第六章 spss的方差分析
- 格式:doc
- 大小:300.50 KB
- 文档页数:5
《SPSS数据分析教程》方差分析方差分析是一种常用的统计方法,用于比较三个或三个以上组之间的均值差异是否显著。
它用于探究不同组别的因素对所研究的因变量的影响是否具有统计显著性。
在SPSS数据分析教程中,方差分析是一个非常重要的分析方法。
本文将介绍方差分析的原理、SPSS中的操作步骤以及结果的解读。
方差分析的原理是基于三个或三个以上不同组别之间的方差之间的比较来判断均值之间的差异是否显著。
方差分析的核心思想是通过比较组内方差与组间方差的大小来判断均值的差异是否显著。
方差分析的原假设是所有组别的均值相等,而备择假设是至少存在一个组别的均值与其他组别的均值不相等。
在SPSS中进行方差分析的操作步骤如下:步骤1:打开SPSS软件,点击“变量视图”页面。
在第一栏输入不同组别的名称,例如“组别1”、“组别2”、“组别3”。
步骤2:在第二栏输入待分析的因变量名称,并设置其测量类型为“比例”。
步骤3:点击“数据视图”页面,输入各组别的数据。
确保每个组别的数据都在同一列中,并且分组的数据之间用“空格”或“逗号”隔开。
步骤4:点击菜单栏上的“分析,—比较手段,—单因素方差分析”。
步骤5:在方差分析的对话框中,将因变量移入因变量方框,将分组变量移入因子方框。
步骤6:点击“选项”按钮,出现选项对话框。
可以选择计算哪些统计量,如均值、标准差、总和平方和等。
步骤7:点击“确定”按钮,SPSS将得出方差分析的结果。
方差分析的结果包括了多个统计量,如SS(组间平方和)、SS(组内平方和)、MS(组内均方和)、MS(组间均方和)、F值和P值。
-SS(组间平方和)反映了组间差异的大小,SS(组内平方和)反映了组内差异的大小。
-MS(组间均方和)是SS(组间平方和)除以自由度(组间)得到的,反映了组间差异的平均大小。
-MS(组内均方和)是SS(组内平方和)除以自由度(组内)得到的,反映了组内差异的平均大小。
-F值是MS(组间均方和)除以MS(组内均方和)得到的,是判断组间差异是否显著的依据。
《SPSS数据分析教程》——方差分析方差分析(Analysis of Variance,缩写为ANOVA)是统计学中用来测量和分析两个或多个样本之间变量差异的统计方法。
方差分析检验的是不同实验条件下样品的均值是否存在显著性差异,以此来判断实验条件对样品响应是否有影响。
简而言之,方差分析能够判断不同处理条件下样本变量的总体均值是否有显著差异,以便检验实验条件是否有效。
方差分析实际上是将实验条件分成实验组和非实验组,然后对试验组与非实验组的结果进行比较,看看实验处理是否有显著的结果。
另一种情况是将不同的实验条件分成若干组,然后将不同组之间的结果进行比较,看看不同的实验条件是否有显著的差别。
SPSS采取一步法方差分析,在用户指定自变量和因变量后,可以自动给出方差分析的结果,包括方差分析表,均值表,均方差表,以及F检验的统计量和显著性水平等。
另外,它还可以提供多元变量分析(MVA)结果,包括每个变量的贡献率,方差膨胀因子,皮尔逊相关系数,单变量分析等。
为了使用SPSS进行方差分析,首先要指定变量和实验条件。
然后,点击菜单栏“分析”,选择“双因素方差分析”。
第六章方差分析一实验目的1.理解方差分析的概念、原理及作用;2.掌握用 SPSS 进行单因素、双因素及协方差分析的方法;3.结合参考资料了解方差分析的其它方法及作用。
二方差分析的原理方差分析的基本原理是认为不同处理组的均值间的差别基本来源有两个:(1)随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示,记作w SS ,组内自由度w df ;(2)实验条件,即不同的处理造成的差异,称为组间差异。
用变量在各组的均值与总均值之偏差的总平方和表示,记作b SS ,组间自由度b df 。
