义判断两种量是不是成正比例,初步渗透函数思想。
3、用事物互相联系和发展变化的观念来分析解决生活中的数学问题。
过程与方法经历正比例的意义的学习过程,体会观察分析、归纳概括的学习方法。
情感态度与价值观感受从生活中学习数学的乐趣,激发学习兴趣,体验发现知识的快乐,培养创新精神。
教学重点:理解正比例的意义教学难点:通过发现两种相关联的量的变化规律,概括总结成正比例关系的概念。
教学准备:多媒体课件。
教学过程:板书设计成正比例的量1、两种相关联的量(变化方向相同)2、比值一定路程时间一定) 总价数量 一定)教学反思“成正比例的量”的概念共有65个汉字,是小学阶段最长的概念。
其中不乏学生难以理解的术语,如“相关联的量”,所以,本课教学我和学生都是一个巨大的挑战。
形成概念是概念教学过程中最重要的一步。
概念的形成是通过对具体事物的感知、辨别从而抽象、概括出概念的过程,因此学生形成概念的关键就是发现事物的本质属性或规律。
本节课我将例1调整为学生较熟悉的路程、时间、速度和单价、数量、总价两个例子,再由学生观察,找出规律,初步感受到“一个量增加,另一个量也随着增加”以及比值不变,为后面学生发现变化规律提供了充分的心理准备。
从课堂学生表现来看,也证明了这一点,学生发现、归纳规律所用的时间短了,语言组织也比较到位。
对于什么是相关联的量,我参考了教参和许多教学设计,都是先让学生举出相关联的量,我认为让学生举例难度太大!听了王玉峰主任的课后,我沿用王主任的思路,改为由教师出示表格,找出表格中的两种量,让学生判断是否相关联。
本节课重点强调了成正比例关系的两种量的变化方向相同,这样教学可以进一步渗透函数思想,为学生今后学习中学数学和物理打下基础。
《成正比例的量》优秀教案设计第一章:教学目标1.1 知识与技能目标:让学生理解正比例的概念,能够判断两种相关联的量是否成正比例。
1.2 过程与方法目标:通过实例分析,培养学生运用正比例解决实际问题的能力。
1.3 情感态度与价值观目标:激发学生对数学的兴趣,培养学生的逻辑思维能力。
第二章:教学内容2.1 正比例的定义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
2.2 成正比例的判断方法:判断两种相关联的量是否成正比例,就看这两种量相对应的两个数的比值是否一定,如果比值一定,就成正比例,如果比值不一定,就不成正比例。
第三章:教学重点与难点3.1 教学重点:正比例的概念,判断两种相关联的量是否成正比例的方法。
3.2 教学难点:正比例的判断方法在实际问题中的应用。
第四章:教学过程4.1 导入新课:通过生活中的实例,如身高与体重的关系,引出正比例的概念。
4.2 自主探究:让学生通过实例分析,归纳出成正比例的判断方法。
4.3 合作交流:分组讨论,让学生运用成正比例的判断方法解决实际问题。
4.4 总结提升:教师引导学生总结正比例的概念和判断方法,并进行点评。
第五章:课后作业5.1 必做题:运用成正比例的判断方法,解决课后练习题。
5.2 选做题:生活中的正比例现象,让学生举例并解释。
教学反思:本节课通过实例导入,引导学生自主探究和合作交流,让学生理解和掌握正比例的概念和判断方法。
在教学过程中,要注意关注学生的学习情况,及时进行指导和点评。
课后作业的设计,既能巩固所学知识,又能培养学生的实际应用能力。
第六章:教学评价6.1 评价目标:通过评价,检验学生对正比例概念的理解和运用能力。
6.2 评价方法:课堂提问、作业批改、实践操作、小组讨论等。
6.3 评价内容:判断正比例关系的能力、解决实际问题的能力、团队合作意识等。
正比例和反比例的意义一、成正比例的量1.在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,例如:(1)班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。
(2)送来的牛奶包数多,牛奶的总质量也多;包数少,总质量也少。
(3)上学时,去的速度快了,时间用少了;速度慢了,时间用多了。
(4)排队时,每行人数少了,行数就多了;每行人数多了。
行数就少了。
生活中还有哪些成正比例的量如: A.长方形的宽一定,面积和长成正比例。
B.每袋牛奶质量一定,牛奶袋数和总质量成正比例。
C.衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。
D.地砖的面积一定,教室地板面积和地砖块数成正比例。
2. 例:1出示:一列火车1小时行驶90千米,2小时行驶180千米,3小时行驶270千米,4小时行驶360千米,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米……填表时间变化,路程也随着变化,我们就说时间和路程是两个相关联的量。
根据计算,你发现了什么相对应的两个数的比的比值一样或固定不变,在数学上叫做一定。
用式子表示他们的关系是:路程/时间=速度(一定)(2)小结:同学们通过填表,交流,知道时间和路程是.两种相关联的量,路程随着时间的变化而变化.时间扩大,路程随着扩大;时间缩小,路程也随着缩小。
即:路程/时间=速度(一定)2、例2:(1(2)观察图表,发现规律用式子表示它们的关系:总价/米数=单价(一定)3、正比例的意义(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。
(2)如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来 x/y=k(一定)PS:三个要素:第一、两种相关联的量;第二、其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。