方差分析SPSS操作
- 格式:doc
- 大小:215.50 KB
- 文档页数:10
使用SPSS软件进行多因素方差分析使用SPSS软件进行多因素方差分析一、引言多因素方差分析是一种重要的统计方法,用于分析多个自变量对因变量的影响。
它可以帮助研究人员确定不同因素对研究对象的差异产生的影响,以及这些因素之间是否存在交互作用。
SPSS软件是一款功能强大且易于使用的统计分析工具,可以帮助用户在进行多因素方差分析时快速、准确地得出结果。
本文将介绍使用SPSS软件进行多因素方差分析的步骤,并通过一个案例来具体说明。
二、SPSS软件介绍SPSS(Statistical Package for the Social Sciences)是一款专业的统计分析软件,被广泛应用于社会科学、医学、商业等领域。
它提供了丰富的统计方法和分析工具,并具备数据清洗、可视化、报告生成等功能。
在多因素方差分析中,SPSS 可以帮助用户进行方差分析表的生成、方差分析的可视化、方差齐性检验和事后比较等操作,大大简化了分析过程。
三、多因素方差分析的步骤1. 数据准备:将需要分析的数据录入SPSS软件,并确定自变量和因变量的测量水平。
一般自变量为定类变量,而因变量可以是定量或定类变量。
2. 方差分析表的生成:选择“分析”菜单中的“一元方差分析”选项,然后将因变量添加到依赖变量框中,将自变量添加到因子框中。
接下来,点击“选项”按钮设置参数,如设定显著性水平和置信区间。
点击“确定”后,SPSS会生成方差分析表。
3. 方差分析的可视化:在方差分析表中,用户可以查看各个因素的主效应和交互作用,以及统计指标如F值、p值等。
此外,SPSS还提供了绘制效应图、交互作用图等功能,帮助用户更直观地理解分析结果。
4. 方差齐性检验:方差齐性检验用于验证因变量的变异是否在各组间具有相同的方差。
SPSS软件可以通过选择“分析”菜单中的“Compare Means”选项,进而进行多个组间方差齐性检验。
5. 事后比较:当发现方差分析存在显著差异时,需要进一步进行事后比较以确定差异所在。
SPSS——单因素方差分析详解单因素方差分析(One-Way ANOVA)常用于比较两个或更多组之间的平均差异是否显著。
本文将详细介绍单因素方差分析的原理、步骤和结果解读。
一、原理:单因素方差分析通过比较组间方差(Treatment Variance)与组内方差(Error Variance)的大小来判断不同组间的平均差异是否显著。
组间方差反映了不同组之间的平均差异,而组内方差反映了同一组内个体之间的随机波动。
如果组间方差显著大于组内方差,则可以判断不同组间的平均差异是显著的。
二、步骤:1.收集数据:首先确定研究问题和目的,然后根据实际情况设计并收集数据。
例如,我们想比较三个不同品牌的手机的待机时间是否有显著差异,需要收集每个品牌手机的待机时间数据。
2.建立假设:根据研究问题和数据的特点,建立相应的零假设(H0)和备择假设(Ha)。
在单因素方差分析中,零假设通常是所有组的平均值相等,备择假设则是至少有一组平均值与其他组不等。
4.分析结果解读:SPSS输出了一系列统计结果,包括方差分析表、平均值表、多重比较和效应大小等信息。
关键的统计结果包括F值、P值和ETA方。
-方差分析表:用于比较组间方差和组内方差的大小。
方差分析表中的F值表示组间方差除以组内方差的比值,F值越大说明组间差异越显著。
-P值:用于判断F值的显著性。
如果P值小于设定的显著性水平(通常为0.05),则拒绝零假设,即认为不同组间的平均差异是显著的。
-ETA方:代表效应大小程度。
ETA方越大说明组间的差异对总变异的解释程度越大,即差异的效应越显著。
5. 多重比较:如果方差分析结果显著,需要进行多重比较来确定具体哪些组之间存在显著差异。
SPSS提供了多种多重比较方法,包括Tukey HSD、Scheffe和Bonferroni等。
三、结果解读:对方差分析的结果进行解读时,需要综合考虑F值、P值、ETA方和多重比较结果。