三实验过程1. 某农场为了比较4种不同品种的小麦产量的差异,选择土壤条件基本相同的土地,分成16块,将每一个品种在4块试验田上试种,测得小表亩产量(kg)的数据如表6.17所示(数据文件为data6-4.sav),试问不同品种的小麦的平均产量在显著性水平0.05和0.01下有无显著性差异。
(数据来源:《SPSS实用统计分析》郝黎仁,中国水利水电出版社)表6.17实验步骤:第1步分析:由于有一个因素(小麦),而且是4种饲料。
故不能用独立样本T 检验(仅适用两组数据),这里可用单因素方差分析;第2步数据的组织:分成两列,一列是试验田的产量(output),另一列是小麦品种(breed)(A、B、C、D);第3步方差相等的齐性检验:由于方差分析的前提是各个水平下(这里是不同品种的小麦产量)的总体服从方差相等的正态分布。
其中正态分布的要求并不是很严格,但对于方差相等的要求是比较严格的。
因此必须对方差相等的前提进行检验。
从SPSS的数据管理窗口中选择analyze—compare means—One-Way ANOVA,将小麦产量(output)选入dependent list框中,将品种(breed)选入factor框中,点开Options,选中Homogeneity of variance test(方差齐性检验),点开post hoc multiple comparisons,将significance level的值在两次实验时分别设置为0.01和0.05。
第六章spss的方差分析
1、入户推销有五种方法。
某大公司想比较这五种方法有无显著的效果差异,设计了一项实验。
从应聘人员中尚无推销经验的人员中随机挑选一部分人,并随机地将他们分为五个组,每组用一种推销方法培训。
一段时期后得到他们在一个月内的推销额,如下表所示:
1)请利用单因素方差分析方法分析这五种推销方式是否存在显著差异。
2)绘制各组的均值对比图,并利用LSD方法进行多重比较检验。
原假设:这五种推销方式是否存在显著差异。
步骤:建立SPSS数据→分析→比较均值→单因素→因变量导入销售额→变量导入方式→选项→选择方差同质性检验、均值图→选择LSD方法检验→确定
表6-1
方差齐性检验
销售额
Levene 统计量df1 df2 显著性
2.048 4 30 .113
表6-2
分析:sig值为0.00<0.05,故拒绝原假设,认为这五种销售方式中存在显著差异。
(2)多重比较:
表6-3
多重比较
销售额LSD
(I) 推销方式(J) 推销方式
均值差 (I-J) 标准误显著性
95% 置信区间下限上限
1 2 -3.3000* 1.6028 .048 -6.573 -.027
3 .7286 1.6028 .653 -2.545 4.002
4 3.0571 1.6028 .066 -.216 6.330
5 -6.7000* 1.6028 .000 -9.973 -3.427
2 1 3.3000* 1.6028 .048 .027 6.573
3 4.0286* 1.6028 .018 .755 7.302
4 6.3571* 1.6028 .000 3.084 9.630
5 -3.4000* 1.6028 .042 -6.673 -.127 3 1 -.728
6 1.6028 .653 -4.002 2.545
2 -4.0286* 1.6028 .018 -7.302 -.755
4 2.3286 1.6028 .157 -.94
5 5.602
分析:有表6-3可以看出,多重比较中sig值均小于0,05,所以拒绝原假设,认为五种推销方法存在显著差异均值图也可以看出均值对比图的曲折比较大,进一步验证了结论。
2、为研究某种降血压药的适用特点,在五类具有不同临床特征的高血压患者中随机挑选了若干志愿者进行对比试验,并获得了服用该降压药后的血压变化数据。
现对该数据进行单因素方差分析,所得部分分析结果如下表所示。
1)请根据表格数据说明以上分析是否满足方差分析的前提要求,为什么?