1.F值和P值:-如果F值显著(P值小于设定显著性水平),则可以得出不同组间的平均差异是显著的结论。
目录1、单因素方差分析1)准备分析数据2)启动分析过程3)设置分析变量4)设置多项式比较5)多重比较6)提交执行7)结果与分析2、多因素方差分析1)准备分析数据2)调用分析过程3)设置分析变量4)选择分析模型5)选择比较方法6)选择均值图7)选择多重比较8)保存运算值9)选择输出项10)提交执行11)结果分析方差分析是用于两个及两个以上样本均数差别的显著性检验。
由于各种因素的影响,研究所得的数据呈现波动状,造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。
方差分析的基本思想是:通过分析研究不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。
方差分析主要用途:①均数差别的显著性检验,②分离各有关因素并估计其对总变异的作用,③分析因素间的交互作用,④方差齐性检验。
在科学实验中常常要探讨不同实验条件或处理方法对实验结果的影响。
通常是比较不同实验条件下样本均值间的差异。
例如医学界研究几种药物对某种疾病的疗效;农业研究土壤、肥料、日照时间等因素对某种农作物产量的影响;不同化学药剂对作物害虫的杀虫效果等,都可以使用方差分析方法去解决。
方差分析原理方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:(1) 随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示,记作SS w,组内自由度df w。
(2) 实验条件,实验条件,即不同的处理造成的差异,称为组间差异。
用变量在各组的均值与总均值之偏差平方和表示,记作SS b,组间自由度df b。
总偏差平方和 SS t = SS b + SS w。
组内SS t、组间SS w除以各自的自由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MS w和MS b,一种情况是处理没有作用,即各组样本均来自同一总体,MS b/MS w≈1。
SPSS常用分析方法操作步骤一、单变量单因素方差分析例题:某个年级有三个班,现在对他们的一次数学考试成绩进行随机抽(见下表),试在显著性水平0.005下检验各班级的平均分数有无显著差异(数据文件:数学考试成绩.sav)。
(1)建立数学成绩数据文件。
(2)选择“分析”→“比较均值”→“单因素方差”,打开单因素方差分析窗口,将“数学成绩”移入因变量列表框,将“班级”移入因子列表框。
(3)单击“两两比较”按钮,打开“单因素ANOV A两两比较”窗口。
(4)在假定方差齐性选项栏中选择常用的LSD检验法,在未假定方差齐性选项栏中选择Tamhane’s检验法。
在显著性水平框中输入0.05,点击继续,回到方差分析窗口。
(5)单击“选项”按钮,打开“单因素ANOV A选项”窗口,在统计量选项框中勾选“描述性”和“方差同质性检验”。
并勾选均值图复选框,点击“继续”,回到“单因素ANOV A选项”窗口,点击确定,就会在输出窗口中输出分析结果。
二、单变量多因素方差分析研究不同温度与不同湿度对粘虫发育历期的影响,得试验数据如表5-7。
分析不同温度和湿度对粘虫发育历期的影响是否存在着显著性差异(数据文件:粘虫.sav)。
(1)建立数据文件“粘虫.sav”。
(2)选择“分析”→“一般线性模型”→“单变量”,打开单变量设置窗口。
(3)分析模型选择:此处我们选用默认;(4)比较方法选择:在窗口中单击“对比”按钮,打开“单变量:对比”窗口进行设置,单击“继续”返回;(5)均值轮廓图选择:单击“绘制”按钮,设置比较模型中的边际均值轮廓图,单击“继续”返回;(6)“两两比较”选择,用于设置两两比较检验,本例中设置为“温度”和“湿度”。
三、相关分析调查了29人身高、体重和肺活量的数据见下表,试分析这三者之间的相互关系。
(1)建立数据文件“学生生理数据.sav”。
(2)选择“分析”→“相关”→“双变量”,打开双变量相关分析对话框。
(3)选择分析变量:将“身高”、“体重”和“肺活量”分别移入分析变量框中。
spss进行方差分析LSD检验步骤
SPSS12.0
1、在Variable View 中第一行第一格中输入观测项目名称(如ALT,也可用X代表),按回
车;在第二行第一格中输入项目名称(如组别,可用Y代表),回车。
2、打开Date View 页,将实验数据输入第一竖排,将其对应的组别名称输入第二竖排(只
能用数字表示)
3、结果分析:Analyze---Compare Means---One Way ANOV
A ,激活One Way ANOV A单因
素方差分析对话框。
将自变量(X)移入Dependent List一栏,将因变量(Y)移入Factor 一栏。
单击Post Hoc按钮,勾选LSD项,continue
4、统计描述:单击Option按钮,勾选Descriptive(统计结果描述),及Homogeneity-of-variance
(方差齐性检验),Continue。
出现结果表。
5、结果说明
(1)Descriptives 一表为统计描述,包括各组例数,均数,标准差,等。
(2)Test of Homogeneity-of-variance 一表为方差齐性检验结果,当Sig值大于0.05时,可认为方差齐,可进行方差分析,否则,不可用。
(3)ANOVE 当Sig小于0.05时,说明各组不是或不全是来自于一个整体,即有统计学差别。
(4)Multiple Comparision一表为各组比较的结果。
Sig一列为p值。
第五节方差分析的SPSS操作一、完全随机设计的单因素方差分析1.数据采用本章第二节所用的例1中的数据,在数据中定义一个group变量来表示五个不同的组,变量math表示学生的数学成绩。
数据输入格式如图6-3(为了节省空间,只显示部分数据的输入):图 6-3 单因素方差分析数据输入将上述数据文件保存为“6-6-1.sav”。
2.理论分析要比较不同组学生成绩平均值之间是否存在显著性差异,从上面数据来看,总共分了5个组,也就是说要解决比较多个组(两组以上)的平均数是否有显著的问题。
从要分析的数据来看,不同组学生成绩之间可看作相互独立,学生的成绩可以假设从总体上服从正态分布,在各组方差满足齐性的条件下,可以用单因素的方差分析来解决这一问题。
单因素方差分析不仅可以检验多组均值之间是否存在差异,同时还可进一步采取多种方法进行多重比较,发现存在差异的究竟是哪些均值。
3.单因素方差分析过程(1)主效应的检验假如我们现在想检验五组被试的数学成绩(math)的均值差异是否显著性,可依下列操作进行。
①单击主菜单Analyze/Compare Means/One-Way Anova…,进入主对话框,请把math选入到因变量表列(Dependent list)中去,把group选入到因素(factor)中去,如图6-4所示:图6-4:One-Way Anova主对话框②对于方差分析,要求数据服从正态分布和不同组数据方差齐性,对于正态性的假设在后面非参数检验一章再具体介绍;One-Way Anova可以对数据进行方差齐性的检验,单击铵钮Options,进入它的主对话框,在Homogeneity-of-variance项上选中即可。
设置如下图6-5所示:图6-5:One-Way Anova的Options对话框点击Continue,返回主对话框。
③在主对话框中点击OK,得到单因素方差分析结果4.结果及解释(1)输出方差齐性检验结果Test of Homogeneity of VariancesMATHLevene Statistic df1 df2 Sig.1.238 4 35 .313上表结果显示,Levene方差齐性检验统计量的值为1.238,Sig=0.313>0.05,所以五个组的方差满足方差齐性的前提条件,如果不满足方差齐性的前提条件,后面方差分析计算F统计量的方法要稍微复杂,本章我们只考虑方差齐性条件满足的情况。