2)请填写表中空缺部分的数据结果,并说明该降压药对不同组患者的降压效果是否存在显著差异。
3)如果该降压药对不同组患者的降压效果存在显著差异,那么该降压药更适合哪组患者?1)图表中可以看出,在方差齐性检验中,sig值为0.001,小于0.05,故拒绝原假设,所以方差不齐。
2)表中空缺补充:
ANOVA
销售量
平方和df 均方 F 显著性
组间1104.128 4 276.032 11.403 .000
组内1524.990 6324.206
ANOVA
销售量
平方和df 均方 F 显著性
组间1104.128 4 276.032 11.403 .000
组内1524.990 6324.206
总数2629.118 67
分析:对数据进行检验中,sig值为0.000,小于0.05,故拒绝原假设,SUOYI 降压药对不同患者的降压效果有显著影响。
3)由多重检验可以看出,第1组和2组,第2组和5组,第1组和5组之间差异不显著,其他组差异较显著。
所以该降压药更适合于三组和四组。
3、为研究某商品在不同地区和不同日期的销售差异性,调查收集以下日平均销售量数据。
1)选择恰当的数据组织方式建立关于上述数据的SPSS数据文件。
2)利用多因素方差分析,分析不同地区和不同日期对该商品的销售是否产生了显著影响3)地区和日期是否对该商品的销售产生了交互影响。
若没有显著的交互影响,则试建立非饱和模型进行分析,并与饱和模型进行对比。
1)组织SPSS数据文件:
2)原假设:日期与地区与销售额无显著影响
分析→般线性模型→单变量→因变量导入销售额→固定因子导入地区和日期→两两比较中
主体间效应的检验
因变量:销售额
源III 型平方和df 均方 F Sig.
校正模型 6.185E7 8 7731481.481 8.350 .000 截距8.445E8 1 8.445E8 912.040 .000
地区2296296.296 2 1148148.148 1.240 .313
日期2740740.741 2 1370370.370 1.480 .254
地区 * 日期 5.681E7 4 1.420E7 15.340 .000 误差 1.667E7 18 925925.926
总计9.230E8 27
校正的总计7.852E7 26
a. R 方 = .788(调整 R 方 = .693)
分析:由上表可以看出,地区sig值为0.313,,大于0.05,接受原假设,认为地区对销售额的影响不显著;日期sig值为0.254,大于0.05,接受原假设,认为日期对销售额的影响不显著;
3)原假设:地区*日期对销售额影响不显著。
由2)表中数据可以看出,日期和地区对销售额影响的sig值为0.00,小于0.05,故否定原假设,认为地区*日期对销售额的影响显著。
4、下面的表格记录了某公司采用新、旧两种培训方式对新员工进行培训前后的工作能力评分增加情况的数据。
现需要比较这两种培训方式的效果有无差别,考虑到加盟公司时间可能也是影响因素,将加盟时间按月进行了纪录。
1)请选择适当的数据组织方式将以上数据录入到SPSS资料编辑窗口,变量名保持不变,并定义各变量的变量值标签,变量Method的变量值标签(1为旧方法,2为新方法)。
2)按不同的培训方法计算加盟时间、评分增加量的平均数。
3)在剔除加盟时间影响的前提下,分析两种培训方式的效果有无差别,并说明理由。
1)数据组织方法如下图:
2)步骤:数据→转置→month,score add转置→转换→计算变量→统计量,选择均值→目标变量内输入方法1的均值→在数字表达式内填入MEAN→确定
描述统计量
N 极小值极大值均值标准差时间9 1.0 5.5 3.500 1.5411
增长量9 8.0 13.0 10.611 1.6729 有效的 N (列表状态)9
描述统计量
N 极小值极大值均值标准差时间9 .5 7.0 4.000 2.0917
增长量9 9.0 16.0 12.556 2.6034 有效的 N (列表状态)9
3)原假设:两种培训方式效果无显著差别
步骤:分析→般线性模型→因变量导入score add→固定因子中导入month→确定
主体间效应的检验
因变量:Scoreadd
源III 型平方
和df 均方 F Sig.
校正模型17.014a 1 17.014 3.553 .078
截距2415.125 1 2415.125 504.392 .000
Method 17.014 1 17.014 3.553 .078
误差76.611 16 4.788
总计2508.750 18
校正的总计93.625 17
a. R 方 = .182(调整 R 方 = .131)
分析:由上表可以看出,在剔除加盟时间影响下的sig检验值为0.034,小于0.05,故拒绝原假设,认为两种培训方式效果有显著差别.。