多因素方差分析SPSS的具体操作步骤步骤1:导入数据首先,打开SPSS软件,并导入包含需要进行方差分析的数据集。
可以通过"File"菜单中的"Open"选项或者使用快捷键"Ctrl+O"来打开数据文件。
步骤2:选择菜单接下来,选择"Analyze"菜单,然后选择"General Linear Model"子菜单中的"Univariate"选项。
这将打开"Univariate"对话框。
步骤3:设置变量在"Univariate"对话框中,将需要分析的因变量(Dependent Variable)拖放到"Dependent Variable"框中。
然后,将需要分析的自变量(Independent Variables)拖放到"Fixed Factors"框中。
步骤4:设置因素在"Univariate"对话框的"Options"选项卡中,单击"Model"按钮,打开"Model"对话框。
在该对话框中,将自变量按照其因素分类拖放到"Between-Subjects Factors"框中。
步骤5:进行分析在"Univariate"对话框的"Options"选项卡中,可以对方差分析的多个选项进行设置。
比如,可以选择是否计算非标准化残差(Univariate Tests of Between-Subject Effects)、是否计算偏差(Tests of Within-Subject Effects)、是否计算构造对比(Contrasts)等。
设置完相关选项后,单击"OK"按钮进行方差分析。
《SPSS数据分析教程》——方差分析方差分析(Analysis of Variance,缩写为ANOVA)是统计学中用来测量和分析两个或多个样本之间变量差异的统计方法。
方差分析检验的是不同实验条件下样品的均值是否存在显著性差异,以此来判断实验条件对样品响应是否有影响。
简而言之,方差分析能够判断不同处理条件下样本变量的总体均值是否有显著差异,以便检验实验条件是否有效。
方差分析实际上是将实验条件分成实验组和非实验组,然后对试验组与非实验组的结果进行比较,看看实验处理是否有显著的结果。
另一种情况是将不同的实验条件分成若干组,然后将不同组之间的结果进行比较,看看不同的实验条件是否有显著的差别。
SPSS采取一步法方差分析,在用户指定自变量和因变量后,可以自动给出方差分析的结果,包括方差分析表,均值表,均方差表,以及F检验的统计量和显著性水平等。
另外,它还可以提供多元变量分析(MVA)结果,包括每个变量的贡献率,方差膨胀因子,皮尔逊相关系数,单变量分析等。
为了使用SPSS进行方差分析,首先要指定变量和实验条件。
然后,点击菜单栏“分析”,选择“双因素方差分析”。
双因素方差分析spss步骤双因素方差分析SPSS步骤导言:双因素方差分析是一种常用的统计分析方法,用于分析两个或两个以上因素对于研究对象的影响是否存在差异。
在实际研究中,我们通常使用SPSS软件来进行双因素方差分析的计算和结果呈现。
本文将介绍使用SPSS软件进行双因素方差分析的步骤和注意事项。
一、准备数据在进行双因素方差分析之前,我们首先需要准备好所需的数据。
数据应该是一个二维矩阵,其中行代表不同的观测对象,列代表不同的变量。
变量可以分为两个因素,分别是因素A和因素B。
确保数据的格式正确,并且每一列都应该有对应的变量名称。
二、导入数据到SPSS打开SPSS软件,选择“文件”-“打开”-“数据”,然后选择包含你准备好的数据的文件。
在打开数据之后,你将看到数据被加载到SPSS软件的数据编辑器中。
三、设置变量属性在SPSS软件的数据编辑器中,右键点击每个变量的列,然后选择“变量视图”。
在变量视图中,你可以设置每个变量的属性,包括变量的名称、标签、测量尺度等。
对于因素A和因素B,你可以将它们设为分类变量。
四、进行双因素方差分析在SPSS软件中,选择“分析”-“一般线性模型”-“单因素”。
在对话框中,将因变量添加到“因变量”框中,将因素A和因素B 添加到“因子”框中。
确保选择双因素方差分析选项,并点击“确定”按钮。
五、检查假设条件在进行双因素方差分析之前,我们需要确保满足一些假设条件。
首先,各个观测值是彼此独立的,且满足正态分布假设。
其次,各个因子水平的方差相等。
可以使用一些统计方法,如Shapiro-Wilk 检验和Levene检验,来验证这些假设条件。
六、解读结果SPSS软件将为我们提供双因素方差分析的结果。
主要包括因素A 和因素B的主效应、交互效应以及误差项。
对于主效应,我们可以通过检查P值来决定该因素是否对因变量有显著影响。
对于交互效应,我们可以通过检查因素A和因素B的交互作用项的P值来判断是否存在显著交互效应。
SPSS操作—方差分析剖析方差分析(ANOVA)是一种统计方法,用于比较两个或更多个组之间差异的显著性。
它是一种多组比较的方法,通过评估组间差异和组内差异来确定差异的显著性。
方差分析可分为单因素方差分析和多因素方差分析,根据实验设计和研究目的选择相应的方差分析方法。
本文将对方差分析进行详细剖析。
一、单因素方差分析单因素方差分析适用于只有一个自变量(因素)的设计。
它通过比较不同组的均值来评估组间差异的显著性。
通常,首先需要检查方差齐性的假设,即各组的方差是否相等。
可以使用Levene's test来检验方差齐性。
如果方差齐性假设得到满足,则可以进行单因素方差分析。
单因素方差分析可以得到组间方差(因组间差异引起)和组内方差(因随机误差引起)。
方差分析通过计算F值来评估组间方差和组内方差的比值,从而确定差异的显著性。
如果组间方差显著大于组内方差,则可以推断不同组之间存在显著差异。
在SPSS中进行单因素方差分析的步骤如下:1.打开数据文件并选择要进行方差分析的变量。
2.转到“分析”-“一元方差分析”选项。
3.将要进行方差分析的变量添加到“因子”框中。
4.可选择“选项”按钮进行一些设置,例如描述性统计量和效应大小指标。
5.单击“确定”按钮运行分析。
二、多因素方差分析多因素方差分析适用于有两个或更多个自变量(因素)的设计。
它可以同时评估多个因素对因变量的影响,并检验交互作用的显著性。
多因素方差分析可以得出组间差异的源头,包括因素A、因素B、A与B的交互作用以及随机误差。
在SPSS中进行多因素方差分析的步骤如下:1.打开数据文件并选择要进行方差分析的变量。
2.转到“分析”-“一元方差分析”选项。
3.将各个因素添加到“因子1”、“因子2”等框中。
4.单击“多因素”按钮可以进行设置,例如指定交互作用、是否需要进行修正等。
5.单击“确定”按钮运行分析。
总结:方差分析是一种重要的统计方法,可以用于比较组间差异的显著性。
SPSS⽅差分析实验⽬的:1、学会使⽤SPSS的简单操作。
2、掌握⽅差分析。
实验内容:1.单因素⽅差分析;2.双因素⽅差分析。
实验步骤: 1.单因素⽅差分析,⽅差分析是基于变异分解的思想进⾏的,在单因数⽅差分析中,整个样本的变异可以看成由两个部分构成:总变异=随机变异+处理因数导致的变异,其中随机变异是永远存在的,确定处理因数导致的变异是否存在就是所要达到的研究⽬标,即只要能证明它不等于0,就等同于证明了处理因数的确存在影响。
这样可采⽤⼀定的⽅法来⽐较组内变异和组间变异的⼤⼩,如果后者远远⼤于前者,则说明处理因数的影响的确存在,如果两者相差⽆⼏,则说明该影响不存在。
SPSS操作:【分析】→【⼀般线性模型-单变量】,将因变量选⼊【因变量】,将⾃变量选⼊【固定因⼦】。
如果需要均值图⽰,【绘图】,将因⼦选⼊【⽔平轴】,【图】→【添加】。
如果需要多重⽐较时,【事后多重⽐较】,将因⼦选⼊【两两⽐较检验】,【假定⽅差齐性】→【LSD】。
如果需要相关统计量时,【选项】→【显⽰】→【描述统计量】。
如果需要⽅差齐性检验时,【选项】→【输出】→【齐性检验】。
如果需要对模型的参数进⾏估计时,【选项】→【输出】→【参数估计值】。
如果需要预测值时,【保存】→【预测值】→【未标准化】。
1 UNIANOVA 销售额 BY 超市位置2 /METHOD=SSTYPE(3)3 /INTERCEPT=INCLUDE4 /CRITERIA=ALPHA(0.05)5 /DESIGN=超市位置.⽅差单变量分析11 UNIANOVA 销售额 BY 超市位置2 /METHOD=SSTYPE(3)3 /INTERCEPT=INCLUDE4 /PLOT=PROFILE(超市位置) TYPE=LINE ERRORBAR=NO MEANREFERENCE=NO YAXIS=AUTO5 /CRITERIA=ALPHA(0.05)6 /DESIGN=超市位置.单因数⽅差分析2轮廓图1 UNIANOVA 销售额 BY 超市位置2 /METHOD=SSTYPE(3)3 /INTERCEPT=INCLUDE4 /POSTHOC=超市位置(LSD)5 /CRITERIA=ALPHA(0.05)6 /DESIGN=超市位置.单因数⽅差分析31 UNIANOVA 销售额 BY 超市位置2 /METHOD=SSTYPE(3)3 /INTERCEPT=INCLUDE4 /PRINT DESCRIPTIVE5 /CRITERIA=ALPHA(.05)6 /DESIGN=超市位置.单因数⽅差分析41 UNIANOVA 销售额 BY 超市位置2 /METHOD=SSTYPE(3)3 /INTERCEPT=INCLUDE4 /PRINT HOMOGENEITY5 /CRITERIA=ALPHA(.05)6 /DESIGN=超市位置.单因数⽅差分析51 UNIANOVA 销售额 BY 超市位置2 /METHOD=SSTYPE(3)3 /INTERCEPT=INCLUDE4 /PRINT PARAMETER5 /CRITERIA=ALPHA(.05)6 /DESIGN=超市位置.单因数⽅差分析61 UNIANOVA 销售额 BY 超市位置2 /METHOD=SSTYPE(3)3 /INTERCEPT=INCLUDE4 /SAVE=PRED5 /CRITERIA=ALPHA(.05)6 /DESIGN=超市位置.单因数⽅差分析7 2.双因数⽅差分析:分析两个因数对实验结果的影响。
《方差分析SPSS操作流程》
方差分析是一种统计方法,用于分析两个或两个以上样本均值之间差异的显著性。
在SPSS软件中,进行方差分析的操作流程如下:
1.打开SPSS软件并导入数据:在SPSS软件中选择“文件”菜单,然后点击“打开”选项。
在弹出的对话框中选择数据文件并点击“打开”。
2.选择统计分析:在SPSS软件中选择“分析”菜单,然后点击“一元方差分析”选项。
3.选择变量:在弹出的对话框中,将待分析的变量从左侧的变量列表框拖动到右侧的因子列表框中。
4.设置参数:点击“选项”按钮,可以设置一些参数,如方差齐性检验、置信水平等。
根据实际需要进行设置后点击“确定”。
5.进行方差分析:点击“确定”按钮后,SPSS将执行方差分析并将结果呈现在输出窗口中。
6.解释结果:在输出窗口的方差分析结果表中,可以查看各项指标的统计值、F值、显著性水平等。
根据这些指标,可以判断不同样本均值之间的显著性差异。
需要注意的是,在进行方差分析之前需要满足一些前提条件,如样本间独立性、数据正态性、方差齐性等。
如果数据不满足这些前提条件,可能会影响方差分析的结果。
此外,还可以使用SPSS软件进行方差分析的更进一步的分析,如多元方差分析、协方差分析等。
这些更复杂的分析方法可以帮助研究人员更全面地了解样本均值之间的差异。
总之,方差分析是一种重要的统计方法,可以用于比较两个或两个以上样本均值之间的差异。
在SPSS软件中进行方差分析的操作流程相对简单,研究人员只需要按照上述步骤进行操作即可。
SPSS多因素方差分析一、问题对小白鼠喂以三种不同的营养素,目的是了解不同营养素增重的效果。
采用随机区组设计方法,以窝别作为划分区组的特征,以消除遗传因素对体重增长的影响。
现将同品系同体重的24只小白鼠分为8个区组,每个区组3只小白鼠。
三周后体重增量结果(克)列于下表,问小白鼠经三种不同营养素喂养后所增体重有无差别?SPSS软件版本:18.0中文版。
二、统计操作:1、建立数据文件变量视图:建立3个变量,如下图数据视图:如下图:区组号用1-8表示,营养素号用1-3表示。
数据文件见“小白鼠喂3种不同的营养素增重数量.sav”,可以直接使用。
2、统计分析菜单选择:分析-> 一般线性模型-> 单变量点击进入“单变量”对话框将“体重”选入“因变量”框,“区组”、“营养素”选入固定因子框点击右边“模型”按钮,进入“单变量:模型对话框”点击“设定”单选按钮,在“构建项”下拉菜单中选择“主效应”把左边的因子与协变量框中区组和营养素均选入右边的模型框中其余选项取默认值就行,点击“继续”按钮,回到“单变量”界面点击“两两比较”按钮,进入下面对话框将左边框中“区组”、“营养素”均选入右边框中再选择两两比较的方法,LSD、S-N-K,Duncan为常用的三种方法,点击“继续”按钮回到“单变量”主界面。
点击“选项”按钮勾选“统计描述”及“方差齐性检验”,设置显著性水平,点击“继续”按钮,回到“单变量”主界面点击下方“确定”按钮,开始分析。
3、结果解读这是一个所分析因素的取值情况列表。
变量的描述性分析这是一个典型的方差分析表,有2个因素“营养素”和“区组”,首先是所用方差分析模型的检验,F值为11.517,P小于0.05,因此所用的模型有统计学意义,即认为至少有一个因素对体重增长有显著影响,可以用它来判断模型中系数有无统计学意义;第二行是截距,它在我们的分析中没有实际意义,忽略即可;第三行是变量是区组,P<0.001,可见有统计学意义(即认为区组对体重增长有显著影响),不过通常我们关心的也不是他;第四行是我们真正要分析的营养素,非常遗憾,它的P值为0.084,没有统计学意义(即认为营养素对体重增长没有显著影响)。
方差分析SPSS操作
习题2.11 (完全随机设计方差分析)
1、建立数据文件:结构:g,x
2、分析
Analyze Compare Means One-way ANOVA
两两比较选项
统计功能选项
3、结果
(1)均数标准差
①统计描述(均数、标准差计算)
②方差齐性检验
③点击
(2)方差齐性检验
(3)方差分析结果
(4)两两比较
①糖尿病+钒组与正常组间无差别;②糖尿病分别组与糖尿病+钒组、正常组之间有差别。
答题格式:
(1)题意分析:本资料为成组设计多样本均数比较,用成组设计方差分析。
F 值
p 值
P=0.000, 或 P<0.0005
同在一列,无差别;不在同一列,有差别
(2)建立假设、确定检验水准:
H0: μ1=μ2=μ3
H1: 各总体均数不等或不全相等
α=0.05
(3)经SPSS计算得:
方差齐性检验:卡方=2.35 ,P=0.12,方差齐。
方差分析:F=200.603,P=0.000
(4)按α=0.05,拒绝H0,接受H1,可认为3组进食量不同或不全相同。
经两两比较:①糖尿病+钒组与正常组间无差别;②糖尿病分别组与糖尿病+钒组、正常组之间有差别。
习题2.14 (配伍组方差分析)
1、建立数据文件:结构:a,b,x (a:处理组;b:配伍组;x:NO2浓度)
2、分析
Analyze general Linear Model Univariate
(1)选模型
(1) 选模型:Custom
(2)两两比较
(3)统计功能选项
每次移1个(4)OK
(2)两两比较:
(3)基本统计指标计算
计算均数标准差的变量计算什么指标?
3、结果
(1)方差分析:
(不同产地的石棉毒性不同;不同厨房之间无差别)(2)两两比较:
小结
方差分析结果判断步骤:
1、方差齐性检验结果:如P>0.05,方差齐,转2;否则,改用秩和检验。
2、方差分析结果:如P<0.05,总的有差别,转3;否则,结束。
3、两两比较的结果:均数在同一列,无差别;在不同列,有差别。
4、均数结果:如两两比较有差别,下专业结论。